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Abstract: Synthetic bone substitute materials (BSMs) are becoming the general trend, replacing
autologous grafting for bone tissue engineering (BTE) in orthopedic research and clinical practice. As
the main component of bone matrix, collagen type I has played a critical role in the construction of
ideal synthetic BSMs for decades. Significant strides have been made in the field of collagen research,
including the exploration of various collagen types, structures, and sources, the optimization of
preparation techniques, modification technologies, and the manufacture of various collagen-based
materials. However, the poor mechanical properties, fast degradation, and lack of osteoconductive
activity of collagen-based materials caused inefficient bone replacement and limited their translation
into clinical reality. In the area of BTE, so far, attempts have focused on the preparation of collagen-
based biomimetic BSMs, along with other inorganic materials and bioactive substances. By reviewing
the approved products on the market, this manuscript updates the latest applications of collagen-
based materials in bone regeneration and highlights the potential for further development in the field
of BTE over the next ten years.

Keywords: collagen; bone tissue engineering; bone substitute materials; collagen modifications;
composite bone scaffolds

1. Introduction

Increasing incidence of bone defects due to trauma, disease, or tumor resection has
given rise to a growing need for bone grafts [1]. Currently, for the surgical treatment of
bone defects, autologous bone grafts still represent the “gold standard” for bone repair [2].
However, the clinical applications of autografts are restricted by the limited donor tissue
availability and potential for severe postoperative complications [3]. To overcome these
limitations, intensive investigations in bone tissue engineering (BTE) and material science
have been carried out to produce ideal bone substitute materials (BSMs) as an alternative to
autografts [4–6]. So far, various BSMs have been developed, and some have even entered
clinical use, including metals and alloys (e.g., stainless steel, titanium alloy, and magnesium
alloy) [7], minerals (e.g., hydroxyapatite and tricalcium phosphate among, other calcium
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phosphate compounds) [8], synthetic polymers (e.g., polyurethan) [9], naturally derived
polymers (e.g., collagens and gelatin) [5], as well as a significant number of composites of
these materials [10,11]. However, there is much room for improvement in order for these
biomaterials to become real autograft substitutes and achieve successful bone regeneration.
Incomplete or defective regeneration can lead to loss of tissue mass or replacement with
fibrotic scars, which are associated with impaired functional recovery [12]. Angiogenesis is
another big challenge for synthetic BSMs, and even BTE constructs, as an insufficient blood
supply can lead to necrosis and ultimately, to failure of the bone replacement [13]. Therefore,
although clinical research in synthetic bone grafting has been conducted for more than a
century, only a few of these methods are available for long-term clinical use (Tables 1 and 2).
As the main component of bone matrix, collagen (type I) and its engineered forms plays an
increasing important role as a component of bone substitute materials and in BTE because
of its excellent biocompatibility, cell adhesion, and osteoconductivity [4,14–16]. However,
its shortcomings including poor mechanical properties, high degradability, and lack of
osteoinductivity currently limited to date routine clinical applications [4,14,17,18]. For this,
many attempts have been made to improve collagen-based implants in bone tissue repair
and engineering. Hundreds of review articles have been published in the field summarizing
the findings regarding collagens and collagen derivatives for BTE applications, and most of
these articles focus on new trends in scientific understanding and research; however, the
key issues of clinical usability and technology transferability are rarely addressed. In this
short review, based on a summary of information on currently marketed products with
FDA/EU market authorization, an overview of collagen resources, preparation methods,
advancements and shortcomings in modification techniques, the use of collagens for clinical
bone grafting, and the development of more functionalized collagen-based composites
for BTE are presented. For more than 200 years, collagens have been studied as the most
abundant naturally derived biomaterial, and many techniques and methods have been
extensively developed and adapted during this time. However, as techniques improve
and new knowledge emerges, some theories must be continuously revised and updated,
albeit subtly, such as in the exploration of many chemical modifications and mechanisms
of cross-linking reactions, or in the involvement of collagen in the regulation of different
(patho)-physiological processes, especially clinical phenomena such as immune responses.

Table 1. Representative bone implants approved by the FDA for various clinical indications, provided
along with their main components and specifications.

Products and Company
Name Main Components Special Functions and

Properties FDA Code and PMA/510 (k)

Norian skeletal repair system,
Synthes USA (West Chester,

PA, USA)
Sodium/calcium phosphate Bone void fillers;

non-osteoinduction MBS; P970010

Ballast MT, SeaSpine
Orthopedics Corporation

(Carlsbad, CA, USA)

Resorbable Mesh Pouch, e.g.,
PLGA

Bone void fillers;
osteoinduction (w/o human

growth factor)

MBP; K200290, K143547 (15
products in total)

Freeman, DePuy Inc.
(Raynham, MA, USA) Polymer/metal/polymer

Semi-constrained cemented
prosthesis; knee, patella,

femorotibial

MBV; K010212, K884824 (12
products in total)

Insignia Hip Stem, Stryker
(Leesburg, VA, USA) Metal/ceramic/polymer

Semi-constrained cemented or
nonporous uncemented

prosthesis; hip

MEH; K221104, K220731 (17
products in total)

Subtalar peg implant, Nexa
Orthopedics Lundeen subtalar

peg implant, Sgarlato
Laboratories Inc. (Los Gatos,

CA, USA)

Polymer Metallic bone fixation fastener
or plug; subtalar MJW; K033046, K922292
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Table 1. Cont.

Products and Company
Name Main Components Special Functions and

Properties FDA Code and PMA/510 (k)

ANAX 5.5 spinal sys, U&I
Corporation (Uijeongbu,

Korea)

Metal/polymer, non-porous
calcium phosphate

Spondylolisthesis spinal
fixation

MNH; K162801, K 162189
(17 products in total)

Sniper Spine Sys, Spine Wave
Inc. (Shelton, CT, USA) Titanium alloy Spinal pedicle fixation; spinal

fixation
MNI; K152174, K152132

(8 products in total)
Ossiofiber, Ossio Ltd.

Arthrex Bio, Arthrex Inc.
(Naples, FL, USA)

Polymer, e.g., PLDLA Metallic bone fixation;
absorbable MNU; K212594, K011172

Infuse Bone Graft, Medtronic
Sofamor Danek USA, Inc.

(Memphis, TN, USA)

Collagen scaffold,
recombinant human bone
morphogenetic protein 2

(rhBMP-2)

Bone void fillers;
osteoinduction MPW; P000054

ArtFx Medical LLc, NuVasive
Incorporated (San Diego, CA,

USA)
Titanium alloy Ti6Al-4V ELI Spinal vertebral body

replacement device
MQP; K211892, K202637

(17 products in total)

Altapore MIS, Baxter
Healthcare Corporation
(Round Lake, IL, USA)

Calcium compounds Bone void fillers; resorbable
calcium salts

MQV; K221644, K213959
(17 products in total)

Infuse Bone Graft, Medtronic
Sofamor Danek USA, Inc.

(Memphis, TN, USA)
Collagen scaffold, rhBMP-2 Bone void fillers;

osteoinduction NEK; P000058

I-Factor peptide enhanced BG,
Cerapedics LLC Augment

Injectable, Biomimetic
Therapeutics LLC (Franklin,

TN, USA)

Synthetic peptides Bone void fillers NOX; K140019, K100006

Not available Calcium compounds Bone void fillers; resorbable
calcium salts QCG; not available

Infuse Bone Graft and
LT-Cage, Medtronic Sofamor
Danek USA (Memphis, TN,

USA)

Collagen scaffold, metal,
rhBMP-2

Bone void fillers;
osteoinduction OJZ; not available

Not available Calcium compounds; single
approved aminoglycoside

Bone void fillers, resorbable;
Chronic osteomyelitis of long

bones; anti-infection
QRR; not available

Not available

Recombinant platelet-derived
growth factor (rhPDGF) and
beta-tricalcium phosphate

(b-TCP)

Bone void fillers; hindfoot and
ankle fusion procedures QYR; not available

Not available
Bioactive glass particles
containing polyethylene

glycol and glycerol

Bone void fillers; extremities,
posterolateral spine, and

pelvis
PBU; not available

Not available Calcium; synthetic polymers Bone void fillers; alterable
compound for cranioplasty PJM; not available

Not available Metals; polyether ether ketone
(PEEK)

Bone void fillers;
non-alterable compound for
cranioplasty, patient-specific

preformed implant

PJN; K212414, K190523
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Table 2. Representative collagen-based bone implants approved by EU, provided along with their
main components and specifications.

Products and
Company Name Main Components Special Function

and Properties

Basic
UDI-DI/EUDAMED

DI

BioCover™,
Purgo Biologics Inc.

(Seongnam-si, Korea)

Natural fibrous
collagen matrix from

porcine tendon
Barrier membrane

B-08800039003742,
B-08800039003759,
B-08800039003766

(10 products in total)

THE Graft™ collagen,
Purgo Biologics Inc.

(Seongnam-si, Korea)

Porcine-derived bone
mineral matrix from
cancellous bone and
atelocollagen from

porcine tendon

Bone block;
hydrophilicity,

osteoconductivity

B-08800039004992,
B-08800039005005,
B-08800039005012

(9 products in total)

Striate+ ™, Orthocell
Ltd. (Perth, WA,

Australia)

Porcine-derived
collagen

Barrier membrane;
dual layer B-AU-MF-000018345Z8

ChondroFiller®

liquid, Meidrix
biomedicals GmbH.

(Esslingen am Neckar,
Germany)

Rat tail collagen I Cartilage filler
B-04260349610070,
B-04260349610087,
B-04260349610179

MaioRegen Prime
(Oval)/Slim

(Oval)/Chondro+
(Oval), Fin-ceramica
Faenza SPA. (Faenza,

Italy)

Collagen and
hydroxyapatite
enriched with
magnesium

Bone scaffold;
structural

biomimetics

B-18054188160963,
B-18054188160970,
B-18054188160987

(31 products in total)

RegenOss
Ortho/Spine,

Fin-ceramica Faenza
SPA. (Faenza, Italy)

Collagen-
hydroxyapatite

composite

Bone scaffold; fully
biomimetic, highly

hydrophilic

B-18054188160529,
B-18054188160536,
B-18054188160543

(7 products in total)

2. Collagen in Native Bone Tissues

Collagen (type I) is a major structural component of mammalian bone, constituting
90% of the organic components of the bone extracellular matrix (ECM) [19]. Thus, it has
been stated that the ideal synthetic bone grafts should mimic the ECM of autologous bones
as much as possible, since the ECM found in natural tissues supports cell attachment,
proliferation, and differentiation [20]. Scaffolds should consist of appropriate ECM-like
biochemistry and nano/micro-scale surface topographies in order to formulate favorable
binding sites to actively regulate and control cell and tissue behavior [17,21]. Therefore,
understanding the synthesis, structure, and distribution of collagen in bone tissue is critical
for bone regeneration [17]. The process of collagen synthesis in bone tissue occurs mainly by
fibroblasts and osteoblasts [22]. Within the cells, polypeptides formed in the endoplasmic
reticulum are the building blocks of collagen, called alpha chains [23–26]. After translation
and posttranslational modifications, three alpha chains are linked by disulfide bridges [27],
then twisted into a triple helical procollagen [28]. The ability to form a triple helix is the
most important property of collagen, which is mostly based on the repetitive Gly-X-Y
triplet of alpha chains [22]. Glycine, with the smallest volume, is located at the inside
of the triple helix. X is usually a proline, but could also be other amino acids; and Y is
often hydroxyproline. The alpha chains are twisted in a left-handed way, while the triple
helixes are folded in a right-handed helix because of the presence of hydrogen bonds. The
formed triple helical procollagen is excreted into ECM by transport vesicles. In the ECM,
the globular N- and C-terminal propeptides are removed from procollagen by the N- and
C- proteinases, which is the key step in the formation of mature collagen [25]. The helix
dimension is on the order of 1.25 nm wide and 300 nm long [29], with a mass of ~285 kDa.
The removal of the N- and C- terminal propeptides would trigger the self-assembly of
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supramolecular structures (collagen microfibrils, fibrils, and fibers). Finally, the covalent
crosslinking and non-covalent bonds stabilize these supramolecular structures [30].

In bone, groups of five triple helical collagen molecules form microfibrils. The mi-
crofibrils are spontaneously organized into fibrils and fibers that can be up to 1 cm in
length and 1 mm in diameter and with the characteristic 67 nm banding feature, called the
D-period [31,32]. The hydroxyapatite (HA) nanocrystals are deposited by osteoblasts on
the collagen fibrils, constituting the inorganic and organic phases of the bone matrix. The
bone matrix is thus hierarchically structured, consisting of a 65% mineral phase, HA, a 35%
organic phase (~90% type I collagen, 5% noncollagenous proteins, and 2% lipids by weight),
and a residual amount of water (Figure 1). All these scales play an important role in the
remarkable mechanical properties of bone. HA provides the rigidity, and collagen fibers
improve the toughness of bone. Thus, to better mimic the native bone tissue, collagens used
in synthetic bone materials should maintain their natural structure as much as possible.
This imposes high requirements on collagen sources and extraction techniques.
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Figure 1. Hierarchical structure of type I collagen fiber and human bone.

3. Collagen Sources and Extraction Techniques

Collagen can be extracted from most animal tissues. Rat-tail tendon collagen is widely
used in basic research due to its high purity and homogeneity, and its simple extraction
process [33]. For the medical devices, bovine skin and tendons, as well as porcine skin, are
the most common collagen sources, with collagen type I as the predominant fraction. They
are highly homologous to human collagen, with almost no immune restriction; therefore,
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they are often used for hernia repair and wound healing [34]. Collagens isolated from other
animal sources, such as the sternal cartilage from domestic birds, are also available, but
they are not in wide clinical use [35]. Recently, collagens from the ocean (such as from
sea sponges and jellyfish) have attracted interest because of their huge potential reserves
and batch-to-batch consistency [36]. However, their clinical validation and use still require
long-term research and development.

Collagen isolation can essentially be obtained by chemical extraction and enzymatic
processing [37]. Chemical extraction is more common for industrial scale production, in-
cluding neutral saline solutions (e.g., sodium chloride (NaCl), Tris-HCl, phosphates) [38,39]
and acidic solutions (e.g., acetic acid, citric acid, lactic acid, and hydrochloric acid) [40,41].
Acidic extractions with organic acid solutions, especially acetic acid, are able to solubilize
non-crosslinked collagen and also break some of the inter-strand cross-links in collagen,
achieving a higher productivity of collagen molecules [37]. Enzymatic processing with
selected enzymes (e.g., pepsin, papain, and collagenase) shows some advantages, such as
specificity, control of dissolution, mild reaction conditions, and less waste generation; for
these reasons it is more widely used, but there are also medical concerns about enzyme
inactivation and purity [42–44]. Nevertheless, extraction methods may favorably and
unfavorably affect the final characteristics of collagen, including thermal stability, molar
mass, water retaining ability, and gel-forming capacity [37]. Although marine collagens and
collagen peptides are considered potential alternatives to mammalian collagens, their low
thermal and mechanical stability still need to be improved by chemical cross-linking and
other processes. Moreover, the chemical and structural differences compared to mammalian
collagens should not be underestimated for potential medical applications.

To avoid problems related to transmission of disease and cumbersome extraction
processes induced by animal extracted collagens, the production of recombinant human
collagens (rhCol) appears to be an alternative option [45]. However, the complex post-
translational modifications are critical for the production of rhCol, which cannot be fulfilled
in unicellular organisms [33]. In most cases, the produced rhCol showed insufficient enzy-
matic or thermal stability, suggesting incomplete triple helix and fibril/fiber formation [46].
Moreover, the quality control, including batch-to-batch consistency, as well as the genetic
construction of the bioengineered host strain, are still under development [47], and so far,
the yield is too low for industrial applications [46]. Altogether, even though the sources
of collagen are more diverse and the extraction and engineering techniques are becoming
more advanced, the mechanical strength and biological stability of the obtained colla-
gen products are still not comparable to those of native collagen fibers. Further in-depth
explorations of collagen sources and extraction techniques are still necessary.

4. Exogenous Collagen Modifications

To achieve effective bone repair, collagen-based bone materials should match the
mechanical properties of bone in the early stage of bone regeneration, and then gradually
degrade and be replaced by regenerated bone tissue [48]. For this purpose, collagen
must be modified (e.g., cross-linked or blended) for specific medical application and
clinical indication. Thus, it is often necessary to introduce chemical, physical, or biological
methodologies resulting in natural exogenous crosslinks (as shown in Table 3) into the
inter-/intra-molecular structure to tune the mechanical properties, to prevent denaturation
at 37 ◦C, and to control the degradation rate [33,49,50]. The fundamental principle of
exogenous collagen cross-linking is the formation of covalent bonds between collagen
molecules using chemical or natural reagents, typically linking the free amine or carboxyl
groups of collagen (Figure 2). However, only a few devices are currently on the market
because it has been shown that most of the collagen crosslinking technologies lead to
undesirable inflammatory tissue responses. Therefore, research in this field is still highly
topical and is constantly being pursued by industry and universities alike.
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Table 3. The widely applied exogenous chemical, physical, and biological collagen crosslinking
methods.

Cross-Linking Methods Advantages Disadvantages Ref.

Chemical

Glutaraldehyde (GA)

Very good mechanical
properties and

resistance to
biodegradation

Significant cytotoxicity and
biohazard problems [51–53]

Hexamethylene diisocyanate

Very good mechanical
properties and

resistance to
biodegradation

Cytotoxicity/inflammation [54,55]

1-Ethyl-3-(3-dimethyl
aminopropyl)-carbodiimide

(EDC) / N-Hydroxysuccinimide
(NHS)

Water soluble system,
low

toxicity/inflammation

Poor biomechanical
properties and more rapid

biodegradation profiles
compared to those of

GA-crosslinked examples

[56,57]

Genipin
Biodegradability and

low cytotoxic-
ity/inflammation

Expensive for mass
industrial production [58,59]

Citric acid
Nontoxic, potential

intrinsic mineralization
property

Poor biomechanical
properties and more rapid

biodegradation profiles
compared to those of

GA-crosslinked examples

[60,61]

Physical

Dehydrothermal treatment Simple and safe
Denaturation issues;

require further
modifications

[62,63]

Plasma treatment Simple and safe
Denaturation issues; only

acceptable for surface
modifications

[64,65]

UV or visible light irradiation Nontoxic Denaturation issues [66–69]
Biological Transglutaminase Nontoxic Expensive; low stability [70–72]

4.1. Chemical Methods

Chemical cross-linking is well known, mainly from other industries, such as leather
manufacturing, but this technique has been transferred to the medical device industry for
decades due to its high crosslinking efficiency. The widely used chemical cross-linking agents
are aldehydes (e.g., glutaraldehyde, GA [51,53]), isocyanates (e.g., hexamethylene diisocyanate,
HMDI [53,54]), carbodiimides (e.g., 1-ethyl-3(3-dimethylaminoproopylcarbodiimide and N-
hydroxysuccinimide, EDC-NHS [55,57]), genipin [52], and citric acid [61,73], with varying
degrees of efficiency. For many years, GA processing has been the “gold standard” method
for collagen crosslinking, since it could react with all the available free amine groups of
collagen molecules, forming a very strongly crosslinked network [51]. However, the alde-
hyde groups of GA are cytotoxic, which would cause severe inflammation in the body, in
addition to biohazard problems [74]. This limits the further applications of GA-crosslinking
in medical devices. A water soluble carbodiimide system, EDC-NHS, was then expected to
be a safe alternative crosslinking method for biomaterials, as well as for different clinical
applications [75,76]. However, the biomechanical properties and degradation profiles
of such materials are not as desirable as those for the GA-crosslinked examples [77]. In
recent years, green chemical crosslinkers, such as genipin, citric acid, and tannic acid, have
attracted increasing attention from researchers due to their biodegradability and low cyto-
toxicity [58,61,73,78]. However, until now, most of them have remained at the experimental
stage, and there is no economic justification for industrial production [51]. In addition,
collagen co-polymerization is also an effective method for collagen modification, contribut-
ing to fibril organization and improving the mechanical properties of collagen [79,80].
A further sugar-mediated (e.g., ribose) crosslinking method, called glycation, is also in
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process [81,82]. The glycation crosslinked collagens showed a > 5 times higher resistance
to enzymatic degradation [83]. However, the inflammatory tissue response and cellular
reaction on crosslinked collagens are still not fully investigated [83]. Considering the in-
creasing requirements for market authorization, authorities need more detailed knowledge
and in-depth quantitative analyses to demonstrate the safety, efficacy, and process stability
of these products. The qualitative and quantitative determination of the cross-linking
mechanism, the sites of cross-linking, the homogeneity, and the reproducibility of the
reaction still fail to meet the regulatory requirements. New knowledge is needed, and new
techniques are under development.
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4.2. Physical Methods

Physical methods, such as dehydrothermal, lyophilization, UV irradiation, with or
without photoactive agents (e.g., rose Bengal and riboflavin), could improve the physical
and mechanical properties with negligible toxicity and less concern about cross-linker
residues compared to chemical methods [18]. Lyophilization is the main established phys-
ical method for stabilizing and structuring collagen [84–86]. Based on the freeze-drying
process and the regulation of the thermodynamic rate, molecules and small fibers can
be aligned together due to the formation of ice crystals, which is related to the solvent



Int. J. Mol. Sci. 2023, 24, 3744 9 of 21

used [87]. The structure of collagen can alter many physical properties of the scaffold,
including pore size, pore distribution, arrangement of open pore structures, wettability,
and infiltration. Further, these properties can regulate cell signaling, cell adhesion, and
other biological activities [88]. This approach is one of the most approved techniques for
the industrial production of collagen-based devices such as wound dressings and cartilage
fillers. Riboflavin and UV induced corneal collagen crosslinking (R-UV-CXL) has been
well-recognized as an effective treatment for progressive keratoconus for many years [89].
Recently, R-UV-CXL has gradually entered the research field of medical devices and BTE.
For example, Bapat et al. reported that 3D-printed collagen scaffolds impregnated with
quaternary ammonium silane and crosslinked with riboflavin and UV produced a promis-
ing scaffold with antimicrobial potency and structural stability [90]. R-UV-CXL has also
been studied in the fields of wound healing [91], skin repair [92], cardiac valves [93], and
vascular regeneration [94]. A study by Vasilikos et al. on the R-UV-CXL treatment of
intervertebral disc (IVD) matrices suggested that this treatment may be a promising tool to
reinforce the IVD matrix [95]. In addition, some other photocrosslinking techniques have
also been proposed. For example, biocompatible hydrogels crosslinked with lumichrome
and blue light, proposed by Grønlien et al., exhibited increased elasticity, water absorption
properties, and water retention capacity compared to R-UV-CXL [91] (Figure 3). How-
ever, the adverse structural changes due to over-treatment and the inconsistent degree
of crosslinking caused by the insufficient irradiation on the larger or three-dimensional
scaffolds should not be ignored in physical collagen modification.
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4.3. Biological Methods

Tissue-type and microbial transglutaminase (TG) have been utilized to stabilize
collagen- and gelatin-based materials, mimicking the enzymatic in vivo collagen crosslink-
ing pathway [33]. The TG mediated crosslinking served to increase in denaturation tem-
perature, mechanical strength, and biological resistance, while showing no cytotoxicity
to cells [47,96–98]. Recently, a study on recombinant human transglutaminase 4 (rhTG-
4) supplementation in a hyaluronic acid/collagen/fibrinogen (HA/COL/FG) composite
gel reported that its addition significantly upregulated the aggrecan and type II collagen
mRNA of stem cells, increasing the hardness of the ECM [99]. However, it should be noted
that TG-based biochemical collagen modifications, despite their excellent biocompatibility
compared to chemical crosslinking methodologies, showed a much lower crosslinking
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efficiency, often lower than that of the mildest chemical approaches [33]. Moreover, the
high price of the TG-based approaches also limits their industrial application.

Therefore, the quest for an optimal collagen crosslinker continues. Further efforts
to modify collagen are still under development, e.g., the coupling of functional peptides,
proteins [100–102], different ECM-components or derivates (e.g., glycosaminoglycans and
Decorin) [103,104], polymers (e.g., PLLA and PLGA) [105], and other composite materials
such as bioglass and PCL composites [106].

5. Applications of Collagen in Bone Tissue Regeneration and Engineering

The earliest reports of the use of collagen in the biomedical field date back to the 19th
century [107]. Currently, collagens directly extracted from animal tissues, or produced
as recombinant proteins, with or without further modifications according to crosslinking,
polymerization, or fibrillization, have been widely applied in vitro as standardized 3D
materials to investigate the influence of microstructural and mechanical features on cell
behaviors, such as cell attachment, cell contraction, cell motility, and related gene expres-
sions [108,109]. Collagen-based materials in various forms, including membranes, sponges
or matrices, hydrogel, and composite scaffolds, are also widely used in vivo to support
bone tissue regeneration in different clinical applications [18,110] (Figure 4).
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Figure 4. Widely used collagen-based medical devices for bone defect repair. (A) Porcine pericardium
collagen membrane. (B) Lyophilized type I collagen sponge. (C) Scanning electron microscope (SEM)
imaging of a cross-sectional view of a collagen membrane with a tightly packed smooth side at the
bottom and a rough side on the top. (D) SEM image of lyophilized porous collagen sponge.

5.1. Collagen Membranes

Various kinds of membrane materials are applied in the clinical practice, such as in
the field of dentistry, to achieve guided bone regeneration (GBR) [111] (Figure 5).

Expanded polytetrafluoroethylene (ePTFE; Teflon) presented the first success for
controlling the migration of soft tissue, and especially epithelial cells, to achieve GBR [112].
However, with the wide use of ePTFE, this kind of non-resorbable membrane shows a
high rate of wound dehiscence and infections, and often needs to be removed by a second
operation, which causes a secondary damage to the wound [113,114]. One promising
alternative to overcome these concerns is the application of resorbable collagen membranes,
which offer many advantages, such as a single-step surgical procedure, improved soft tissue
healing, the incorporation of the membranes by the host tissues, and a quick resorption
in case of exposure [115]. However, the disadvantages of collagen membranes are related
to their unfavorable mechanical properties and their unpredictable resorption rates, even
with the use of native dermis-derived materials [116] (Figure 6).
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200× magnification, scalebar = 20 µm).

Thus, different approaches, such as the choice of other tissue sources and manufac-
turing methods, have been tested to overcome these issues [81,83]. Interestingly, cross-
linking based on ribose has been shown to be a favorable alternative for the production
of collagen-based GBR membranes [82]. Other methods to overcome these issues are the
use of new manufacturing approaches, such as electrophoretic deposition, electrospinning,
and 3D printing, to improve the mechanical and biological properties of collagen mem-
branes [117,118]. Recently, another potential material alternative, based on a resorbable
magnesium grid for volume stability, combined with a collagen membrane or a pure
magnesium membrane, have been developed for GBR procedures [119,120].

5.2. Collagen Sponges or Matrices

Collagen sponge is one of the most useful biomaterials owing to its excellent function
and properties, as well as its easy processing, sterilization, and preservation [121]. Collagen
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sponges are generally formed using a freeze-drying process (also known as ice-crystal
templating, lyophilization, or ice-segregation-induced self-assembly) (Figure 7) [122,123].
By altering the freezing conditions, such as freezing temperature, time, and molds, the pore
size and shape of collagen sponge could be tailored [124]. For the optimal bioactivity of
tissue regeneration, the pores should be large enough to permit cell migration and nutrient
diffusion, and small enough to promote cell attachment [125,126].
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FDA approved collagen sponge-based devices are mainly used as absorbable hemo-
statics in different clinical conditions (Figure 8). For BTE, collagen sponges are mainly
applied as basic scaffolds for carrying bioactive substances, including growth factors, cells,
drugs, etc. Recently, a collagen sponge, combined with BMP-2 and a bridge protein, showed
the improved safety of BMP-2 and effects on bone regeneration for spinal fusion [127]. A
gene delivery system encoding fibroblast growth factor (FGF-2) and BMP-2 embedded in
collagen sponge showed optimal bone regeneration effects [128]. Atelocollagen molecules
self-assembled into collagen fibrils, then processed with freeze-drying and crosslinking to
build up a collagen sponge scaffold, which showed improved osteogenic differentiation
and bone formation in vitro and in vivo (Figure 9) [129]. In addition, collagen sponges play
an important role for in vitro models. To mimic the complex hierarchical environment of
the native ECM, experimental design tools and optimized freeze-casting systems present
exciting opportunities for the tailored architectural design of ice-templated collagen sponge
scaffolds [130,131].
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Figure 8. Tissue reactions and integration behavior of a collagen sponge for hemostasis in dental
applications at day 15 post implantation within the subcutaneous connective tissue (CT) of Wistar
rats. (A) Overview of the implantation bed. A peripheral region (PR and double arrows) in which a
cellular migration was noticed was separable from a nearly cell-free central region (CR), showing
the gradual integration pattern of the biomaterial (Azan-staining, “total scan,” 100× magnification,
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scalebar = 5mm). (B) Tissue reaction within the PR including mainly macrophages (black arrows), as
well as lower numbers of eosinophils (blue arrows) in combination with collagen fiber apposition
(asterisks) and blood vessel ingrowth (red arrows) (Giemsa-staining, 400× magnification, scale-
bar = 10 µm). (C) Tissue reactions within the CR, including single macrophages (black arrows) within
the interspaces of the collagen fibers (asterisks) of the sponge (Azan-staining, 400× magnification,
scalebar = 20 µm).
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5.3. Collagen Hydrogels

Hydrogels are water-swellable polymer materials with a 3D network structure formed
through crosslinking reactions [132]. Naturally derived collagen hydrogels present more
satisfying biocompatibility and biological activity compared to other synthetic polymers
or hybrid polymers [133]. Similarly, they exhibit low stiffness and rapid degradation,
which hamper their application in animal models and clinical tests [134]. To overcome
these drawbacks, one approach is based on the self-assemble ability of collagen hydrogels,
as they polymerize into a fibrillar structure at physiological pH and ionic strength and
temperature following an entropy-driven process [135,136]. Another efficient strategy is the
production of composite hydrogels formed by the combination of collagen hydrogels and
synthetic components, including functionalized polymers and organic/inorganic nanopar-
ticles and ions [132]. The hydrogel collagen nanocomposite, in combination with strontium
and seeded mesenchymal stem cells, showed the highest radiographical and histological
scores compared with only collagen hydrogel and other control groups in full-thickness
bone defect regeneration in the rabbit model [137]. The application of nanomaterials to
improve the mechanical properties of hydrogel showed enhanced stem cell adhesion and
provide valuable guidance for the design of hydrogel-based materials [138]. Currently, a
new generation of composite collagen hydrogels is widely applied as an injectable hydrogel
scaffold for in situ bone tissue repair, flexible drug delivery systems (nanogels or micro-
gels), and implanted bone tissue scaffolds using 3D-printing, electrospinning, or other
techniques [132].

5.4. Collagen-Based Composite Materials
5.4.1. Collagen Integrated with Organic or Inorganic Materials

In FDA and EU approved collagen-based composite material (Tables 1 and 2), collagen
bone void fillers (CBVFs) are one of the protagonists, and they are used for the backfilling
and structure stabilization of bone voids in orthopedic surgeries. CBVFs are commonly
composed of inorganic materials, such as calcium sulfate or calcium phosphate augmented
with hydroxyapatite, and a native tissue-derived collagen suspension or collagen hydrogels,
providing improved biocompatibility, resorbability, and filling ability [139]. In recent
decades, CBVFs and other collagen-based scaffolds have been introduced into various
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materials, such as hyaluronic acid, alginate, glycosaminoglycans (GAGs), silk fibroin (SF),
metals, bioactive glasses, and some novel carbon-based materials [76,78,140–143]. For
example, a mechanically robust, injectable, and thermoresponsive CBVF was formed with
carboxylated single wall carbon nanotubes (COOH-SWCNTs), chitosan, and collagen, as
reported by Kaur et al. [144]. They found that the material showed improved mechanical
properties and bioactivity with the addition of COOH-SWCNTs [144].

5.4.2. Collagen-Based Composite Materials Loaded with Growth Factors, Cells, or Drugs

Although collagen type I fibers contain multiple biological cues that could directly
interact with cells to modulate their adhesion, proliferation, and differentiation, largely
improving the biocompatibility and osteoconductivity of bone substitute materials, collagen
alone is not osteoinductive [14]. Thus, to achieve effective bone replacement and sufficient
tissue vascularization, collagen-based materials can be modified to include other bioactive
substances, such as growth factors (e.g., BMPs, VEGFA, etc.), cells (e.g., BMSCs, osteoblasts,
osteoclasts, HUVECs, etc.), and drugs (e.g., antibiotics). The first collagen bone graft loaded
with recombinant human bone morphogenetic protein-2 (rhBMP-2) was approved by the
FDA in 2002 [145]. However, after an initially promising start, concerns regarding safety and
cost-effectiveness of BMPs have been raised [146]. A solution may be the optimization of the
delivery system of BMPs to decrease the need for high doses of BMPs and to prevent their
applications [147]. In addition to increasing the loading efficiency by these modifications,
other attempts have been made by inhibiting the BMP antagonists and the combination
of multiple growth factors [148]. In addition, collagen materials could be integrated with
drugs for antibacterial, osteogenesis, and angiogenesis activity. Nabavi et al. reported that
collagen hydrogel loaded with tacrolimus, which can enhance osteogenic differentiation
by activating BMP receptors, showed improved bone formation compared with that of
other non-tacrolimus groups [133]. Because of the interactions between the RGD (arginine-
glycine-aspartate) sequence and stem cell integrin receptors, collagen-based materials can
increase the adhesion, proliferation, and differentiation of stem cells, providing an ideal
platform for cell delivery [133]. Recent studies have reported some rational designs of
materials by surface modification and stiffness adjustment with nanomaterials to tune the
tether mobility and anisotropic nanoscale presentation of RGD [138,149,150]. A collagen
scaffold carried with dental pulp stem cells (DPSCs) showed a higher amount of calcification
in the reconstructed defects [151]. However, in another study, in vivo micro-CT analysis
confirmed that the acellular scaffolds generated larger volumes of bone than the DPSCs
seeded scaffolds [152]. Some other attempts at creating collagen-based composites are also
focusing on the integration of collagen with peptide delivery and gene therapy [153–156].
These studies remain controversial and have yet to be explored. Another promising
direction is the synergistic effects of multiple bioactive cations on vascularization and bone
defect repair, which is a much safer and simpler option [157].

6. Conclusions and Perspectives

Significant strides have been made in the field of collagen (type I) for bone tissue
engineering. Advances in exploring various collagen sources, as well as extraction and
purification processes, have made collagen preparation available with maximum native
structure and minimum immunogenicity/antigenicity. Advances in collagen modifications
have offered optimized collagen mechanical properties and biological resistance. For a wide
variety of applications in bone grafting, collagens are often modified or combined with
other materials to construct various bone substitute materials, such as collagen sponges,
hydrogels, nanofibers/microfibers, or nanoparticles/microspheres. Collagen-based com-
posites with bioceramic materials (e.g., HA, TCP, and BGs, etc.), carried with growth factors,
peptides, cells, drugs, and genes, have made the multifunctionalized BSMs available with
improved osteoconductivity, osteoinductivity, osteointegration, osteogenesis, and vascu-
larization. Although many of them have shown great effects on bone regeneration in
in vitro and in vivo studies, only a few of them are currently FDA- or EU- approved for



Int. J. Mol. Sci. 2023, 24, 3744 15 of 21

clinical applications. These composites still face challenges regarding complete mechanical
properties, biological stability and activity, immune response, regional vascularization,
and other safety issues for human bone regeneration, which hinder their translations into
clinical devices. However, in addition to the continuous development of new tools and tech-
nologies for material manufacturing, such as 3D printing and electrospinning, researchers
are directing attention to patient-specific collagen-based materials. Rather than relying
on the material alone, an integration of functional material manufacture and the innate
regeneration potential of patients sheds new light on potential clinical translation within
the next decade.
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119. Rider, P.; Kačarević, P.; Elad, A.; Rothamel, D.; Sauer, G.; Bornert, F.; Windisch, P.; Hangyási, D.; Molnar, B.; Hesse, B.; et al.
Analysis of a Pure Magnesium Membrane Degradation Process and Its Functionality When Used in a Guided Bone Regeneration
Model in Beagle Dogs. Materials 2022, 15, 3106. [CrossRef]
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