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Figure S1: A heatmap of selected genes vs. tumors and archetypes showing reported 

patient sex (male/female).  

 

 

  



 

 

 

Figure S2: A heatmap of selected genes vs. tumors and archetypes showing patient age 

(in months) at diagnosis.  

 

 

  



 

 

Figure S3: A heatmap of selected genes vs. tumors and archetypes showing clinical data 

(bilateral and/or relapse).  

 

  



 

 

Figure S4: A heatmap of selected genes vs. tumors and archetypes showing the 

histological type.  

 

  



 

 

 

Figure S5: A heatmap of selected genes vs. tumors and archetypes showing tumor 

histology.  

 

 

 

 

 

  



 

 

Figure S6: A heatmap of selected genes vs. tumors and archetypes showing reported 

tumor stage at diagnosis.  

  



 

 

Figure S7: A heatmap of selected genes vs. tumors and archetypes showing reported 

metastasis at diagnosis.  

  



 

 

Figure S8: A heatmap of selected genes vs. tumors and archetypes showing the reported 

status of the tumor (relapse/metastasis).  

  



 

 

Figure S9: A heatmap of selected genes vs. tumors and archetypes showing the reported 

status of the patient (death).  

  



 

 

Figure S10: A heatmap of selected genes vs. tumors and archetypes showing the 

reported activity of the tumor (active disease). It can be seen that most tumors from 

patients with active disease in this dataset tend to cluster near the stromal archetype. 

 

  



 

 

Figure S11: A heatmap of selected genes vs. tumors and archetypes showing reported 

mutations. It can be seen that mutations in the genes SIX1, SIX2, or DROSHA tend to 

cluster with the more blastemal tumors. 

  



 

 

Figure S12: A heatmap of selected genes vs. tumors and archetypes showing the sample 

ID (GEO accession number and DKFZ identifier). 

  



 

 

 

 

Figure S13: PCA of tumors and archetypes showing the reported patient sex 

(male/female). 

 

  



 

 

 

Figure S14: PCA of tumors and archetypes showing patient age (in months) at diagnosis 

(old – red/large symbol, young – green/small symbol). 

 

  



 

  

 

Figure S15: PCA of tumors and archetypes showing the reported clinical data (bilateral 

and/or relapse). It can be seen that bilateral tumors tend to cluster away from the 

stromal archetype. 

 

  



 

 

 

Figure S16: PCA of tumors and archetypes showing the reported histological type. It can 

be seen that the tumors with anaplastic histology (diffuse or focal), which is considered 

least favorable, tend to cluster in the vicinity of the blastemal archetype. Likewise, notice 

that the single blastema-only xenograft in the dataset is located closest to the blastemal 

archetype, more than any other tumor. This is consistent with previous observations that 

patient-derived xenografts significantly increase the percentage of their blastemal 

component from their first passage [1].  

 

  



 

 

 

Figure S17: PCA of tumors and archetypes showing the reported tumor histology.  

  



 

 

 

Figure S18: PCA of tumors and archetypes showing the reported tumor stage at diagnosis 

(a single tumor with unknown stage was not plotted). 

  



 

 

 

Figure S19: PCA of tumors and archetypes showing the reported tumor metastasis at 

diagnosis. 

  



 

 

 

Figure S20: PCA of tumors and archetypes showing the reported status of the tumor 

(relapse/metastasis). 

 

 

  



 

 

 

Figure S21: PCA of tumors and archetypes showing the reported status of the patient 

(death).  

 

  



 

 

 

Figure S22: PCA of tumors and archetypes showing the reported activity of the tumor 

(active disease). It can be seen that most tumors from patients with active disease in this 

dataset tend to locate near the stromal archetype. 

  



 

   

 

Figure S23: PCA of tumors and archetypes showing the reported mutations. It can be 

seen that mutations in the genes SIX1, SIX2, or DROSHA (left panel) tend to cluster in the 

vicinity of the blastemal archetype. This agrees with the higher incidence of SIX1/2 

mutations in tumors with chemotherapy-resistant blastema that was observed by Wegert 

et al. (Wegert et al., 2015). 

  



 

 

 

Figure S24: A sketch of non-negative matrix factorization (NMF) that is used to fit the 

topic model in this study (see Carbonetto et al. [2] for more details). The matrix X, 

consisting of bulk gene expression counts, is factorized using non-negative matrix 

factorization into a “Factors” matrix F and a “Loadings” matrix L. The columns of the 

“Factors” matrix F represent 𝑝𝑝(𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔|𝑡𝑡𝑡𝑡𝑝𝑝𝑡𝑡𝑡𝑡) - the probability of a transcript from a given 

gene being expressed in each one of the k topics. The rows of the “Loadings” matrix L 

represent 𝑝𝑝(𝑡𝑡𝑡𝑡𝑝𝑝𝑡𝑡𝑡𝑡|𝑠𝑠𝑠𝑠𝑠𝑠𝑝𝑝𝑠𝑠𝑔𝑔), which are the proportions 𝜃𝜃1,𝜃𝜃2, … , 𝜃𝜃𝑘𝑘 that each of the k 

topics contribute to each bulk tumor sample. In the “fastTopics” R package that was used 

in our study the parameters of the topic model are learned by performing 100 iterations 

of the expectation maximization (EM) algorithm followed by 100 iterations of the 

coordinate descent (CD) algorithm.  

 

 



 

 

Figure S25: LDA topic modeling shows that tumors in-between the vertexes of the 

triangle-shaped continuum (left panels) are composed of multiple topics (middle panels), 

in consistency with the topic simplex (right panels).  

  



 

   

 

 

 

Figure S26: The proportions of each of the three topics are highest towards each of the 

different vertexes of the triangle-shaped continuum. Shown are PCA plots of the tumors 

in our dataset. For each topic, large proportion – red/large symbol, small proportion – 

green/small symbol. 

 

  



 

 

 

 

 

Figure S27: The three topics over-express genes related to renal epithelial, stromal, or 

blastemal characteristics. Shown are volcano plots of the log-fold-change vs Z-score for 

each of the topics (compared against the null model). We marked genes that are known 

to be over-expressed in the renal epithelial structures, the un-induced mesenchyme 

(stroma), and the Cap mesenchyme (blastema) of the fetal kidney. 

  



 

 

 

Figure S28: A heatmap showing the topic distribution of each tumor vs. its histological 

and clinical metadata. It can be seen that tumors with anaplastic histology (diffuse or 

focal), which is considered least favorable, as well as the single blastemal xenograft in the 

dataset, and tumors with mutations in the genes SIX1, SIX2, or DROSHA, all contain a 

large fraction of the blastemal topic.  

  



 

 

Figure S29: The log-likelihood score of the non-negative matrix factorization (NMF) 

algorithm that was used for fitting a topic model with k=3 topics to the “bulk" gene 

expression matrix. Following Carbonetto et al. [2], the “fastTopics” R package that we 

used learns the parameters of the topic model by performing 100 iterations of the 

expectation maximization (EM) algorithm followed by 100 iterations of the coordinate 

descent (CD) algorithm.  

 

 

  



 

 

 

Figure S30: A sketch of the cell deconvolution procedure. The algorithm accepts the 

“bulk” gene expression profiles of tumors and a reference single-cell gene expression 

matrix as input and uses support vector regression (SVR) to infer the cell abundances in 

each tumor. In the CPM algorithm used in this study (see Frishberg et al. [3] for details), 

SVR is repeatedly performed on subsets of cells that are randomly selected from the 

reference single-cell expression matrix. The procedure is repeated such that each cell is 

selected at least a minimal number of times (“minSelection”) predefined by the user and 

the results are averaged for each cell. The population proportions are inferred using the 

single cell abundance values summed up over all cells from the same population.  

  



 

 

Figure S31: Cellular deconvolution indicates that each tumor is composed of a unique 

mixture of cell populations resembling those of the fetal kidney. (A) Shown is a cellular 



deconvolution of selected tumors located within the triangle-shaped continuum that is 

spanned by the stromal, blastemal, and epithelial archetypes. It can be seen that tumors 

located in-between the three archetypes are composed of a mixture of heterogeneous 

cell types, for example, cells resembling the Cap mesenchyme and the renal epithelium 

(top panel), cells resembling the Cap mesenchyme and the un-induced mesenchyme 

(middle panel), and cells resembling the un-induced mesenchyme and the renal 

epithelium (with only a minority of cells resembling the Cap mesenchyme, bottom panel). 

This is in contrast to the archetypes that are each predominantly composed of a single 

cell type (resembling the un-induced mesenchyme, the Cap-mesenchyme, or epithelial 

cells, see Fig. 4).  (B) The different cell populations marked on a tSNE plot of the 

reference single cell RNAseq dataset from the developing mouse fetal kidney that was 

used for cellular deconvolution (CM – Cap mesenchyme, DIST_CD – distal tubule and 

collecting duct, ENDO – endothelial, LOH – Loop of Henle, MACROPHAG – macrophages, 

PODO – podocytes, PROX_1 – early epithelial structures such as C/S-shaped bodies, 

PROX_2 – proximal tubule, UM – un-induced mesenchyme). (C) A heatmap of the cell 

type proportions from which each tumor is composed, as predicted by cellular 

deconvolution.  

 

  



 

 

 

Figure S32: A heatmap of the cell type proportions from which each tumor is composed, 

as predicted by cellular deconvolution, along with tumor histological and clinical 

metadata. It can be seen that most of the tumors with reported blastemal histology 

contain a significant proportion of cells resembling those of the Cap mesenchyme 

(CM_ALL), as expected. Likewise, it can be seen that tumors with anaplastic histology 

(diffuse or focal), as well as the single blastemal xenograft in our dataset, and also tumors 

reported to contain mutations in the genes SIX1, SIX2, or DROSHA, contain a significant 

fraction of cells resembling the cycling Cap mesenchyme cells (CM_DIV) in the fetal 

kidney. This is in agreement with the findings of Wegert et al. [4] that blastemal type 

Wilms tumors with mutations in SIX1 or SIX2 have a have a gene expression signature of 

proliferation and kidney progenitors. On the other hand, it can be seen that tumors 

reported to have triphasic/mixed or regressive histology contain high proportions of cells 

resembling the un-induced mesenchyme (UM). 
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