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Abstract: Glioblastoma multiforme (GBM) is the most common, malignant, poorly promising primary
brain tumor. GBM is characterized by an infiltrating growth nature, abundant vascularization, and
a rapid and aggressive clinical course. For many years, the standard treatment of gliomas has
invariably been surgical treatment supported by radio- and chemotherapy. Due to the location and
significant resistance of gliomas to conventional therapies, the prognosis of glioblastoma patients
is very poor and the cure rate is low. The search for new therapy targets and effective therapeutic
tools for cancer treatment is a current challenge for medicine and science. microRNAs (miRNAs) play
a key role in many cellular processes, such as growth, differentiation, cell division, apoptosis, and
cell signaling. Their discovery was a breakthrough in the diagnosis and prognosis of many diseases.
Understanding the structure of miRNAs may contribute to the understanding of the mechanisms
of cellular regulation dependent on miRNA and the pathogenesis of diseases underlying these
short non-coding RNAs, including glial brain tumors. This paper provides a detailed review of the
latest reports on the relationship between changes in the expression of individual microRNAs and
the formation and development of gliomas. The use of miRNAs in the treatment of this cancer is
also discussed.

Keywords: glioblastoma multiforme; miRNA

1. miRNA Characteristics

Non-coding RNAs are a type of molecule formed as a result of DNA transcription,
which do not encode proteins, but perform a variety of structural, enzymatic, and regulatory
functions in the cell. Among such RNAs, we distinguish a particularly important group
with regulatory functions—microRNAs. So far, it has been confirmed that miRNA are
present in all plants and animals, but of the more than the thousands of identified molecules
(over 2000 in human cells), only a very small percentage of them have recognized and
described functions [1]. It is suspected that about 30% of human genes can be regulated
by appropriate miRNAs [2]. After post-transcriptional treatment, miRNA is a single-
stranded, short, ~22 nucleotide long, regulatory molecule found in the cytosol of the
cell. Together with the corresponding proteins, miRNA forms RNA-inducing silencing
complexes (miRISC). Such a complex, thanks to the complementary sequence of nucleotides
in miRNA, inhibits the translation of the target mRNA [3]. In this way, the labeled mRNA
is degraded by the Ago protein, which prevents further expression of the protein. This
inconspicuous molecule has a large impact on the level of gene expression in the cell, and
thus, on the functioning of not only a specific cell or tissue, but the whole organism.

miRNA biogenesis is a very complex and varied process between different types of
miRNAs (Figure 1) [4]. The differences between the formation of individual molecules begin
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at the transcription level, among other things, because the sequences encoding miRNAs can
be located in intergenic regions or within genes encoding proteins. The primary product of
transcription is double-stranded pri-miRNAs (primary miRNA). These are then shortened
to 60–70 nucleotide pre-mirRNAs by RNAse III–Drosha endonuclease (forming a complex
in mammalian cells with the DGCR8 protein or its homologues in other animals, e.g., Pasha
in Drosophila melanogaster). Pre-miRNAs are exported outside of the cell nucleus through
channels formed in the membrane of the cell nucleus by exportin-5. In the cytoplasm,
pre-miRNA is bound by the Dicer endoribonuclease and separated into two strands about
22 nucleotides long [4]. Both threads form a duplex, which consists of an antisense strand
(guide) and a sense strand (passenger).The antisense strand, responsible for the suppressive
activity of miRNA, is built into the miRNA-induced silencing complex (miRISC). On the
other hand, the sense strand usually degrades [5]. The suppression mechanism is based on
complementary attachment to regulatory mRNA sequences (including the area at the end
of 3′-UTR).
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Figure 1. miRNA biogenesis pathway. miRNA genes are transcribed from the sequences encoding
them in the genome most often by RNA polymerase II and the resulting pri-miRNA transcripts are
subject to modifications of the 5′ (cap) and 3′ (polyadenyl tail) end. They are treated by the Drosha
and Pash proteins by cutting out a region with the structure of a hairpin, thanks to which pre-miRNA
molecules with a length of about 70 nucleotides are formed. pre-miRNAs are exported from the
nucleus by the nuclear transporter exportin 5. In the cytoplasm, pre-miRNA is cut by the Dicer
enzyme into double-stranded molecules about 22 nucleotides long. The less thermodynamically
stable of the strands is incorporated into the RISC (RNA-induced silencing complex). A high degree
of complementarity of the transcript to the RISC-bound miRNA strand results in degradation of the
transcript, while partial complementarity inhibits translation.

It has been shown that genes for microRNAs are often located in or near fragile sites [6].
Genome damage, such as translocations, deletions, amplifications, and integrations of
foreign DNA, for example HPV (human papillomavirus), affect not only the expression of
genes that are tumor suppressors (TS), but also the expression of microRNAs. A change in
the level of expression of the latter is observed in various types of tumors [7–9].
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The diversity of genes regulated by miRNA means that in the context of cancer devel-
opment, these molecules can behave like oncogenes and as transformation suppressors [10].
Based on the level of miRNA expression, normal tissues can be differentiated from can-
cerous tissues [11–14]. microRNA expression profiling can be a good diagnostic tool for
assessing disease staging or survival and may also be helpful in choosing treatment tailored
to the individual needs of the patient [15]. One of the first reports on the participation of
miRNA in the tumorigenesis process concerned the effect of miR-17-92 overexpression
on the initiation of the carcinogenesis process in mouse lymphatic cells [16]. Similarly, in
the case of cells lining the bile ducts, overexpression of miR-29 led to a decrease in the
amount of the antiapoptotic factor Mcl-1 and consequently to the cancer transformation of
these cells [17]. Suppressor activity was observed in the case of let-7, which is a negative
regulator of the expression of oncogenic proteins Ras and c-Myc in human cancer cells of
the large intestine [18]. It is now known that deregulation at the level of miRNA expression
affects tumors of various origins, including breast [19], colon [20], lung [21], liver [22], and
pancreas [23] cancers, as well brain gliomas [24].

In cancer, miRNAs have been shown to modulate cell proliferation and affect invasive-
ness, angiogenesis, and recurrence [25,26]. miRNA expression disorders are a direct cause
of tumor development and are the result of neoplastic processes involving changes in the
activity of transcription factors controlling their expression. One of the arguments support-
ing the influence of changes in miRNA expression on the initiation of the tumorigenesis
process indicates the location of their genes on chromosomes near fragile sites, susceptible
to deletions, amplifications, point mutations and DNA methylation disorders [27,28]. An
example is miR-15a-16, whose gene (located in the 13q14 region) is subject to frequent
deletions in chronic lymphocytic leukemia [28,29]. The result of these changes is inhibition
of miR-15a and miR-16-1 expression (acting as negative regulators of the anti-apoptotic
factor Bcl-2) and, consequently, impaired activation of apoptosis [28].

The main goal of profiling miRNA expression in glioblastoma cells is to identify
specific miRNAs whose changes in the level of expression are correlated with the process
of tumorigenesis [30]. Currently, in addition to standard techniques (RT-PCR and Q-PCR),
high-resolution techniques such as deep sequencing and microarrays are used for these
tests. On the basis of microarrays and deep sequencing, a group of microRNAs were
selected that undergo significant overexpression in glioma cancer cells compared to control
trials, and miRNAs whose levels in glioma cells are reduced [31–33]. Table 1 shows typical
miRNAs found in glioblastoma multiforme (GBM).

Table 1. miRNAs with both suppressor and oncogenic functions in glioblastoma multiforme.

S. No. miRNA Name Expression in
Glioblastoma Role in GBM

1. miR-21 up-regulated [34] oncomiR

2. miR-93 up-regulated [35] oncomiR

3. miR-10b up-regulated [35] oncomiR

4. miR-196a up-regulated [36] oncomiR

5. miR-221/222 up-regulated [37] oncomiR

6. miR-182 up-regulated [38] oncomiR

7. miR-7 down-regulated [39] tumor suppressor

8. miR-128 down-regulated [40] tumor suppressor

9. miR-124/137 down-regulated [41] tumor suppressor

10. miR-101 down-regulated [42] tumor suppressor
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Table 1. Cont.

S. No. miRNA Name Expression in
Glioblastoma Role in GBM

11. miR-181 down-regulated
[40,43] tumor suppressor

12. miR-146a down-regulated [44] tumor suppressor

13. miR-137 down-regulated [45] tumor suppressor

14. miR-34a down-regulated [43] tumor suppressor

2. Glioblastoma Multiforme (GBM)

Gliomas are the most common primary cancers of the central nervous system. They
originate from glial cells and account for 40–60% of intracranial tumors. The most common
malignant tumor derived from glial tissue is glioblastoma multiforme, accounting for up to
90% of gliomas in adults [46]. Depending on the type of glial cell from which they originate,
gliomas are classified as astrocytes (developing from astrocytes), oligodendrocytes (from
oligodendrocytes), or linings (from epenymocytes). Due to the degree of biological malig-
nancy, gliomas are divided into low-malignant gliomas with low proliferative potential,
slow-growing, minimally invasive gliomas with relatively good prognosis (I and II degree
of biological malignancy according to WHO), and high-malignant gliomas characterized by
abundant vascularization, intensive proliferation, infiltration of neighboring tissues, and a
very poor prognosis (III and IV degree according to WHO) [47]. Glioblastoma multiforme
is the most common primary brain tumor, accounts for more than 50% of all gliomas, and
has the highest degree of biological malignancy (WHO Grade IV) [47–49]. GBM has an infil-
trating growth nature, abundant vascularization, and a rapid and aggressive clinical course.
GBM is characterized by the occurrence of poorly differentiated neoplastic astrocytic cells,
cellular and nuclear atypia, intense mitotic activity, neoangiogenesis, vascular thrombosis,
limited apoptosis, and foci of necrosis. Vascular hyperproliferation and necrosis are the
basic diagnostic criteria for distinguishing GBM from lower-grade gliomas [50,51]. GBM
most often occurs in the supraential part of the cranial cavity—in the frontal, parietal, tem-
poral, and occipital regions—but rarely in the cerebellum [52,53]. Due to the location and
significant resistance of gliomas to conventional therapies, the prognosis of patients with
glioblastoma is very poor and the cure rate is low [54]. GBM is divided into primary and
secondary. The first of these mainly affects elderly patients, while much rarer secondary
ones usually affect patients before the age of 45. Primary GBM develops de novo from glial
cells, characterized by an aggressive course with a short clinical history of usually less than
six months. Secondary multiforme gliomas originate from tumors of the astrocytic series
(astrocytics) of the lower degree of WHO malignancy as a result of their transformation
and malignancy. Despite differences in their pathogenesis, primary and secondary GBMs
are similar in their morphological and clinical terms [55,56]. Neurological symptoms in the
course of brain tumors are the consequence of increased intracranial pressure, which is the
result of limited possibilities of increasing abnormal mass within the skull, forming a set
of symptoms resulting directly from the damage to specific structures in the brain. These
symptoms may include headaches, vomiting, disturbances of consciousness, orientation,
paresis, changes in personality, mood, and psycho-motor slowdown.

Often, symptoms depend on the location of the tumor rather than on its histological
peculiarities. The absence of specific symptoms makes the cancer difficult to diagnose,
and therefore it is usually detected only at an advanced stage of the disease, in most cases
using magnetic resonance imaging (MRI). New tools and methods of diagnosis, including
magnetic resonance spectroscopy, magnetic resonance imaging and cerebral diffusion
imaging, and the use of F18-fluorodeoxyglucose in positron emission tomography, allow
for the diagnosis of cancer at an early stage of its development [57–59]. For many years, the
standard in the treatment of gliomas has been surgical treatment supported by radio- and
chemotherapy. Maximum cytoreduction in the tumor (>98% of the tumor) prolongs life
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up to 9–12 months and also improves the patient’s response to radio- and chemotherapy.
However, due to the location of the tumor and its infiltrative nature, surgical intervention
is often not possible. For high-beech gliomas (WHO III and IV), radiation therapy (RT) is
used as the first adjuvant treatment after surgery. In turn, the standard in chemotherapy is
temozolomide (TMZ) and carmustine (gliadel) [60,61]. In the case of relapses, a faster and
more aggressive tumor growth is observed in the group of patients treated with TMZ and
RT, which additionally shows significant resistance to treatment [62,63].

In recent years, many new promising therapeutic targets and potential therapeutics
have been identified. The new approaches are based on tools such as small-molecule
inhibitors, monoclonal antibodies, and peptide vaccines used to regulate cell pathways
crucial for cancer development, angiogenesis, and to abolish the drug resistance of cancer
cells. However, clinical trials did not report the expected results in the form of the effective
inhibition of glioma cell proliferation [64,65]. The reasons for these failures are seen in
the activation of alternative signaling pathways which bypass the factor turned off by the
inhibitor [66]. Although the new approaches initially performed very well, most of them
were rejected at the clinical trial stage. Therefore, gliomas invariably remain among the
most difficult to treat and are the least promising cancers, with an average survival time of
less than a year [67]. In the absence of effective treatments for gliomas and their resistance
to treatment, the challenge is to research new therapeutic goals and approaches in the
treatment of GBM. The first stage of therapy design is the identification of therapeutic
targets, the “shutdown” of which provides a chance to stop pathological processes, includ-
ing a reduction in cell proliferation and the launching of apoptotic processes. The use of
high-throughput DNA sequencing techniques, cDNA microarrays, and proteomic methods
provided new knowledge on the pathogenesis of gliomas and allowed the identification of
potential therapeutic targets [68,69]. Currently, much attention is focused on transcription
factors, extracellular matrix proteins, chaperone proteins, and miRNAs as new promising
targets for GBM therapy. The advantage of the latter over the others is their ability to
regulate expression at almost every stage. miRNAs can regulate the expression of up to
90% of genes, and consequently affect a number of cellular processes, such as growth, cell
differentiation, apoptosis, or cell signaling [70,71].

A disturbance in miRNA levels alters the expression of target mRNAs. It is estimated
that this may be the cause of over 390 diseases (http://cmbi.bjmu.edu.cn/hmdd, accessed
on 1 January 2014), the largest group of these being cancers, including brain tumors.

3. miRNAs Expression in GBM

It has been shown that, just as in a healthy brain during its development, the level
of individual miRNAs undergoes dynamic changes in a tumor at various stages of its
advancement. The miRNA profile in GBM indicates the stage of the disease and can
also facilitate the prognosis and selection of appropriate therapy. Based on the level
of individual miRNAs, the miRNAs with the highest prognostic value for GBM were
selected [72], indicating that that the diagnosis of GBM is also possible on the basis of the
analysis of miRNA from the blood and cerebrospinal fluid of patients [73–75]. Functional
analysis of individual GBM-specific miRNAs indicates that they can act as both oncogenes
and tumor suppressors, are responsible for developing resistance to chemotherapy and
radiotherapy, stimulate neo-angiogenesis and cell proliferation, and regulate the cell cycle
and apoptosis [76–80] (Table 2).

http://cmbi.bjmu.edu.cn/hmdd
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Table 2. The role of selected miRNAs in GBM.

miRNA-Regulated
Process/Pathway Examples of miRNAs

Growth and differentiation of CSCs (cancer
stem cells)

miR-7 [81], miR-9/miR-9 [82], miR10a/miR-10b [83], miR-17-92 [84],
miR-124a/miR-137 [85], miR-125a/miR-125b [86], miR-302-367 [86], miR-326 [86]

Cell cycle miR-21 [87], miR-15b [88], miR-34a [86], miR-221/miR-222 [86]

Proliferation and apoptosis
miR-21, miR-26a [89], miR-101 [90], miR-128 [91], miR-156b-5p, miR-153 [43],

miR-181a/miR-181b [92], miR-196a/miR-196b [93], miR-218 [86], miR-381 [86],
miR-451 [86], let-7a [86]

Neo-angiogenesis miR-93, miR-296 [94]

Cell resistance to radio- and chemotherapy miR-21 [95], miR-125b-2 [86], miR-195 [96], miR-455-3p [96], miR-10a [96]

Understanding the GBM-specific miRNA expression profile provides evidence of
the involvement of individual miRNAs in the pathogenesis of GBM. This increases the
possibility of diagnosing and predicting these cancers. However, we are still far from
understanding the mechanisms of cellular regulation involving miRNAs and therefore,
also from using miRNAs as potential therapeutic targets. Numerous reports indicate that
abnormalities in the expression of selected miRNAs may contribute to the transformation
of glial cells and thus to the development of cancer. These include both miRNAs with
suppressor and oncogenic functions (Figure 2) [97–110].
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4. Tumor Suppressor miRNAs

miR-181a and miR-181b are the suppressor molecules whose expression is significantly
reduced in glioma cells compared to normal glial cells [111,112]. A decrease in the level
of expression of miR-181 genes (miR-181a, 181b, and 181c) was observed in 20–30% of the
GBM samples studied [113,114]. It has been shown that the reduction in the pool of miR-181
molecules is proportional to the degree of tumor malignancy (the greatest inhibition of miR-
181 expression occurs in stage III and IV tumors). These regulatory factors have been shown
to inhibit proliferation, induce apoptosis, and limit cancer cell invasion. Additionally, the
induced overexpression of miR-181a and miR-181b in glioma cells results in the loss of
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the ability of cells to grow independent of contact with the substrate, which is one of
the determinants of cell malignancy. Thus, miRNAs from the miR-181 family function as
suppressors in glioma cells [115,116].

Reduced expression of miR-34a may also be important in the development of glioma.
In glioblastoma cells, the mechanisms that reduce the level of miR-34a probably include
epigenetic factors (CpG island methylation disorder) and mutations within the 1p36 locus,
which in the case of primary brain tumors, are subject to frequent deletions (70–85%) [117].
This molecule, by regulating the expression of many oncogenes, e.g., C-MET and NOTCH,
inhibits the development of cancer [100,118]. It has been proven that transfection of miR-
34a cancer cell lines leads to the blockage of cell cycle proliferation and progression and
reduces cell survival and invasiveness [119]. One of the direct processes regulated by
miR-34a in glioblastoma cells is considered to inhibit the expression of genes of the proteins
Notch homolog 1 (Notch1) and Notch homolog 2 (Notch2), which act as transmembrane
receptors [120]. With the correct level of miR-34a expression, this mechanism, carried out
with the participation of the mesenchymal epithelial transition factor (c-Met), leads to a
decrease in signal transduction and subsequently inhibits the process of angiogenesis and
proliferation [118]. In GBM cells, elevated levels of Notch1 and 2 receptors stimulate the
proliferation and migration of glioma cells by activating the kinases of the AKT-mTOR
pathway [121] and also affects the regulation of EGFR receptor expression by the p53
protein, which reduces signal transmission and consequently intensifies the metastasis of
cancer cells [30]. Another way to initiate tumor growth with reduced miR-34a expression
is to limit the process of inhibition of the transcription of cyclins (E2, D1), kinases (CDK6,
CDK4), and Bcl-1, MYC, and E2F3, whose elevated levels in the cell leads to uncontrolled
cell cycle progression and the inhibition of apoptosis [122,123]. miR-34a regulates the
expression of silent mating type information regulation 2 homolog 1 (SIRT1), the excess of
which blocks the process of programmed cell death by binding to the p53 protein [124].

As already stated for cancer stem cells, miR34 plays a visible bimodal role by regulating
the Notch and Numb proteins [125]. Numb has been identified as a docking protein
involved in the development of Drosophila as an equivalent to Notch, while in various
models it works by inducing Notch degradation. In addition, Numb is involved in EGF
signaling and internalization of its receptor [126]. Numb also plays a role in stabilizing
p53 with a clear implication not only in cancers, but also in stem cells, where p53 has been
shown to play a role in stem cell division [127].

miR-34 acts on the regulation of various genes, such as Bcl2, involved in inhibiting the
apoptosis pathway, and genes such as NOTCH and NUMB, involved in the development
of the nervous system. The effect of miR-34c on NUMB expression can be explained by
the interaction on the untranslated 3′ region of NUMB mRNA. This region is conserved
among miR-34a and miR-34c. miR34c expression reduces NSC and GSC cell growth and
regulates both Bcl2 and NUMB expression. miR-34 clearly inhibits Bcl2, which is involved
in resistance to apoptosis, increased cell survival, and response to radiation. Apoptotic
resistance can also be affected by NUMB-inducing AKT phosphorylation. miR-34c reduces
NUMB expression in both NSC and GSC. miR-34c can inhibit GSC by reducing Bcl2, which
could potentially increase the effect of chemotherapy/radiotherapy [128].

miR-34c can be used to treat GBM or other types of cancer. This particular miRNA can
be successfully transmitted by viral vectors or extracellular vesicles [129].

The suppressor effect in the development of glioma as well as the migration and inva-
sion of its cells is shown by miR-146b-5p [130,131]. It has been proven that the expression
of this miRNA is lower in all types of gliomas than in control astrocytes. miR-146b-5p
binds to the 3′UTR region of the EGFR gene transcript, inhibiting its translation. The
incorporation of this miRNA into cells results in a reduction in the level of protein kinase
phosphorylation (AKT) and inhibition of the Pi3K/AKT pathway. This indicates that
restoring the normal expression of this miRNA may be helpful in the treatment of invasive
forms of cancer [132,133]. Among the genes regulated by miR-146b in GBM, MMP16 has
been identified [134]. The MMP16 protein is responsible for the degradation of extracellular
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matrix components (ECMs), including collagen III, and is specifically expressed in the
central nervous system [135]. In GBM cells with a reduced level of miR-146b, increased
expression of MMP affects the expansion of the tumor process by supporting the invasion
and migration of cancer cells, as well as by the formation of new blood vessels in the tumor
environment [136].

EGFR is also a target gene for miR-7, which is lowered in the expression in glioma
cells. It was found that the function of miR-7 associated with the inhibition of the AKT
pathway is responsible for limiting the viability and invasiveness of the tumor, which also
testifies to the therapeutic potential of this molecule [137,138].

Reduced expression in glioma cancer cells also applies to miR-124, miR-137, and
miR-101. miR-124 and miR-137 molecules regulate the expression of the CDK6 gene and
contribute to lowering the level of the CDK6 protein, which is involved in the development
of a number of malignant tumors [139–141]. This results in the blockade of the cell cycle in
the G1 phase and the limitation in the proliferation of glioblastoma multiforme cells, which
can be extremely valuable in the treatment of this condition [142,143].

The expression of miR-101 varies significantly in glioblastoma cells compared to
unchanged cells. Lower levels of this miRNA cause insufficient repression of the en-
hancer of zeste homolog 2 (EZH2) mRNA translation [73]. This leads to overexpression of
methyltransferase EZH2, which induces the proliferation and migration of tumor cells and
contributes to the development of tumor vascularization. The level of EZH2 expression
correlates with the survival time of patients [142].

In GBM, reduced expression of miR-128 is observed [61]. High levels of miR-128 have
been shown to inhibit glioma cell proliferation in vitro and tumor heterograft growth in vivo
by directly regulating the Bmi-1 gene [144]. Mechanically, this effect of miR-128 in GBM
was associated with self-renewal inhibition of glioma stem cells (GSC) through the Bmi-
1 pathway. miR-128 reduces the proliferation of glioma cells by targeting E2F3a [145,146].
miR-128 inhibits the proliferation, invasion, and self-renewal of GBM and glioma stem
cells through the BMI1 and E2F3 pathways [147]. miR-128 has been shown to reduce
gliogenesis by down-regulating the EGFR and platelet-derived growth factor receptor
alpha (PDGFRA). The targets for miR-128 (except EGFR and PDGFRA) for inhibiting
GBM cell proliferation are WEE1, MSI1, and E2F3A [148]. In addition, miR-128 regulates
angiogenesis by inhibiting P70S6K1 kinase [149]. The upregulation of miR-128 attenuates
the effects of cell proliferation, tumor growth, and angiogenesis [149].

5. Onco-miRNA

miR-21 is a miRNA of an oncogenic nature, the overexpression of which is found
in many types of cancer, including glioma cells [150,151]. Binding sites for this molecule
were found in the 3′UTR regions of transcripts of genes such as programmed cell death 4
(PDCD4), methylthioadenosine phosphorylase (MTAP), and sex-determining region Y box
5 (SOX5). In the development of cancer, PDCD4 is very important, acting as a suppressor
gene involved in apoptosis [152]. In the T98G glioma cell line, the level of expression of
the PDCD4 gene shows an inverse relationship with the expression of miR-21, and its
reduction leads to the inhibition of the process of apoptosis, which is dependent on this
gene [153,154].

miR-10b is highly oncogenic in GBM, suggesting that it may regulate oncogenesis and
serve as a useful target in GBM therapy. The overexpression of miR-10b has been found
in higher-grade gliomas [155,156]. miR-10b has multiple targets such as RhoC, uPAR, and
HOXD10 [157]. By influencing these targets, miR-10b is inhibited, resulting in reduced
cell growth, invasion, and angiogenesis, as well as increased apoptosis in GBM [126]. In
addition, the direct targets of miR-10b associated with cell growth are BCL2L11, TFAP2C,
CDKN1A, and CDKN2A [157]. Inhibition of miR-10b can restore target gene expression
and reduce glioblastoma cell growth through apoptosis and/or cell cycle arrest.

Many studies have shown that miR-93 is elevated in GBM [30,158–161]. miR-93
regulates various glioma cell functions such as proliferation, migration, invasion, cell
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cycle arrest, and chemoresistance by targeting P21 [162]. miR-93 was shown to control
autophagic activity in GSC glioblastoma stem cells by inhibiting BECN1/Beclin 1, ATG5,
ATG4B, and SQSTM1/p62 [163]. miR-93 regulates GBM cell viability, tumor growth, and
vasculogenesis. In particular, miR-93 enhances the formation of blood vessels by targeting
integrin-β 8 [163]. These aspects of miR-93 make this it particularly interesting in the
treatment of neo-angiogenesis in GBM.

The increased level of expression in glioblastoma with respect to normal glial cells
concerns miR-196 [164,165]. It has been proven that significant overexpression of miR-
196 in cancer cells is likely associated with a shorter overall survival of glioblastoma
patients [166,167].

Other examples of regulatory molecules whose increased expression is observed in
glioma cells and in a number of other cancers include miR-221 and miR-222 [168,169].
The key role of these miRNAs is to control the cell cycle and proliferation by regulating
the expression of the P27 and P57 proteins [170,171]. miR-221/222 are also involved
in the regulation of apoptosis by directly binding to the 3′UTR mRNA region of the
PUMA gene (BCL2 binding component 3), which has recently been recognized as the main
mediator of apoptosis, in which the transcription factor TP53 is involved [172,173]. Thus,
increased expression of these miRNAs may contribute to inhibiting programmed cell death
in glioblastoma [174,175]. Increased activity of miR-221/222 in glioma cells may be due
to the improper expression of the transcription factors nuclear factor kappa-light-chain-
enhancer of activated B cells (NF-kB) and C-JUN. These factors, binding together to one of
the regulatory regions of the miR-221/222 genes, induce their transcription [176,177].

Overexpression of miR-182 increases with the degree of tumor malignancy (a 32-fold
increase in miR-182 levels in GBM was observed compared to normal brain tissues) [178,179].

The miR-182 coding sequence was identified in the region of chromosome 7q32.1
within the FRA7H brittle site and the MET gene. MET and FRA7H products have been
shown to be frequently amplified in GBM cells [180].

6. The Use of miRNAs in GBM Therapy

There are high hopes concerning the use of miRNAs in GBM therapy (Figure 3).
miRNAs may become a promising therapeutic target due to their ability to target multiple
genes.
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based therapy have been proposed, the first of which is to restore the downward-regulated
miRNAs of tumor suppressors using microRNA imitators. The second way is to inhibit
oncomiR overexpression with microRNA inhibitors.

Tumor suppressor miRNAs have reduced expression in gliomas. In order to normalize
their expression profiles, miRNA-based replacement therapies may be used to increase the
expression of a given tumor suppressor molecule.

The inhibition of cancer progression is made possible by exogenous oligonucleotides
(also known as miRNA-mimicking), which have the same sequence as the corresponding
endogenous miRNAs. These oligonucleotides are synthesized and delivered to GBM cells
and strongly inhibit tumor growth. A well-known miRNA with reduced expression sup-
pressor function in GBM is miR-34a [150]. In studies in which cell death was induced using
miR-34a mimetics in mutant p53, chemically resistant GBM cells, it was shown that miR-34a
mimetics can be used as a novel therapeutic agent [181]. In addition, after transfection into
U251 glioma cells, miR-203 mimetics significantly reduce the level of phospholipase D2,
which is the target of miR-203. This leads to inhibition of proliferation and invasion of U251
cells [182]. Studies of miR-145 and miR-33a in mouse tumors demonstrated their antitumor
activity [183].

miRNA inhibitory therapy is used in GBM to inhibit tumor promoting oncomiR.
Recently, many mechanisms have been studied, including the use of antisense oligonu-
cleotides. Antisense oligonucleotides (called antagomiR or antimiR) are synthetically
produced oligonucleotides that inhibit levels of upward-regulated miRNAs by blocking
the interaction between miRNA and its target mRNAs. In the study, antagomirs coupled to
the peptide R3V6 were used to inhibit miR-21. It has been shown that R3V6 peptide can
serve as an important tool for the delivery of antisense oligonucleotides [184].

The R3V6 peptide protected oligonucleotides from cleavage by nucleases and also
increased their delivery. Conjugate has been found to reduce miR-21 expression and
promote apoptosis in GBM cells. Antisense anti-miR-21 oligodeoxynocynucleotides were
supplied by R3V6 peptide in vivo. It was noted that apoptosis of cancer cells was strongly
promoted, which resulted in effective suppression of tumor growth [185]. In studies using
2′-O-methyl (OMe), the antisense oligonucleotide effectively induced apoptosis in GBM by
inhibiting the level of miR-21 expression [186].

miRNA sponges are transcripts containing sites that mimic sequences found in the
mRNA complementary to the target miRNA. miRNA sponges are longer nucleic acids
such as DNA plasmids or transcribed RNA [187]. They inhibit miRNA function, blocking
an entire family of related miRNAs [188]. In GBM, the miR-23b sponge inhibits tumor
migration, invasion, and progression in vivo [189]. Natural miRNA sponges include
circular RNA (circRNA). ciRS-7 and miR-7 have been found to be overexpressed in the
brain [190]. The property of reducing further effects of the target miRNA makes miRNA
sponges a tool for studying miRNA function in vitro. However, toxicity and side effects can
cause an excess of exogenous nucleic acids, reducing the likelihood that miRNA sponges
will be successful as therapeutic agents [191].

Viruses are used to effectively deliver miRNAs to cancer cells [192]. Studies using
lentiviral vectors to deliver miR-7-3 to U251 cells showed significant inhibition of prolifera-
tion and cell cycle arrest [193]. In vitro and in vivo studies, the crispR/cas9 construct was
provided to reduce miR-10 expression using a lentiviral vector [194]. Adenovirus-associated
viruses (AAVs) are also candidates for delivering miRNAs. For example, AAV-borne miR-
26a was systemically delivered to hepatocellular carcinoma (HCC) cells, resulting in cell
cycle arrest, increased apoptosis, and reduced tumor growth [195]. These tests may have
potential for other cancers, including glioblastoma. However, side effects such as immuno-
toxicity, inflammatory responses and tissue degeneration induced by immunogenicity, and
mutations caused by the inserted sequence are drawbacks which limit the clinical use of
viral miRNA [196]. Therefore, non-viral systems may be more suitable for clinical use.

The most successful delivery systems are polymer and lipid nanoparticles, though
magnetic nanoparticles have also been used. In GBM, the widely used miRNA carriers are
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polymer nanoparticles such as poly (lactic-co-glycolic acid) or PLGA and polyethyleneimine
(PEI). In order to deliver antimiR-21 and antimiR-10b to GBM cells, PLGA nanoparticles
were used. The result was an increase in the sensitivity to TMZ chemotherapy both in vitro
and in vivo [197–199]. miRNAs can be successfully delivered by PEI nanoparticles [200].
For example, miR-34a encapsulated in PEI nanoparticles has been delivered across the
blood-brain barrier as a treatment for GBM [201]. Lipid nanoparticles are a very useful
miRNA carrier for clinical applications due to the stability of miRNAs under physiological
conditions [202]. As a result of the simultaneous introduction of the antisense oligonu-
cleotide pemetrexed and miR-21 into glioma cells via cationic solid lipid nanoparticles,
high cell uptake efficiency with low toxicity has been demonstrated [203].

Studies in mouse models confirm that lipid-based nanoparticle carriers could become
a powerful tool for delivering miRNAs and are likely to find a wide clinical application. In
studies on mouse models, stable nucleic acid lipid molecules conjugated with chlorotoxin
(CTX-conjugated SNALPs) were used. Systemic delivery of anti-miR-21 resulted in reduced
proliferation, tumor growth inhibition, and increased apoptosis in a mouse model of
GBM [204]. Lipid nanoparticles containing miR-124 have been found to prolong survival,
prevent tumor recurrence, and induce immune memory [53,205–209].

miRNAs can be used as new therapeutic approaches in the treatment of glioblastoma
multiforme, Alzheimer’s disease (AD), Parkinson’s disease (PD), and other neurodegenera-
tive diseases [210,211]. The improvement of miRNA changes in GBM and neurodegenera-
tive diseases may be helpful in their early detection. Although glioblastoma multiforme
and Alzheimer’s disease share the same molecular pathways, there are significant differ-
ences in their modulation. Rapid cell proliferation and cell apoptosis arrest are typical
features of GBM. In the case of AD, cell damage and subsequent cell death are common
consequences. A set of dysregulated 12 miRNAs in both GBM and AD was identified,
demonstrating the existence of an inverse relationship between miRNA expression levels
in GBM and AD. Three miRNAs were up-regulated in GBM and down-regulated in AD—
hsa-miR-106a, hsa-miR-20b and hsa-miR-424)—and 9 were down-regulated in GBM and
up-regulated in AD—hsa-miR-1224, hsa-miR-129, hsa-miR-139, hsa-miR-330, hsa-miR-433,
hsa-miR-485, hsa-miR-487b, hsa-miR-584, and hsa-miR-885. In addition, hsa-miR-29c was
down-regulated in both GBM and AD, suggesting its involvement in both pathologies [210].

Reverse-expressed miRNAs targeting an identical molecule or modulating the same
pathway in both GBM and neurodegenerative diseases may provide attractive entry points
to a deeper understanding of the underlying molecular physio-pathological mechanism.
For example, miRNA-210 targeting brain-derived neurotrophic factor (BDNF), microglia
modulating miRNA-21, and miRNA-27a and -132 modulating Tau would help to explain
what pathway triggers a neuron to turn into an undifferentiated and immortal cancer cell
or broken dying cell. It is also worth noting that miRNA-10b is not expressed in normal
brain tissue, so this would provide an attractive diagnostic approach [211].

Extracellular vesicles (EVs) are a heterogeneous population of vesicles released by cells
both in vivo and in vitro. They are an extremely important element of information transfer
between different cells without requiring their direct contact. EVs are of a high biological
importance and are the subject of intensive research. miRNA-transporting exosomes are
one of the key elements of intercellular communication in cancer biology. Exosomes play
a key role in GBM, Alzheimer’s disease, Parkinson’s disease, epilepsy, and other brain
disorders [212]. An interrelation was observed between GBM exosomes and neuronal
damage responsible for neuronal disorders. Exosomal miRNAs are present in the body
fluids of patients suffering from malignant gliomas [212].

GBM-derived exosomes can increase oxidative stress in cerebellar neurons by reducing
cellular antioxidant defenses and increasing oxidative damage [213].

Attention has recently been drawn to the occurrence of subpopulations of stem cells,
called “cancer stem cells” (CSCs), in lesions. miRNAs play an important role in CSCs as
important regulators of proliferation and differentiation. Several miRNAs are associated
with GBM CSC [214]. The most significant are miR-21 and miR-95, which may affect the
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molecular profiling of GBM and patient survival. Other miRNAs have been identified
as potential regulators of CSC immunogenicity. However, further analysis is needed to
elucidate the molecular mechanisms behind GBM CSC.

The difficulty in treating glioblastoma multiforme arises from the fact that many mi-
croRNAs, including miR-21, miR-34a, miR-135b, and let-7 are associated with chemother-
apy and tumor radiation resistance [215]. A significant increase in miR-24-1 and miR-151-5b
expression was demonstrated as a result of irradiation of glioblastoma cell lines with doses
commonly used in the treatment of brain tumors—2 Gy [215]. Levels of miR-590-3p were
elevated in glioblastoma multiforme tissues and radiation-resistant glioblastoma cells. A
potential therapeutic target in increasing the radiosensitivity of cancer cells is miR-221/222.
The synthesis of CYP3A4, which metabolizes most chemotherapy drugs, including those
used to treat gliomas, is increased in brain tumors, and can be inhibited with the partici-
pation of miR-148a, -27b and -125b. These miRNAs are designed to reduce glioblastoma
chemoresistance. miR-210 is also a promising diagnostic and prognostic biomarker that
can be detected in the peripheral blood of glioblastoma patients. Serum miR-210 levels in
glioma are significantly elevated. Studying microRNAs circulating in cerebrospinal fluid
can help diagnose brain tumors. This is due to the fact that primary brain tumors with a
tendency to spread can secrete microRNAs with oncogenic properties that can be detected
in the cerebrospinal fluid. Simultaneous testing of the level of expression of miR-15b and
miR-21 in the cerebrospinal fluid allows for the differentiation of glioblastoma patients
from healthy individuals and CNS lymphoma patients with 90% sensitivity and 100%
specificity [31].

7. Liquid Biopsy

In the diagnosis of brain tumors, a liquid biopsy may be useful [215]. This is a mini-
mally invasive procedure through which information is obtained from body fluids. This
information is similar to what is usually obtained from a tissue biopsy sample. A liquid
biopsy can analyze circulating tumor cells (CTCs), circulating DNA-free cells (cfDNA),
circulating tumor DNA (ctDNA), circulating cell-free tumor RNA (ctDNA), exosomes,
proteins, metabolites, and platelets produced by tumors (TEPs). In the case of glioblastoma
multiforme, this material may be derived from tumor tissue and may therefore constitute
a genuine and representative sample thereof. The best tested of these include ctDNA
and ctRNA.

ctDNA can comprehensively represent the glioblastoma genome image. Depending on
its histopathological stage, the rate of detection of ctDNA varies [216,217]. Using the NGS
technique, the most common gene mutations (TP53, EGFR, MET, PIK3CA, and NOTCH1,
TP53, NF1, EGFR1, MET, APC, and PDGFRA, ERBB2, MET, and EGFR) were selected in
the patient’s plasma [216,218]. In patients with glioblastoma, methylation of the MGMT
gene promoter was observed in tissues and serum ctDNA [214]. In the case of increased
methylation, patients had a better response to treatment with alkylating agents.

A potential diagnostic and prognostic target may be the analysis of miRNA in the
serum of patients with glioblastoma. It has been shown that the most significant miRNAs
are miR-15b, miR-23a, miR-133a, miR-150, miR-197, miR-497, miR-548b, miR-21, miR-128,
miR-342, and miR-205. A change in the expression of these miRNAs has been demonstrated
in patients with glioblastoma [219–221], and their return to normal levels was observed
after surgery and chemotherapy, which indicates their use as biomarkers of response to
therapy [220,221].

lncRNAs may be potential diagnostic and prognostic biomarkers in glioma multi-
forme [220]. Several lncRNAs (HOTAIR, GAS5, H19, and MALAT1) with altered expression
levels were detected in blood samples of glioblastoma patients compared with healthy
subjects [98,221–223]. GAS5 has been shown to be associated with patients’ responses to
temozolomide (TMZ) therapy. siRNA, circRNA, snRNA, and snoR-NA may also have
potential as biomarkers in the diagnosis and prognosis of glioblastoma [224,225].
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In non-invasive diagnostics, exosomal vesicles that are present in body fluids (blood,
cerebrospinal fluid, urine) can be used. EVs have a diverse molecular composition (nucleic
acids, proteins, lipids, metabolites). These components can be transferred to nearby or
distant cells through direct EV contact with the cell membrane, fusion, or internaliza-
tion [226,227]. Analysis of EVs in the blood, cerebrospinal fluid, or other biological fluid of
patients with glioblastoma may have diagnostic and prognostic significance [228,229].

EVs can cross anatomical barriers such as BBBs, which increases their value as a po-
tential biomarker for glioblastoma [230–233]. In glioblastoma-derived EVs, changes in the
EGFRvIII, IDH1, PTEN, and PD-L1 genes were detected [231,233,234]. The release of EVs is
affected by the treatment of TMZ. EVs derived from TMZ-resistant patients show increased
levels of MGMT expression [235,236] and dysregulated levels of proteins associated with
cellular adhesion, such as transglutaminase 2 (TGM2), NESTIN, glycoproteins, CD44, and
CD133, which are expressed on the surface of EVs [237]. EVs can therefore serve as tumor
biomarkers to monitor TMZ treatment.

TEPs are platelets that have received cancer-related molecules from cancer cells [238].
In glioma, TEPs have been shown to capture tumor-derived EVs with mutant EGFRvIII.
The EGFRvIII mutation was detected in 80% of glioblastoma multiforme [239]. RNA
derived from TEPs could complement currently used biosources and biomolecules used
in the diagnosis of a liquid biopsy. This would improve the early detection of cancer and
facilitate non-invasive monitoring of the disease [240]. By analyzing TEPs, it is possible
to distinguish cancer patients from healthy ones with an accuracy of 84–96%. In addition,
TEP profiling can be used to determine the organ origin of the primary tumor with 71%
accuracy. TEP profiles can be differentiated between subtypes of molecular tumors based
on EGFR and K-RAS [241].

The presence of CTCs in the patient’s bloodstream, resulting from their separation
from the primary tumor, can be used for early diagnosis of the disease, as well as for the
selection of a therapy and the monitoring of its effectiveness. The representative presence
of CTCs for tumors has been detected in patients with glioblastoma of various stages,
including glioblastoma multiforme [242,243]. CTCs derived from glioblastoma exhibited
EGFR amplification, which was associated with aggressiveness and with the presence of
EGFRvIII [49] and increased expression of SERPINE1, TGFB1, TGFBR2, and VIM genes
associated with the mesenchymal subtype [244]. CTCs derived from glioblastoma mul-
tiforme have been shown to possess stem cell properties, contributing to the formation
of local tumors and relapses [245,246]. Additional elements have been detected in the
cerebrospinal fluid of glioblastoma patients that may be components of a liquid biopsy,
such as circulating miRNAs and miRNAs derived from EVs [247,248]. These may serve as
biomarkers of cerebrospinal fluid for diagnosing and monitoring responses to treatment in
patients with glioblastoma [248].

The levels of the nine-miRNA panel (miR-21, miR-218, miR-193b, miR-331, miR374a,
miR548c, miR520f, miR27b, and miR-30b) were associated with tumor volume and exhibited
a 67% sensitivity and 80% specificity [249]. Elevated levels of miR-21, miR-10b, and miR-
15b in cerebrospinal fluid have been shown to be associated with glioma stage, prognosis,
and response to treatment [250–252]. Cerebrospinal fluid miRNAs have a better diagnostic
value, with a higher sensitivity (84%) and specificity (92%) than their serum levels [242].

8. Conclusions

Our knowledge of disorders occurring in various types and degrees of glioma ma-
lignancy has increased dramatically in recent years [53,207], and many of the changes
(confirmed by histopathological analysis) are now complementary to basic diagnostic
techniques [207,208].

miRNA studies in cancer processes significantly enrich modern knowledge on the
pathogenesis of glioblastoma multiforme cells. miRNAs can be new goals in diagnosis and
therapy.
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Establishing the miRNA expression profile characteristic of GBM cells is an alternative
to obtaining a precise picture of the type and extent of cancerous changes in glioma cells.
Experimental verification of high-resolution techniques and in silico analyses provides the
chance to obtain a reliable answer to the question of the causes and mechanisms of miRNA
disorders in cancer cells. It also creates the possibility of using them as prognostic elements
or potential targets in the therapy of brain tumors.
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