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Abstract: Molecular docking is one of the most widely used computational approaches in the field
of rational drug design, thanks to its favorable balance between the rapidity of execution and the
accuracy of provided results. Although very efficient in exploring the conformational degrees of
freedom available to the ligand, docking programs can sometimes suffer from inaccurate scoring
and ranking of generated poses. To address this issue, several post-docking filters and refinement
protocols have been proposed throughout the years, including pharmacophore models and molecular
dynamics simulations. In this work, we present the first application of Thermal Titration Molecular
Dynamics (TTMD), a recently developed method for the qualitative estimation of protein-ligand
unbinding kinetics, to the refinement of docking results. TTMD evaluates the conservation of
the native binding mode throughout a series of molecular dynamics simulations performed at
progressively increasing temperatures with a scoring function based on protein-ligand interaction
fingerprints. The protocol was successfully applied to retrieve the native-like binding pose among
a set of decoy poses of drug-like ligands generated on four different pharmaceutically relevant
biological targets, including casein kinase 1δ, casein kinase 2, pyruvate dehydrogenase kinase 2, and
SARS-CoV-2 main protease.

Keywords: docking; refinement; rescoring; molecular dynamics; protein-ligand interaction fingerprints;
thermal titration molecular dynamics; TTMD

1. Introduction

Until the 1980s, the discovery of new drugs was mainly related to empirical ob-
servations about the symptoms-relief properties of natural products or serendipity [1,2].
Nowadays, thanks to the high availability of experimentally determined structures for
pharmaceutically relevant biomolecules, the drug discovery process shifted towards a more
rational approach [3]. Specifically, novel therapeutic entities are usually designed by taking
into consideration the topological features of the interacting partner, in a process defined as
“structure-based drug design” [4].

Alongside advancements in the field of biophysical approaches for the experimental
determination of protein-ligand complex structures, a pivotal role in the last two decades
has been played by computational methodologies [5]. These “in silico” approaches not only
flank experimental techniques in rationalizing the mechanism of action of active molecules
but are routinely used as a less expensive and quicker alternative in the earliest stages of
drug discovery pipelines [6,7].

Among these methods, one of the most widely adopted is certainly molecular docking,
a program that is used by medicinal chemists to predict the most plausible ligand accom-
modation within the active site of a target biomolecule [8]. Molecular docking programs
are composed of two main parts: a search algorithm, which is responsible for exploring
the ligand’s conformational degrees of freedom and generating a series of possible ligand
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orientations within the binding site, and a scoring function, which numerically estimates
the quality of protein-ligand interactions for poses generated by the search algorithm [9].

Although search algorithms are usually very proficient in exploring the conformational
space available to the ligand, docking can sometimes produce inaccurate results, due to the
limitations of scoring functions [10]. For instance, there is a natural variance in docking
performances across different biological targets, since each binding site has its peculiar
interaction features, which may differ from the ones included in the training set, thus
leading to an incorrect pose ranking [11].

To mitigate these known issues of molecular docking, several refinement protocols
have been proposed throughout the years [12]. A first possible strategy is to filter docking
poses based on prior knowledge of the binding features that are required for potent and
selective binding to the target [13]. This approach can be carried out by creating a phar-
macophore model or a protein-ligand interaction fingerprint based on the binding pattern
of known binders, i.e., true active compounds, and then retaining only those poses which
match this set of features [14] Although this strategy is successful in diminishing the false
positive rate in docking calculations, it is not a first-principle method; therefore, its usage
is limited to those cases where the target and its interaction features have already been
characterized [15].

Another approach is to rescore docking poses with more computationally demanding
methods such as the molecular mechanics/generalized Born surface area (MM/GBSA)
method for free binding energy determination [16]. This method is usually a good compro-
mise between rapidity of execution and quality of calculations, and it can be a useful tool
for many cases. Nevertheless, its accuracy is limited by some factors, such as the implicit
consideration of solvent molecules and the sensitivity towards the polarity and charge
properties of both the ligand and the binding site [17,18].

Finally, another commonly adopted strategy is to use short-scale molecular dynamics
simulations to evaluate the time-dependent pose stability [19]. This approach has the
advantage of considering both the protein flexibility and the explicit treatment of solvent,
which are usually neglected in most docking calculations [20,21]. Although in principle the
MD-based post-docking refinement seems like a sound method to distinguish poses based
on their persistence, two aspects can impair its usefulness. First, the short timescale that is
used for most applications (tens of nanoseconds) is insufficient to sample the unbinding
event for most poses, flattening the difference between the native pose and wrong but
stable enough decoys [22]. Furthermore, in most cases, simple geometric descriptors such
as the ligand RMSD or the center-of-mass distance between the ligand and the protein are
used to monitor the pose evolution throughout the simulation, for which there is no clear
threshold value to define the unbinding event, other than being heavily influenced by the
geometry of the binding site and the ligand structure [23,24].

In the current work, we present the first application of Thermal Titration Molecular
Dynamics (TTMD) as an alternative MD-based post-docking refinement tool. Recently
developed as an enhanced sampling MD protocol for the qualitative estimation of protein-
ligand unbinding kinetics [25], TTMD evaluates the persistence of the native binding mode
in a certain protein-ligand complex of interest by combining a series of short MD simula-
tions performed at progressively increasing temperatures with a scoring function based
on protein-ligand interaction fingerprints [26]. The protocol has been applied to twelve
different protein-ligand complexes from four different pharmaceutically relevant biological
targets, including protein kinase CK1δ, protein kinase CK2, pyruvate dehydrogenase kinase
2, and SARS-CoV-2 main protease.

2. Results

To extend the applicability domain of the TTMD protocol as a post-docking refinement
tool, 12 different test cases on four different pharmaceutically relevant targets of interest
for our laboratory were investigated: CK1δ, CK2, PDK2, and Mpro. Test cases were chosen
coherently with the original work, picking up two “tight binders” (IC50/Kd values in
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the low nanomolar range) and one “weak binder” (IC50/Kd above the low micromolar
threshold). For each biomolecular target, three different protein-ligand complexes avail-
able on the Protein Data Bank were chosen. A list of each system investigated in this
work can be found in Table 1, while details about ligands’ physicochemical properties
(Tables S1, S4, S7 and S10) and relevant statistics for each simulated system (Table S13) can
be found in the Supplementary Materials.

Table 1. PDB accession codes for protein-ligand complex structures employed in this work a.

CK1δ 3UZP [27] 5IH6 [28] 5MQV [29]

CK2 3PE2 [30] 6HOU [31] 3PE1 [30]

PDK2 4V25 [32] 7EA0 [33] 5M4M [34]

Mpro 7LTJ [35] 7M91 [36] 7M8P [36]
a Structures are grouped by the target.

At first, for each protein-ligand system, a self-docking experiment with the PLANTS
docking software was executed. The first five docking poses according to the ChemPLP scor-
ing function were used as a starting point for the TTMD simulations. For each investigated
docking pose, five independent TTMD replicates were performed. The results for each test
case are reported separately and discussed aggregately afterward in the Discussion section.

2.1. Protein Kinase CK1δ

The first test case regarded protein kinase 1 δ, a serine-threonine kinase belonging
to the family of CK1 kinases [37] that is involved in several neurodegenerative illnesses
like Alzheimer’s disease, Parkinson’s disease, and amyotrophic lateral sclerosis [38] due
to its pleiotropic nature [39]. The result of the TTMD refinement carried out on docking
poses generated for each CK1δ protein-ligand complex is summarized in Figures 1–3,
while detailed analysis about representative replicates (Figures S1–S4), and per-replicate
reports (Tables S2 and S3) can be found in the Supplementary Materials. For reference, a
comparison between the representative TTMD trajectory for the best (pose 1, MD4), and
worst (pose 5, MD5) scoring pose for complex 5MQV, according to the MS coefficient, is
highlighted in Video S1.

Figure 1. This panel encompasses the results of the TTMD post-docking refinement of poses generated
for ligand 0CK within the catalytic site of the protein kinase CK1δ (PDB ID: 3UZP). Protein residues
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within 5 Å of the ligand (orange) position are shown (violet). For each pose, the RMSD in comparison
with the reference, the average MS coefficient resulting from TTMD simulations, and the ChemPLP
docking score are reported. As a reference, the experimentally determined binding mode (magenta) is
also reported, as well as the MS coefficient derived from its TTMD refinement, while the best docking
pose (according to the RMSD to the reference) is highlighted in green.

As can be seen in Figure 1, which summarizes the results of TTMD refinement per-
formed on docking poses of ligand 0CK (PDB ID: 3UZP), although poses are very similar
and plausible, the MS value correctly identifies the most correct/native-like poses among
the five ones. Particularly, poses 1 and 2, which are practically indistinguishable from a
binding pattern perspective (both orientations of the 2-aminopyrimidine moiety ensure a
bivalent hydrogen bond interaction with the hinge region of the kinase, while the rest of
the molecule is superimposable) have the lowest MS value, which is comparable to the one
of the experimentally determined binding mode, coherently with the low RMSD value to
the reference. On the contrary, poses 3 and 4, which insert the cyclohexyl moiety within
the hydrophobic “selectivity pocket” located behind the hinge region, in the inner-most
part of the binding site, present a higher MS value, indicating a lower persistence of the
native binding mode. Intriguingly, pose 5, which does not show any interaction with the
hinge region, has a better MS value compared to poses 3 and 4: this can be explained by
the fact that, due to the conserved orientation compared to poses 1 and 2, pose 5 can quite
easily interconvert into pose 2 by a slight rotation towards the hinge region, gaining the
directional interaction with the hinge without losing any hydrophobic interaction provided
by the rest of the molecule.

A similar trend compared to the first case can also be observed for ligand D5Q (PDB
ID: 5MQV). As reported in Figure 2, poses 1–2, which only differ for the relative orientation
of the solvent-exposed dimethoxyphenyl-pyrrole moiety, present the lowest MS value,
similar to the reference. Pose 3, which is also quite similar to the reference and the first two
poses, also displays a good MS coefficient, albeit slightly higher than the first two poses. A
possible explanation for this phenomenon is that, although the relative orientation of the
dimethoxyphenyl-pyrrole portion of the ligand is similar to the reference, contributing to a
marginally lower RMSD value compared to pose 2, the 2-carboxamide-pyridin core, which
provides the bidentate interaction with the hinge region, is mildly shifted away from the
hinge. A little rearrangement of the ligand core through the course of the simulation allows
interconversion into a reference-like pose, accompanied by an alteration of interaction
pattern, which explains the reason why the pose presents good stability but with lesser
conservation of its initial binding pattern. As already seen for ligand 0CK, in this case also
the MS score penalizes poses that do not insert an aromatic ring within the hydrophobic
selectivity pocket, despite having an optimal interaction with the hinge (pose 4). Finally,
the MS score heavily penalizes pose 5, which does not retain any interaction found in
the reference.
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Figure 2. This panel encompasses the results of the TTMD post-docking refinement of poses generated
for ligand D5Q within the catalytic site of the protein kinase CK1δ (PDB ID: 5MQV). Protein residues
within 5 Å of the ligand (orange) position are shown (violet). For each pose, the RMSD in comparison
with the reference, the average MS coefficient resulting from TTMD simulations, and the ChemPLP
docking score are reported. As a reference, the experimentally determined binding mode (magenta) is
also reported, as well as the MS coefficient derived from its TTMD refinement, while the best docking
pose (according to the RMSD to the reference) is highlighted in green.

Differently from the first two cases, involving “tight binding” ligands, the results
of the TTMD refinement were inconclusive for ligand AUG (PDB ID: 5IH6). As can
be deducted from Figure 3, the best scoring conformation according to the MS value is
pose 2, which presents a reasonable although incorrect binding mode, characterized by
three hydrogen bonds with the hinge region. This orientation of the triamine-pteridine
core, although allowing for a comparable interaction pattern with the hinge, leads to a
suboptimal burial of the hydrophobic core of the molecule within the internal portion
of the pocket, especially concerning the bromophenyl moiety. However, in this case, the
TTMD refinement is not able to discriminate between the native binding mode and other
incorrect ones, as noticeable by the fact that the crystal reference and pose 1, which are
practically superimposable, present a high MS value, comparable with pose 3, which is
incorrect. Intriguingly, as denoted by Figure S4 (Supplementary Materials), throughout
the simulation, pose 1 interconverts into pose 2, which is the final state of the simulation.
Considering that the two poses have a similar quality of interaction with the target, it is
possible that the two conformations are in equilibrium and that kinetic factors influence
the shift towards either of the two. Nevertheless, another plausible explanation for this
phenomenon could be that the temperature ramp utilized, which was the same as the one
employed in the original publication to discriminate between strong and weak binders,
is too aggressive for ligands with low affinity for the targets. The aggressiveness of the
ramp, which was designed to facilitate the observation of unbinding events, could flatten
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the differences between different poses of the same ligand when the crystal pose itself is
unstable in those conditions. If this is the case, a different ramp for this category of binders
would have to be developed.

Figure 3. This panel encompasses the results of the TTMD post-docking refinement of poses generated
for ligand AUG within the catalytic site of the protein kinase CK1δ (PDB ID: 5IH6). Protein residues
within 5 Å of the ligand (orange) position are shown (violet). For each pose, the RMSD in comparison
with the reference, the average MS coefficient resulting from TTMD simulations, and the ChemPLP
docking score are reported. As a reference, the experimentally determined binding mode (magenta) is
also reported, as well as the MS coefficient derived from its TTMD refinement, while the best docking
pose (according to the RMSD to the reference) is highlighted in green.

2.2. Protein Kinase CK2

The second test case regarded protein kinase 2, a serine-threonine kinase that repre-
sents one of the first identified protein kinases [40]. Similar to CK1, thanks to its pleiotropic
nature [41] this kinase is involved in several illnesses such as different types of cancer,
various neurodegenerative diseases, and viral infections [42]. The result of the TTMD
refinement carried out on docking poses generated for each CK2 protein-ligand com-
plex is summarized in Figures 4–6, while detailed analysis about representative repli-
cates (Figures S5–S8), and per-replicate reports (Tables S5 and S6) can be found in the
Supplementary Materials. For reference, a comparison between the representative TTMD
trajectory for the best (pose1, MD3) and worst (pose4, MD4) scoring pose for complex 3PE1,
according to the MS coefficient, is highlighted in Video S2.
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Figure 4. This panel encompasses the results of the TTMD post-docking refinement of poses generated
for ligand 3NG within the catalytic site of the protein kinase CK2 (PDB ID: 3PE1). Protein residues
within 5 Å of the ligand (orange) position are shown (violet). For each pose, the RMSD in comparison
with the reference, the average MS coefficient resulting from TTMD simulations, and the ChemPLP
docking score are reported. As a reference, the experimentally determined binding mode (magenta) is
also reported, as well as the MS coefficient derived from its TTMD refinement, while the best docking
pose (according to the RMSD to the reference) is highlighted in green.

As highlighted by Figure 4, which synthesized the results of the TTMD refinement for
ligand 3NG (PDB ID: 3PE1), a similar trend to what has been observed for CK1δ can also
be found. Pose 1, which is superimposable to the crystal reference, is associated with the
lowest MS value, which is practically identical to the one of the reference. Pose 2, which
differs from pose 1 for a slight shift of the naphthyridine core away from the hinge region
of the kinase and for the orientation of chlorine atom on the 3-chlorophenyl substituent,
displays the second lowest MS value overall, coherently with its suboptimal but overall
native-like orientation within the binding site. Pose 3 is penalized by the MS score due
to the loss of the pivotal network of direct and water-mediated interactions involving
the ligand carboxylate and residues deeply buried in the inner portion of the binding
site such as Lys68 and Asp175. Similarly, pose 4 is also heavily penalized by the TTMD-
derived score for the blatantly incorrect ligand conformation within the active site: in this
case, interactions involving the carboxylate are lost, but the whole naphthyridine core is
misplaced. Finally, pose 5 shows an intermediate MS score between the native-like poses
and the wrong ones: a possible interpretation for this is that the naphthyridine core of the
molecule is deeply buried in a hydrophobic, solvent-shielded area of the binding site, thus
compensating for the lack of directional interactions provided by the carboxylate.
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Figure 5. This panel encompasses the results of the TTMD post-docking refinement of poses generated
for ligand E1B within the catalytic site of the protein kinase CK2 (PDB ID: 3PE2). Protein residues
within 5 Å of the ligand (orange) position are shown (violet). For each pose, the RMSD in comparison
with the reference, the average MS coefficient resulting from TTMD simulations, and the ChemPLP
docking score are reported. As a reference, the experimentally determined binding mode (magenta) is
also reported, as well as the MS coefficient derived from its TTMD refinement, while the best docking
pose (according to the RMSD to the reference) is highlighted in green.

As illustrated in Figure 5, results for the TTMD refinement in the case of ligand
E1B (PDB ID: 3PE2) recall the ones for ligand 3NG. This is not unexpected, due to the
similarities between the two ligands. Particularly, pose 1, which is identical to the reference,
presents the lowest MS value possible, which is very similar to the value calculated for
the experimentally determined binding mode. The same is true also for pose 2, which
only differs for the orientation of the ethynylphenyl substituent but has the same binding
pattern for the pyrimidoquinoline core. On the contrary, pose 3, which locates its core near
the hinge region of the kinase, as for poses 1 and 2, but presents an incorrect orientation of
the carboxylate, leading to the loss of crucial directional interactions with Lys68/Asp175, is
linked with a higher MS value. Intriguingly, poses 4 and 5, which are the most different
from the reference, present an intermediate MS score, not much higher than the one of
native-like poses. A putative explanation for this is that these compounds, 3NG and
E1B, both present very rigid and planar structures, enhancing the shape complementarity
with the active site and increasing the persistence of short-range hydrophobic and dipolar
interactions. Accordingly, despite the lack of directional interactions with the target, both
poses 4 and 5 display a good shape and electrostatic complementarity with the pocket, as
also indicated by the docking score which is practically identical to that of pose 3, which
contributes to the high persistence of the pose despite the lack of the directional interactions
provided by the carboxylate.
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Figure 6. This panel encompasses the results of the TTMD post-docking refinement of poses generated
for ligand V55 within the catalytic site of the protein kinase CK2 (PDB ID: 6HOU). Protein residues
within 5 Å of the ligand (orange) position are shown (violet). For each pose, the RMSD in comparison
with the reference, the average MS coefficient resulting from TTMD simulations, and the ChemPLP
docking score are reported. As a reference, the experimentally determined binding mode (magenta) is
also reported, as well as the MS coefficient derived from its TTMD refinement, while the best docking
pose (according to the RMSD to the reference) is highlighted in green.

In agreement with the results of the TTMD refinement of the CK1δ weak binder, results
are inconclusive also for CK2 homologous, ligand V55 (PDB ID: 6HOU). As observable
in Figure 6, the MS value is very high for each of the five docking poses, as it is for the
reference. High MS values, such as those obtained for V55 poses, indicate that the ligand
has rapidly and completely lost its native binding mode in all cases, as also confirmed by
detailed trajectory analyses reported in Figures S7 and S8 (Supplementary Materials). This
reinforces the hypothesis that the default temperature ramp is too aggressive to be useful
in the refinement of poses for weak binders.

2.3. Pyruvate Dehydrogenase Kinase 2

The third test case involved pyruvate dehydrogenase kinase 2, a member of the
GHKL ATPase/kinase superfamily that has a central control role upon cellular energy
metabolism [43,44] and is involved both in metabolic and neoplastic diseases [45]. The result
of the TTMD refinement carried out on docking poses generated for each PDK2 protein-
ligand complex is summarized in Figures 7–9, while detailed analysis about representative
replicates (Figures S9–S12), and per-replicate reports (Tables S8 and S9) can be found in the
Supplementary Materials. For reference, a comparison between the representative TTMD
trajectory for the best (pose1, MD1) and worst (pose4, MD2) scoring pose for complex 4V25,
according to the MS coefficient, is highlighted in Video S3.
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Figure 7. This panel encompasses the results of the TTMD post-docking refinement of poses generated
for ligand SZ6 within the catalytic site of the pyruvate dehydrogenase kinase 2 (PDB ID: 4V25). Protein
residues within 5 Å of the ligand (orange) position are shown (violet). For each pose, the RMSD in
comparison with the reference, the average MS coefficient resulting from TTMD simulations, and the
ChemPLP docking score are reported. As a reference, the experimentally determined binding mode
(magenta) is also reported, as well as the MS coefficient derived from its TTMD refinement, while the
best docking pose (according to the RMSD to the reference) is highlighted in green.

As depicted in Figure 7, which reports the results for the TTMD post-docking refine-
ment performed on docking poses of ligand SZ6 (PDB ID: 4V25), once again the MS score
can identify the native-like docking pose among a set of decoys. Particularly, pose 1 (which
is the closest to the reference), pose 2, and pose 5, all share the same correct orientation of
the core (spanning from the dihydroxybenzamide moiety to the chloromethylpyrimidine
one) within the catalytic site, and present significantly lower MS value compared to poses 3
and 4, where the binding pattern is completely divergent compared to the reference. This
can be attributed to the ability of these poses to preserve the pivotal network of direct and
water-bridged interactions between the dihydroxybenzamide moiety and residues Asp290,
Thr354, and Gly294. As mentioned when discussing some of the previous cases, poses 2
and 5, despite having an incorrect orientation of the difluoroacetylaminomethilbenzyl tail,
can easily interconvert throughout the simulation into pose 1 and the crystal reference,
because this portion of the molecule is completely solvent-exposed and does not contribute
to the interaction with the binding site.

Accordingly, like the case of complex 5MQV, where the core of the molecule was
placed correctly in most poses and the difference was mainly related to the tail of the
molecule which extended out of the binding site, in this case the MS coefficient was also
able to distinguish poses with a high RMSD but native-like interaction pattern from poses
with high RMSD but incorrect interaction features.
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Figure 8. This panel encompasses the results of the TTMD post-docking refinement of poses generated
for ligand 7FW within the catalytic site of the pyruvate dehydrogenase kinase 2 (PDB ID: 5M4M).
Protein residues within 5 Å of the ligand (orange) position are shown (violet). For each pose, the
RMSD in comparison with the reference, the average MS coefficient resulting from TTMD simulations,
and the ChemPLP docking score are reported. As a reference, the experimentally determined binding
mode (magenta) is also reported, as well as the MS coefficient derived from its TTMD refinement,
while the best docking pose (according to the RMSD to the reference) is highlighted in green.

Similar behavior can be observed also for ligand 7FW (PDB ID: 5M4M), as noticeable
in Figure 8. In this case, the two native-like poses (poses 1 and 4) outscore the other ones,
according to the MS coefficient. In both cases, the ligand’s dihydroxybenzamide moiety is
correctly located within a subpocket where it can establish multiple directional interactions
with Asp290, Thr54, and Gly294, although in the case of pose 4, the quinoxaline moiety is
flipped compared to the reference and pose 1 and interacts with the backbone of Leu330.
Interestingly, pose 5 (which occupies the pocket with a similar orientation to poses 1 and 4,
but inserts an undecorated phenyl ring within the aforementioned pocket instead of the
dihydroxymethoxybenzamide) has a higher but still reasonable MS score, contrary to poses
2 and 3 where the complementarity of shape and electrostatic properties between the ligand
and the pocket are inferior, and most of the interaction between the ligand the binding site
occurs in the lower portion, the subpocket, which in the reference pose is occupied by the
quinoxaline group.
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Figure 9. This panel encompasses the results of the TTMD post-docking refinement of poses generated
for ligand W6P within the catalytic site of the pyruvate dehydrogenase kinase 2 (PDB ID: 7EA0).
Protein residues within 5 Å of the ligand (orange) position are shown (violet). For each pose, the
RMSD in comparison with the reference, the average MS coefficient resulting from TTMD simulations,
and the ChemPLP docking score are reported. As a reference, the experimentally determined binding
mode (magenta) is also reported, as well as the MS coefficient derived from its TTMD refinement,
while the best docking pose (according to the RMSD to the reference) is highlighted in green.

Contrary to the first two complexes involving strong binders and coherently with
what was observed for complexes 5IH6 and 6HOU, the TTMD refinement was also in-
conclusive for poses generated for ligand W6P (PDB ID: 7EA0). Once again, the poses
were all unstable under the chosen simulation conditions (see also Figures S11 and S12,
Supplementary Materials, for reference), leading to high MS values and concealment of
the subtle differences between different ligand conformation and interaction patterns. The
third observance of this phenomenon is a further reaffirmation that the default temperature
ramp is too aggressive for elucidating small differences in binding pose stability such as
the ones of weak binders.

2.4. SARS-CoV-2 Main Protease

The fourth and final test case involved the SARS-CoV-2 main protease (Mpro), an
enzyme playing a pivotal role in this virus replication cycle [46] thanks to its ability to drive
the maturation of several nonstructural proteins through the proteolytic cleavage of the
pp1a/pp1ab polyproteins [47]. The result of the TTMD refinement carried out on docking
poses generated for each Mpro protein-ligand complex is summarized in Figures 10–12,
while detailed analysis of representative replicates (Figures S13–S16), and per-replicate
reports (Tables S11 and S12) can be found in the Supplementary Materials. For reference,
a comparison between the representative TTMD trajectory for the best (pose1, MD5) and
worst (pose2, MD4) scoring pose for complex 7M8P, according to the MS coefficient, is
highlighted in Video S4.
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Figure 10. This panel encompasses the results of the TTMD post-docking refinement of poses
generated for ligand YSJ within the catalytic site of the SARS-CoV-2 main protease (PDB ID: 7M8P).
Protein residues within 5 Å of the ligand (orange) position are shown (violet). For each pose, the
RMSD in comparison with the reference, the average MS coefficient resulting from TTMD simulations,
and the ChemPLP docking score are reported. As a reference, the experimentally determined binding
mode (magenta) is also reported, as well as the MS coefficient derived from its TTMD refinement,
while the best docking pose (according to the RMSD to the reference) is highlighted in green.

In the case of ligand YSJ (PDB ID: 7M8P), the MS value determined through the
TTMD post-docking refinement indicates pose 1, which is superimposable to the crystal
reference, as the most stable pose (see also Video S5, Supplementary Materials). The evident
difference between the stability of pose 1 compared to the other ones can be related to
the fact that it is the only docking pose that contemporarily satisfies both hydrogen bond
interactions with the sidechain of His163 and the backbone of Glu166 (see also Figure S13,
Supplementary Materials), which are known to be essential for binding at the catalytic site
of the protease [48]. Another possible explanation for the enhanced gap in poses’ stability
compared to previously discussed cases is that, in the case of kinases, the binding pocket
is usually very druggable, implying that there are several possible ligand conformations
with reasonable complementarity of shape and electrostatic properties with the cavity,
hence with high stability during MD simulations. On the contrary, Mpro catalytic site
is very shallow and solvent-exposed [49], implying more constraints on possible ligand
orientations that lead to a stable binding. Indeed, short-range nondirectional interactions
play a lesser important role in ligand recognition at this site, with more importance being
given to a reduced number of high-quality interactions centered upon the S1 subpocket.
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Figure 11. This panel encompasses the results of the TTMD post-docking refinement of poses
generated for ligand YU4 within the catalytic site of the SARS-CoV-2 main protease (PDB ID: 7M91).
Protein residues within 5 Å of the ligand (orange) position are shown (violet). For each pose, the
RMSD in comparison with the reference, the average MS coefficient resulting from TTMD simulations,
and the ChemPLP docking score are reported. As a reference, the experimentally determined binding
mode (magenta) is also reported, as well as the MS coefficient derived from its TTMD refinement,
while the best docking pose (according to the RMSD to the reference) is highlighted in green.

Accordingly, similar results are obtained also for ligand YU4 (PDB ID: 7M91). As
depicted in Figure 11, the MS value once again correctly discriminates between the native-
like ligand conformation (pose 1) and incorrect binding poses (2–5). Interestingly, pose
4, which presents one of the two conserved hydrogen bonds (the one with His163), is the
second most stable pose under simulation conditions, further highlighting the importance
of this interaction in anchoring the ligand to the catalytic site. Furthermore, pose 4 is more
stable than poses 2, 3, and 5, despite being the only one without a hydrophobic/aromatic
ring within the S2 subpocket, another important binding feature of many crystal ligands,
including natural peptide substrates [50].
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Figure 12. This panel encompasses the results of the TTMD post-docking refinement of poses
generated for ligand YD1 within the catalytic site of the SARS-CoV-2 main protease (PDB ID: 7LTJ).
Protein residues within 5 Å of the ligand (orange) position are shown (violet). For each pose, the
RMSD in comparison with the reference, the average MS coefficient resulting from TTMD simulations,
and the ChemPLP docking score are reported. As a reference, the experimentally determined binding
mode (magenta) is also reported, as well as the MS coefficient derived from its TTMD refinement,
while the best docking pose (according to the RMSD to the reference) is highlighted in green.

Finally, as observed for all previous biological targets, in this case also the TTMD
refinement of docking poses generated for the weak binder (ligand YD1, PDB ID: 7LTJ)
was inconclusive. The MS values are high and quite similar although expectable due to
the similarity among this set of poses and the crystal reference and the low experimentally
determined IC50 value.

3. Discussion

In the present work, we presented the first application of Thermal Titration Molecular
Dynamics (TTMD), an alternative enhanced sampling MD-based method for the qualitative
estimation of protein-ligand unbinding kinetics, as a post-docking refinement protocol.
TTMD, which combines a series of molecular dynamics simulations performed at progres-
sively increasing temperatures with a scoring function based on protein-ligand interaction
fingerprints, was used to rank a series of docking poses based on the persistence of the
native binding mode. Four different pharmaceutically relevant biological targets, including
protein kinase CK1δ, protein kinase CK2, pyruvate dehydrogenase kinase 2, and SARS-
CoV-2 main protease were investigated, with three different protein-ligand complexes
for each target used in this work. Test cases were chosen among the same protein-ligand
complexes used in the original paper [25], as well as the same simulation conditions, i.e.,
the adopted temperature ramp.

Results reported in this manuscript show how TTMD can be readily used as a post-
docking refinement tool for mature, drug-like ligands. The results of the TTMD refinement
performed on docking poses generated for this class of ligands showed how the MS
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score was consistently able to identify the native-like binding pose among the other ones.
Furthermore, the MS score demonstrated a good sensitivity in discriminating between
poses with partially overlapping interaction features, which could be tricky to evaluate
based only on docking calculations.

Most MD-based post-docking refinement protocols involve performing short simu-
lations (tens of nanoseconds) at a fixed temperature to distinguish between stable and
unstable poses. The discrimination is usually based on simple geometric descriptors such
as the ligand RMSD or the center-of-mass distance between the ligand and the protein.
Although this strategy seems legitimate and could work in some cases, based on our
experience and as can be observed by the detailed trajectory analyses provided in the
Supplementary Materials, these types of simulations are rarely successful for this purpose.
First, short windows of classic MD simulations are not sufficient to appreciate significant
differences between plausible, near-native poses and the native binding mode, since they
probably satisfy a good number of interactions with the target allowing them to occupy the
binding site for a sufficient time to be considered stable, even if incorrect. Second, there is
no clear cutoff to use for a geometric descriptor to define if the starting binding mode is
lost or not: depending on the ligand structure and topological properties of the binding
site, values would have to be adjusted in a case-by-case scenario. Moreover, geometric
descriptors do not discriminate well if the deviation from the starting point of the sim-
ulation regards the whole ligand or only a portion of it: in some cases, as shown in the
Results section, some ligand moieties do not interact with the protein active site and are
therefore relatively unconstrained. These ligand chunks contribute to increasing the ligand
RMSD without causing a loss of interaction with the target, falsely leading to a perception
of pose instability.

On the contrary, thanks to its simple but effective enhanced sampling strategy based
on increasing the temperature in between each simulation window, TTMD can emphasize
stability differences between relatively similar or partially overlapping docking poses
in simulation times comparable to those of classical post-docking refinements (see Table
S13 for statistics about calculation speed on each investigated system). Moreover, the
use of the fingerprint-based scoring function (IFPCS) instead of the ligand RMSD allows
for determining a clear cutoff value (zero) that can univocally define whether the loss of
interactions found in the starting protein-ligand complex happened. This threshold value
is used as an early termination criterion, avoiding spending time simulating the ligand
floating around the simulation box thus increasing the feasibility of using such an approach
in a high-throughput fashion. Indeed, as can be deduced by Tables S3, S6, S9 and S12
(Supplementary Materials), several simulations end with the total detachment of the
ligand from the binding site (considerably high RMSD values). This fact has two main
consequences: first, two poses that detach at different times/temperatures would be
considered equally unstable if the final/average RMSD would be used as a metric. Second,
one would have to simulate for a long time even in those cases where it is not necessary.

Although the TTMD protocol can be useful as is, two questions remain unaddressed
still. The first issue with the current protocol is related to the applicability to weak binders,
i.e., compounds with affinity values that are above the micromolar threshold, including
fragments, which are the starting point of many drug discovery campaigns these days.
As reported in the Results section of the manuscript, the current temperature ramp is
too aggressive to be applied to weakly binding ligands. Particularly, the aggressiveness
of the ramp causes both native-like and wrong poses to rapidly lose their binding fea-
tures and eventually detach from the binding site. This situation could be addressed by
using an alternative ramp, focused on lower temperature ranges. Furthermore, as high-
lighted by Figure S3 (Supplementary Materials) in the case of complex 5IH6, but also in
Video S5 (Supplementary Materials) which regards complex 7M8P, it is possible that poses
interconvert between each other during the TTMD simulation, especially for low-affinity
compounds such as fragments. To better keep track of this behavior, an alternative analysis
protocol could be to analyze the frequency by which a certain pose is sampled across the
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whole set of replicates for a given ligand, regardless of the starting ligand conformation.
For both these latest aspects, work in this direction is currently being carried out in our
laboratory and will be the scope of a future paper. The second problem is to make the
protocol suitable also for investigating membrane proteins. The question is not trivial,
since these types of targets are difficult to simulate accurately in standard conditions and
therefore deserve special care when dealing with unusual simulation conditions such as
the high temperatures explored with the current protocol. A possible solution, which is
currently being evaluated in our laboratory, is to simulate these proteins as soluble, without
introducing variables related to the membrane behavior.

4. Materials and Methods
4.1. Hardware Overview

Most of the molecular modeling tasks, like the preparation of protein and ligand
structures, docking calculations, the setup for MD simulations, and MD trajectory analyses,
were carried out on a Linux workstation, equipped with a 20 cores Intel Core i9-9820X
3.3 GHz processor, running Ubuntu 20.04 as its operating system. An in-house GPU cluster,
composed of 20 NVIDIA drivers ranging from GTX980 to RTX2080Ti, has been exploited
for carrying out each MD simulation.

4.2. Structure Preparation

The three-dimensional coordinates of each protein-ligand complex used in this study
were retrieved from the Protein Data Bank (PDB) [51] and processed through various tools
embedded within the Molecular Operating Environment (MOE) 2022.02 suite [52]. In the
present work, four different biological targets were considered: casein kinase 1 isoform δ

(CK1δ), casein kinase 2 (CK2), pyruvate dehydrogenase kinase 2 (PDK2), and SARS-CoV-2
main protease (Mpro). For each macromolecule, three different protein-ligand complex
structures were considered: the accession codes for each structure are summarized in
Table 1.

Protein-ligand systems were simulated as monomers, aside from SARS-CoV-2 Mpro, for
which the catalytically competent homodimer form was reconstituted through symmetric
crystallographic transformations. Initially, each structure was pre-processed through the
“structure preparation” tool, to assign residues with alternative conformations to the
highest occupancy one, to rebuild broken loops through homology modeling, and to fix
inconsistencies between the aminoacidic sequence and the experimentally solved structure.
Afterward, missing hydrogen atoms were added to the system according to the most
probable protonation and tautomeric state at pH = 7.4 through the “Protonate3D” tool.
Lastly, each solvent, co-solvent, and ion atom was removed before storing the prepared
complex for subsequent calculations.

4.3. Docking Calculations

For each protein-ligand complex, a self-docking experiment was conducted. Each
ligand was prepared using the “Wash” tool of the MOE 2022.02 suite, assigning the most
probable protomeric/tautomeric state at pH = 7.4, rebuilding its three-dimensional coordi-
nates, and attributing the correct partial charges, according to the MMFF94 force field [53].
The binding site was defined using a sphere of radius 10.5 Å centered upon the center of
mass of the co-crystallized ligand in the experimentally solved structure. Docking calcula-
tions were carried out using the Protein-Ligand ANT System (PLANTS) [54,55] program,
which uses an Ant Colony Optimization (ACO) search algorithm and is free to use for
academics. The first five poses according to the ChemPLP [56] scoring function were stored
for further calculations.

4.4. System Setup for MD Simulations and Equilibration Protocol

Each protein-ligand complex obtained through docking calculations was prepared for
MD simulations through the combination of different packages included in both Visual
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Molecular Dynamics (VMD [57]) 1.9.2 and the AmberTools22 [58,59] suite. Parameters
for protein, water molecules, and ions were attributed according to the ff14SB [60] force
field, while ligands were parametrized utilizing the general Amber force field (GAFF [61]).
Ligand partial charges were calculated through the AM1-BCC [62] method. Each protein-
ligand system was solvated within a rectangular base prism, ensuring a 15 Å padding
value between the box border and the nearest protein atom and using the TIP3P [63] model
for water molecules. The proper number of monovalent ions, i.e., sodium and chlorine,
were then added to neutralize the net charge of the box and to reach a salt concentration of
0.154 M. The prepared system was then subjected to 500 steps of energy minimization with
the conjugate-gradient algorithm before undergoing MD simulations, to remove clashes
and bad contacts.

Each MD simulation presented in this work was conducted using the ACEMD [64]
3.5 engine, which is based upon OpenMM [65], an open-source Python library for molecular
simulations. Both in the equilibration and the production stage, an integration timestep of
2 fs was used, the length of bonds involving hydrogen atoms was constrained through the
M-SHAKE algorithm, electrostatic interactions were computed through the particle-mesh
Ewald [66] method, using cubic spline interpolation and a 1 Å grid spacing, while a 9.0 Å
cutoff was used for calculating Lennard–Jones interactions.

Before productive MD simulations, each system was equilibrated in a two-step process.
In the first equilibration run, a 0.1 ns simulation in the canonical ensemble was carried
out, imposing harmonic positional restraints on both the protein and ligand atoms, leaving
the water molecules and the ions unconstrained. In the second equilibration run, a 0.5 ns
simulation in the isothermal-isobaric ensemble was performed, with harmonic positional
restraints applied only on the protein backbone and on the ligand atoms, leaving the
protein sidechain unconstrained. In both cases, a force constant of 5 kcal mol−1 Å−2 was
applied for the whole duration of each equilibration run on each restrained atom. For
both equilibration stages, the temperature was kept at a constant 300 K value through a
Langevin thermostat [67], while in the second stage, the pressure was maintained at the
constant value of 1 atm through a Monte Carlo barostat [68].

4.5. Thermal Titration Molecular Dynamics (TTMD) Simulations

As thoroughly described in the work of Pavan et al. [25], Thermal Titration Molecular
Dynamics (TTMD) is an alternative enhanced sampling MD approach originally developed
for the qualitative estimation of protein-ligand unbinding kinetics. The sampling method
consists of a series of short classic MD simulations (defined as TTMD-steps), performed at
progressively increasing temperature values. The progress of the simulation is monitored
by evaluating the conservation of the starting binding mode for a certain protein-ligand
complex (a docking pose, in this case) through an interaction fingerprint-based scoring
function [26], originally implemented in open-source Autogrow4 [69] program, a semi-
automatized workflow for de novo drug design. The protocol described afterward is
implemented as a Python 3.10 code and relies on the NumPy, MDAnalysis [70,71], Open
Drug Discovery Toolkit [72], and Scikit-learn external libraries. The code to run TTMD
simulations is available free of charge, under a permissive MIT license, at github.com/
molecularmodelingsection/TTMD (accessed on 25 January 2023).

The user must define the “temperature ramp”, i.e., the temperature values that are
sampled throughout the simulation and the time spent simulating at each temperature.
Different from the original version of the code, in the current one, the length of each
simulation window is not fixed, so different temperatures can be sampled for a different
amount of time. In the present work, for consistency with the previous paper, the same
temperature ramp was used: the starting temperature was set at 300 K, the end temperature
was set at 450 K, the temperature increment between each TTMD-step was set at 10 K,
while the length of each TTMD-step was 10 ns. The extension of the temperature ramp
must be carefully chosen based on prior knowledge of the target, especially concerning the

github.com/molecularmodelingsection/TTMD
github.com/molecularmodelingsection/TTMD
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conservation of the native protein fold throughout the simulation (which, in this case, was
carried out by monitoring the backbone RMSD).

As anticipated, the progress of the simulation is evaluated by a scoring function based
on protein-ligand interaction fingerprints. This scoring protocol, named IFPCS, exploits
the Scikit-learn Python module to calculate the cosine similarity between two vectors, i.e.,
the protein-ligand interaction fingerprints of a reference and a query, where the reference
is the protein-ligand complex extracted from the last frame of the second equilibration
stage, and the query is each protein-ligand complex obtained from each frame of a certain
TTMD-step. Specifically, each interaction fingerprint is an integer vector of r × 8 length,
where r represents the number of protein residues and 8 represents the possible type of
protein-ligand interaction that can be encoded in the vector (hydrophobic contacts, aromatic
face-to-face, aromatic edge-to-face, hydrogen bonds with the protein acting as a donor,
hydrogen bonds with the protein acting as an acceptor, salt bridge with the protein acting as
the positively charged member, salt bridge with the protein acting as the positively negative
member, and an ionic bond with a metal ion, respectively). The cosine similarity value
is then multiplied by −1 to comply with most scoring functions, where negative values
indicate high affinity towards the target and low, near-zero, values indicate lower affinity.

The values of IFPCS can range from −1, highlighting a total convergence between the
reference (the native binding mode) and the query (the binding pose sampled at a certain
time during the simulation), to zero, indicating that each interaction feature of the reference
has been lost during the simulation.

After the conclusion of each TTMD-step, the average IFPCS calculated across each
frame of the step is calculated: if this value is null, implying that the native binding
mode has not been sampled for the whole duration of the step, the TTMD simulation is
terminated; otherwise, the simulation proceeds with the next TTMD-step.

4.6. Trajectory Analyses and MS Coefficient Determination

TTMD trajectories were analyzed through an in-house Python script. Specifically, the
RMSD of the protein backbone and the ligand are calculated at each frame by exploiting the
appropriate function provided by the MDAnalysis package. A time-dependent per-residue
decomposition of the protein-ligand interaction energy is calculated by exploiting the
NAMD Energy plugin 1.4 [73] for VMD. Afterward, three analysis plots are generated by
exploiting the Matplotlib and Seaborn Python packages.

The first plot, defined as the “titration profile”, correlates the average IFPCS value with
the temperature of each step: the slope of the straight line linking the initial and the final
state of the titration is defined as the MS coefficient and is used as a proxy measure for
estimating the “residence time” of the investigated pose.

MS =
meanIFPTend

CS − (−1)
Tend − Tstart (1)

The MS coefficient ranges from zero (indicative of a tight binding/high persistence
of the native binding mode) to 1 (which, on the contrary, indicates low persistence of the
starting binding pose). For each investigated protein-ligand complex, five independent
TTMD simulations are carried out, with the average MS coefficient being calculated across
three different replicates, after discarding the highest and the lowest value.

The second plot reports the time-dependent per-residue decomposition of the protein-
ligand interaction energy for the 25 protein residues that are most frequently contacted by
the ligand throughout the trajectory (using a distance cutoff of 4.5 Å). The third and final
plot reports the time-dependent evolution of the ligand and protein backbone RMSD and
the IFPCS score.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/ijms24043596/s1.
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