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Abstract: Alzheimer’s disease (AD) is an incurable neurodegenerative disease and the most frequently
diagnosed type of dementia, characterized by (1) perturbed cerebral perfusion, vasculature, and
cortical metabolism; (2) induced proinflammatory processes; and (3) the aggregation of amyloid
beta and hyperphosphorylated Tau proteins. Subclinical AD changes are commonly detectable by
using radiological and nuclear neuroimaging methods such as magnetic resonance imaging (MRI),
computed tomography (CT), positron emission tomography (PET), and single-photon emission
computed tomography (SPECT). Furthermore, other valuable modalities exist (in particular, structural
volumetric, diffusion, perfusion, functional, and metabolic magnetic resonance methods) that can
advance the diagnostic algorithm of AD and our understanding of its pathogenesis. Recently, new
insights into AD pathoetiology revealed that deranged insulin homeostasis in the brain may play a
role in the onset and progression of the disease. AD-related brain insulin resistance is closely linked
to systemic insulin homeostasis disorders caused by pancreas and/or liver dysfunction. Indeed, in
recent studies, linkages between the development and onset of AD and the liver and/or pancreas
have been established. Aside from standard radiological and nuclear neuroimaging methods and
clinically fewer common methods of magnetic resonance, this article also discusses the use of new
suggestive non-neuronal imaging modalities to assess AD-associated structural changes in the liver
and pancreas. Studying these changes might be of great clinical importance because of their possible
involvement in AD pathogenesis during the prodromal phase of the disease.

Keywords: Alzheimer’s disease; insulin resistance; neuroimaging; magnetic resonance volumetry;
magnetic resonance spectroscopy; functional magnetic resonance; diffusion magnetic resonance;
perfusion magnetic resonance; positron emission tomography; pancreas; liver

1. Alzheimer’s Disease

Alzheimer’s disease (AD) is one of the most prevalent neurodegenerative diseases and
the most common type of dementia. It is characterized by the progressive and nonreversible
loss of brain functions, which adversely impacts memory, thinking, language, judgment,
and behavior, all of which affect the patient’s personality and social life [1,2]. Generally,
AD is the most prevalent form of dementia, possibly accounting for approximately 60% of
all cases [3,4]. Symptoms usually develop slowly from mild cognitive impairment (MCI)
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manifesting as mild forgetfulness and can gradually worsen over the years to moderate,
and finally, to severe stage AD accompanied by the inability to perform basic daily life
tasks, to recognize family members, to orient in formerly known space, and to understand
language [3,5]. However, not every MCI patient develops AD, with a reported yearly
conversion rate of 10% to 15% [6]. In 2019, over 55 million individuals worldwide were
affected by this debilitating disease, with an increasing tendency and expectancy of up to
82 million cases in 2030 [1,4]. The prevalence of AD is below 1% in people aged 60 years,
with an almost exponential increase with increasing age (e.g., 33% in people aged 80 years),
making aging the most prominent risk factor for the onset of AD [3]. In the USA, AD has
been identified as the fifth leading cause of death in the subpopulation of seniors over
65 years of age [7]. In addition to age, other risk factors related to vascular disease, includ-
ing hypercholesterolemia, hypertension, atherosclerosis, coronary heart disease, smoking,
obesity, and diabetes mellitus (DM) have been reported as being associated with AD. The
presence of the APOE ε4 allele has been found to increase the risk of the disease and par-
ticularly impacts the age of onset [3,8]. With regard to the genetics of the disease, familial
(prevalence below 0.1% [3]) and idiopathic/sporadic forms of AD are recognized. The
three genes, namely APP (amyloid precursor protein), PSEN1 (presenilin-1), and PSEN2
(presenilin-2), are causative to familial AD [8]. Although the cause of a sporadic form of
AD remains puzzling, the aggregation of extracellular amyloid-β (Aβ) (resulting in plaques
formation) and intracellular neurofibrillary tangles (consisting of hyperphosphorylated
Tau protein) in the brain is obviously associated with the disease progression [1,6,9]. Sev-
eral other pathogenic mechanisms underlie AD manifestation, including neurovascular
dysfunction, cell-cycle abnormalities, inflammatory processes, oxidative stress, and lysoso-
mal and mitochondrial dysfunction [3,6]. A new view of AD has emerged based on the
finding that the AD brain is in a state of insulin resistance [2,10]. The primary function of
insulin is to allow glucose to be processed as a source of energy in the target tissues and
organs. In the brain, glucose is not only the major substrate but also an essential signaling
molecule that needs to be continuously and permanently supplied to the central nervous
system. This supply is ensured by a specific family of membrane proteins known as glucose
transporters (GLUTs), namely GLUT1, GLUT2, GLUT3, GLUT4, and GLUT8 [11,12]. The
highest impact on glucose uptake is shown by insulin-independent GLUT1 and GLUT3,
although insulin-dependent GLUT4 is also important, having a key role in vascular dis-
eases, including DM-related cerebral small vessel diseases [11,12]. Furthermore, a link has
been established between insulin resistance, cognitive disorders, and the reduced activity
of GLUT4 transporters [13,14]. In several studies, AD has been suggested to be a metabolic
disease (insulinopathy), namely DM type-3 [2,15,16]. The current findings strongly indicate
that brain insulin resistance leading to long-lasting hyperglycemia causes neural damage
and thus increases the risk of developing MCI and AD. Pathological molecular mechanisms
leading to AD are complex and difficult to assess in a clinical setting. However, they are
often perceived as characteristic structural brain changes traceable throughout the onset
and progression of AD by various neuroimaging methods.

2. Neuroimaging in the Cognitive Impairment

The key role of neuroimaging methods is to identify specific structural hallmarks of
neurological disease and to confirm/exclude the mimicking of or the co-existing forms of
other neurological disorders (e.g., stroke, brain tumors) that might subsequently influence
treatment efficacy. According to Braak staging [17], the sequential involvement of cortical
structures is standardly imaged in AD patients in the following pattern: early involvement
of the entorhinal cortex, followed by the limbic system and hippocampus, spreading to
the cortex (precuneus in particular) with temporal lobes [5]. However, up to 25% of AD
cases can show an atypical clinical presentation, supporting the use of additional advanced
diagnostic strategies. [18]. In particular, the distinction of AD from other forms of dementia
(e.g., vascular/multi-infarct dementia, frontotemporal dementia, and Lewy body dementia)
is clinically challenging [5,19]. Therefore, an exact AD determination is commonly built on
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the completion of medical examinations, including neuroimaging performed by standard
radiological neuroimaging methods such as computed tomography (CT) and magnetic
resonance imaging (MRI). However, in order to identify specific symptoms and to rule out
other possible pathologies, neuroimaging methods of nuclear medicine are also recom-
mended: mainly positron emission tomography (PET) and, to a lesser extent, single-photon
emission computed tomography (SPECT) [5]. Overall, compared with nuclear medicine,
radiological methods are usually routinely available, can be performed more cheaply, and
do not burden the patient with the radiation dose (here we do not consider the ionizing
radiation in the form of X-rays used in CT scanners) originating from the radiologically
marked pharmaceuticals that are directly injected into the patient.

2.1. Radiological Neuroimaging

As mentioned above, the characteristic AD pattern involves cortical atrophy, which
is usually suitably detected by CT; however, MRI is more sensitive to volumetric changes
and can be used to exclude other causes of dementia. Furthermore, because of its nonin-
vasiveness, MRI is concluded to be the most promising neuroimaging modality [20]. The
MR phenomenon, as a physical principle, has enabled the development of several MR
modalities that are suitable for neuro-assessment and that can be divided into technical sub-
types associated with morphology (MRI, MR-volumetry), function (functional MRI (fMRI)),
structure (perfusion: arterial spin labeling (ASL), dynamic susceptibility contrast (DSC)
MRI, and dynamic contrast-enhanced (DCE) MRI; diffusion: diffusion weighted imaging
(DWI) and diffusion tensor imaging (DTI)), and metabolism (MR spectroscopy (MRS)).

2.1.1. CT Neuroimaging

CT takes advantage of X-ray ionizing radiation that passes through variable-dense
tissue, is absorbed, and is finally detected by sophisticated computer equipment producing
a series of cross-sectional scans of the examined tissue. With regard to excluding the
presence of brain tumors, subdural hematoma, or stroke and detecting cerebral atrophy,
including the hippocampus region, enlarged ventricles, and cortical sulci, CT is helpful for
AD diagnostics [3]. CT has been shown to be capable of revealing an early stage of AD by
finding white matter changes that reflect vascular damage in AD [21]. However, structural
changes are usually detectable by visual inspection only in the advanced stages of the
disease. The most common CT neuroimaging findings associated with AD is widespread
cortical atrophy with a thinning of medial temporal lobe structures; however, this AD
determination is challenging because of the overlap with normal aging or another form of
dementia [3,22].

2.1.2. MR Neuroimaging

MR uses a noninvasive tool comprising a strong magnetic field and radio-frequency
pulses that produce detailed soft tissue scans after computer processing. An MRI exam-
ination of patients with suspected dementia is recommended as a standard in order to
obtain routine MRI brain sequences, including (1) T1-weighted MRI (characterized by
short echo and repetition times) for the detection of microstructural changes in AD as-
sociated with regional Tau burden and local tissue atrophy, (2) DWI to reveal ischemic
and hypercellular lesions, (3) susceptibility-weighted MRI (SWI) for hemorrhage detection,
and (4) T2-weighted (characterized by long echo and repetition times) MRI, especially the
fluid-attenuated inversion-recovery (FLAIR) to identify edema, encephalomalacia, and
white matter changes [5]. Structural MRI also reveals white matter hyperintensities (with
the majority in the frontal lobe), representing demyelination and axonal loss [23,24], and
also enables the prediction of mild-to-severe AD, except for the correlation of these hy-
perintensities with neuropsychological and psychiatric deficits [24]. Furthermore, white
matter hyperintensities are frequently considered to be more a sign of vascular dementia,
supporting differential diagnosis [23]. Finally, additional MR techniques have been devel-
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oped to provide useful information about molecular, metabolic, dynamic, or functional
changes in AD.

MR-Volumetry

MR-volumetry is a suitable method for assessing neurodegenerative deficits because
of the wide availability of the relevant equipment, its high evaluation reliability, and the
current link between neuronal loss and measurable volume atrophy [19]. An MRI outcome
in typical AD is cortical atrophy caused by neuronal loss (Figure 1), usually detectable in
the medial temporal (affecting hippocampus, entorhinal, and perirhinal cortex) and parietal
lobe (especially the precuneus area), spreading to limbic gray matter structures (including
the amygdala, olfactory bulb tract, cingulate gyrus, and thalamus), and finally to the frontal
cortical regions [3,5,23].
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Figure 1. Example of MR neuroimaging (T1-weighted MRI at 3 Tesla MR-scanner) of a control subject
(70-year-old female), of an MCI patient proceeding to AD in two years (72-year-old male), and of an
AD patient (75-year-old female) in axial, sagittal, and coronal sections. The differences are visually
subtle, but the increased atrophy in the medial temporal lobe and the enlarged ventricles are apparent
in MRI.

The progression of MCI to AD is also reported to be accompanied by greater atrophy
in the temporal (especially in the hippocampus) and parietal lobes [23]. However, hip-
pocampal and entorhinal cortex atrophy is also present in other types of dementia, such as
frontotemporal and vascular dementia [3]. In a recent study, cortical thickness alone has
been reported to allow AD and healthy subjects to be distinguished with an accuracy of
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90%, a sensitivity of 96%, and a specificity of 76% [25]. However, brain atrophy is not a
specific sign of AD. Nevertheless, several studies have revealed substantial differences in
the cerebral atrophy rate in the healthy-aging brain (0.2% per year at the age of 30–50 years;
0.3–0.5% per year at the age of 70–80 years) and in the brain affected by neurodegeneration
(2–3% per year) [19]. As further shown by its accelerated volume loss, the hippocampus
exhibits a more extensive neuronal loss (~4.5% per year in AD vs. ~1.5% per year in healthy-
aging people) among cerebral volumes [26]. Hippocampal atrophy has been reported to
differentiate AD patients from normal older adults with 80–90% accuracy [3]. Therefore,
hippocampal volume is considered an appropriate marker of AD progression and even
seems suitable for monitoring the effectiveness of treatment [25]. Moreover, a tendency
has been shown for increased atrophy in the limbic and temporal lobe in AD (Figure 2),
whereas normal aging instead affects frontal and parietal gray matter [19]. Even in MCI
patients, the atrophy of the medial temporal lobe has been confirmed to correlate with
memory decline [25]. In the study of Qian et al. [27], the observed cognitive worsening
in MCI patients has been linked to hippocampal atrophy; however, the volume change
in the thalamus has been related to non-memory deficits, such as language, executive,
and visual-spatial abilities. Thalamic volume atrophy has been observed as an early sign
of both MCI and AD, probably preceding the damage to other extra-hippocampal brain
regions, such as the amygdala [27]. Furthermore, MR-volumetry might help differentiate
AD from dementia with Lewy body and Parkinson’s disease since AD patients manifest
more remarkable hippocampal atrophy [23].
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Figure 2. Example of MRI (I.; T1-weighted MRI at 3 Tesla MR-scanner) and MR-volumetric (II.;
MR-volumetry performed on Freesurfer software) neuroimaging of a control subject (40-year-old
female) and AD patient (42-year-old female) in axial, coronal, and sagittal sections. In AD, the
apparent atrophy is shown across the white matter (III. 3D model of the whole brain) as well as in
several brain structures (IV. 3D model of selected brain areas; atrophy of the hippocampus/yellow,
atrophy of the thalamus/green, enlarged lateral ventricles/purple).
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fMRI

fMRI shows promising potential for detecting alterations in brain function; it benefits
from the noninvasiveness of the technique, as it does not require an exogenous contrast
agent or radiation exposure [28,29]. It is usually performed by the BOLD (bold oxygen
level-dependent) MR method, which evaluates blood flow and volume based on the hemo-
dynamic system that delivers oxygen to active neurons at a greater rate than to inactive
neurons. This leads to differences in the ratio of deoxy/oxyhemoglobin, causing a mea-
surable change in magnetic susceptibility [30]. A typical fMRI examination compares MR
signals measured during a control situation (e.g., baseline or resting condition) and further
in blocks of stimuli (e.g., movement, memorizing, optical stimulation) [16,30]. fMRI studies
focusing on episodic memory in AD have demonstrated decreased activation in the hip-
pocampal, parahippocampal, and medial temporal structures during memorizing [23,28].
Although the earliest and most typical clinical symptom of AD is the retention of new
episodic memories, fMRI has revealed that many patients with AD also exhibit visuospatial
deficits [29]. Moreover, a recent trial examining resting-state fMRI changes in AD has
detected worse cognitive improvements in the right gyrus rectus, right precentral gyrus,
and left superior temporal gyrus [31]. Research on early and late MCI and task-based fMRI
has provided information about the most commonly affected dysfunctions in sensorimotor
networks that accompany the worsening of the disease and might be potential biomarkers
for the MCI to AD progression [25]. Whereas fMRI has proven disturbances in working
memory, visuospatial ability, attention, semantic knowledge, and motor performance in AD,
in MCI have been found more dominant changes in attention and working memory [23].

Perfusion MRI (ASL, DSC, and DCE)

Perfusion MR methods yield pharmacokinetic parameters related to tissue perfusion,
microvascular vessel wall permeability, and extracellular volume fraction, but neither
involves exposure to radioactivity [32,33]. The non-invasive approach in terms of the appli-
cation of contrast agents is questionable because only ASL employs magnetically labeled
arterial blood water molecules as a diffusible flow tracer. Both other methods, DSC and
DCE, require the intravenous application of a contrast agent, usually a gadolinium-based
contrast agent (Gd-CA). Whereas DSC measures the susceptibility effects of Gd-CA, DCE
emphasizes rather the relaxivity effects of Gd-CA on the signal [34]. Anyway, the principle
of perfusion MR involves the subtraction of MRI series acquired before and after the perfu-
sion of an endogenous (ASL) or exogenous (DSC, DCE) inherent tracer [33,34]. Differences
in blood vessel properties, reduced blood pressure, or increased cerebrovascular blood can
be visualized as variable transit times for tracer delivery, resulting in artificial changes in
signal intensity [23]. The most commonly used parameter obtained by perfusion MR is
cerebral blood flow (CBF; quantified in milliliters of blood per 100 g of tissue per minute),
referring to the rate of arterial blood delivery to the capillary bed in brain tissue [32,33]. In
particular, AD patients at the same age as controls show a 40% global decrease in CBF [35].
The most prominent decrement in CBF is usually detected in the precuneus, posterior
cingulate, and superior parietal cortex, whereas these changes are observed before the
tissue atrophy is confirmed [32,33]. Compared with healthy people, typical hypoperfusion
for AD patients is found in the posterior cingulate, precuneus, inferior parietal, lateral pre-
frontal, and temporal cortex, including the parahippocampal gyrus and hippocampus [32].
Similar to AD, hypoperfusion occurs in the occipital, temporal, and parietal lobes in MCI
patients. CBF is higher in MCI than in AD, especially in the frontal, orbitofrontal, and
hippocampal brain areas, including the thalamus, hippocampus, and amygdala [36]. In
addition to the possibility of determining the progression of MCI to AD based on hypop-
erfusion, some specific patterns between AD and several forms of dementia have been
confirmed [33,37]. Compared with AD, frontotemporal dementia demonstrates CBF reduc-
tion characteristically in the frontal and insula, whereas, in AD, hypoperfusion is observed
in posterior regions, including the precuneus and lateral parietal cortex [33]. Lewy body
dementia is associated with a lower degree of hypoperfusion in the temporal areas than
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AD [37]. Similarly, ischemic vascular dementia causes a more significant increase in CBF
than AD, with the most evident differences occurring in the regions with subcortical white
matter lesions [38].

Diffusion MRI (DWI and DTI)

Diffusion MRI methods are appropriate to estimate structural neurological integrity
defects caused by, for example, neurodegeneration, acute ischemia, tumors, and other
lesions, edemas, infections, and protein (Aβ and Tau) plaques [39–41]. The method-
ological principle is based on the measurements of the diffusion of water molecules
(random Brownian motion) in the extracellular fluid space. However, water diffusion
in the brain is anisotropic because of the presence of axon membranes that limit molec-
ular movement perpendicular to the fibers [19,41,42]. Therefore, the appropriate DWI
sequence (with a suitable diffusion-encoding gradient usually expressed by b-values 0
and 1000 s/mm2 [43]) provides contrast scans based on the measurement of the signal
cancellation attributable to diffusion in a given direction [42]. Thus, areas with restricted
diffusion motion show less signal loss and become bright in DWI [40,43]. The momen-
tary value of the water molecule diffusion is called the apparent diffusion coefficient
(ADC), usually evaluated as two-dimensional ADC maps (Figure 3). In principle, the
more restricted the diffusion in the tissue, the smaller the ADC values visualized as
hypointensities on the ADC maps [42,43]. The essence of DTI, another related diffu-
sion MRI method, is the graphical representation of the directional diffusion of water
molecules along fiber tracts (quantitatively expressed as an FA-fractional anisotropy
value varying between 0-maximal isotropic and 1-maximal anisotropic diffusion); pro-
vides micro-architectural detail of neuronal connectivity and integrity [41]. FA values
can be presented as two-dimensional maps (Figure 3) showing areas with a high degree
of anisotropy (high FA value) as bright regions and with dark regions representing low
anisotropic diffusion [43]. Studies of the white matter connectivity in patients with
various cognitive declines have shown worse global network density, reduced nodal
strength, and lower white matter fiber tract integrity associated with poorer memory
performance [25,41]. These reflect the changes in synaptoplasticity, which is probably
disturbed simultaneously with the progression of the disease. Two hypotheses have been
proposed to explain these white matter alterations in AD: (1) Wallerian degeneration up-
setting white matter microstructure or (2) diffuse demyelination of the affected tracts [41].
Diffusivity and FA alterations have also been linked to memory deficits and executive
dysfunction [23]. Reduced FA and higher tissue diffusivity in AD compared with con-
trols have been reported in the frontal and temporal lobe, posterior cingulate, corpus
callosum, superior longitudinal, and uncinate fasciculi [41]. However, a discriminative
pattern for AD has suggested lower FA in the parahippocampal cingulum and crus
and body of the fornix [44]. Interestingly, higher diffusivity occurs in the parietal and
temporal lobes of MCI and AD patients; however, changes in the frontal and occipital
regions have been found in AD [23]. Recently, functional brain connectivity, especially in
the fronto-limbic circuit, has been suggested to predict the presence of neuropsychiatric
symptoms, including AD progression [23,25]. Some significant changes in diffusion met-
rics are thought to be associated with the presence of the APOE ε4 allele [41]. Diffusivity
alteration might also distinguish AD from other dementias. Lower FA has certainly
been found in the frontal areas of patients with frontotemporal dementia, whereas this
has not been observed in patients with AD. Nevertheless, higher diffusivity has been
detected in parietal and temporal regions in patients with AD compared with those
having frontotemporal dementia [23].
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Figure 3. Example of MRI (T1-weighted MRI at 3 Tesla MR-scanner), DWI, and DTI (performed
on DSI studio software incorporating MATLAB postscripts) neuroimaging of a control subject (50-
year-old male) and AD patient (56-year-old female). AD exhibits more restricted diffusion in the
tissue, a worse global network density, and lost white matter fiber tracts. Abbreviations: ADC,
apparent diffusion coefficient; DTI, diffusion tensor imaging; DWI, diffusion weighted imaging; FA,
fractional anisotropy.

MRS

MRS is a noninvasive technique involving the MR phenomenon for the in vivo evalu-
ation of concentrations of known biogenic compounds or metabolites from well-defined
brain regions without the need for biopsy [20,45,46]. It shares the distinct advantages of
the majority of MR methods: it is clinically available, relatively inexpensive, and has no
risk of radiation; additionally, MRS has the potential to detect early metabolic changes in
brain tissue, whereas structural MRI might not reveal abnormalities. Signals from indi-
vidual MR-detectable compounds are visualized as spectral peaks resonating at known
frequencies shown in parts per million (ppm). Although MRS can be performed based
on signals from various nuclei, such as phosphorus-31P, carbon-13C, and fluorine-19F, the
most prevalently examined is proton-1H because of its natural abundance, higher signal
and spatial resolution, and no necessity for additional detection devices [20,47]. In the
human brain, 1H MRS can detect approximately 25 compounds, among which are those
metabolites usually associated with AD [20,45,46]: tCr (creatine-containing compounds),
tNAA (N-acetyl-aspartate/aspartyl-glutamate), tCho (choline-containing compounds),
mIns (myo-Inositol), Glx (glutamate and glutamine), GABA (γ-aminobutyric acid), and
GSH (glutathione).

tCr (duplet at 3.0 ppm and 3.9 ppm; concentration ~6 mmol/L in the brain [20])

This peak (Figure 4) represents the signal from creatine and phosphocreatine, indica-
tors of the cellular energetic balance, when considering tCr as an “energetic marker” [20,48].
Since its concentration has been presented as relatively stable across the brain during
healthy aging, it is widely used as an internal reference for the relative quantification
of other metabolites [46,49]. However, inconsistencies are reported in the tCr levels in
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several neurological diseases, including dementia [47,48,50]. Nevertheless, the consensus
of the majority of authors (except some that are more critical [47,48,50,51]) is that the Cr
level remains unchanged across the brain [46,52–56]. Even though the method for relative
quantification of metabolite concentration has led to a wide discussion of results, other
absolute quantification strategies are technically complicated (e.g., they are affected by
the radiofrequency properties of the magnetic coil, by calibration procedures, by spectral
fitting methods, by cerebrospinal fluid content correction, by macromolecule suppression,
and by spectral editing), all of which might distort the resulting absolute values [46,49].
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Figure 4. Example of 1H MRS neuroimaging (T1-weighted MRI at 3 Tesla MR-scanner) obtained by
the multivoxel spectroscopy approach with the presented spectra (one selected voxel indicated with
the red square and arrow) showing the main metabolite peaks: total creatine (tCr), total choline (tCho),
total N-acetyl-aspartate (tNAA), and myo-Inositol (mIns). The 1H MRS spectra for a control subject
(50-year-old female) and AD patient (55-year-old female) are depicted with the typical metabolic
peak changes being indicated by black arrows (↓: decreased, ↑: increased). Metabolic maps of the
brain tissue are also shown (tNAA, mIns, and tCho maps).

tNAA (singlet at 2.0 ppm; concentration ~15 mmol/L in the brain [20])

Since the signal of tNAA (Figure 4) is attributed to N-acetyl-aspartate and N-acetyl-
aspartyl-glutamate (maximally 10% of tNAA), which are predominantly localized in neu-
rons (with a lower occurrence in oligodendrocytes), tNAA is considered as a “neuronal
marker”, indicating neuronal viability and density [20,48,54]. Nevertheless, the neuro-
chemical functions of tNAA, especially under pathological conditions, have not yet been
clarified; although, it is thought to be involved in the energy metabolism of neuronal mito-
chondria, in the storage of acetyl coenzyme-A, in the maintenance of neuro-glial signaling
pathways and neurotransmission (reservoir for glutamate), and in myelination processes
in the brain [20,48]. tNAA can be used as an indicator of neuronal loss/dysfunction, as
its levels seem to change in many neurologic and psychiatric disorders [46–48]. The usual
pattern seen in AD patients is represented by decreased tNAA levels in the parietal and tem-
poral cortex, posterior cingulate, and hippocampus [48,54]. In particular, the hippocampal
tNAA/tCr value has been reported to differentiate AD patients from controls [57,58]. More-
over, the declining rate of tNAA is thought to predict cognitive dysfunction [23]. Similarly,
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a decrease of tNAA/Cr in the medial temporal lobe, primary motor, and sensory cortex has
been closely correlated with the Mini-Mental State Examination score [54]. Different tNAA
values have been reported in MCI versus AD, although the levels are not always distin-
guishable from controls, reflecting the different degrees of cognitive deficit [58]. Overall, in
AD, compared with MCI, a lower tNAA (or its ratio) has been detected in the hippocampus,
temporal, occipital, parietal, and frontoparietal lobes [47,59–61]. A reduction in tNAA
has even been suggested to predict MCI to AD conversion, reflecting a lower baseline of
tNAA in the parietal cortex and further reductions in subsequent measurements [53,62].
The tNAA/tCr value might even be a determinative pattern of AD, considering its higher
values in the posterior cingulate gyrus in vascular dementia and Lewy body dementia [47].
A decrease in tNAA/tCr levels has been confirmed in the frontal lobe of frontotemporal
dementia and the posterior cingulate gyrus of AD patients [63].

tCho (singlet at 3.2 ppm; concentration ~2 mmol/L in the brain [20])

Although the final tCho peak (Figure 4) includes a small amount of free choline and
acetylcholine, the main contributors are phosphocholine and glycerophosphocholine, the pre-
cursor and breakdown products of membrane phosphatidylcholine [20,48]. Therefore, the
clinical significance of tCho has been entrenched as a “marker of membrane turnover”, re-
flecting the synthesis or degradation of cell membranes [20]. The reports concerning tCho
in AD are controversial, showing higher, lower, and unchanged levels, possibly because of a
genetic predisposition to membrane turnover (i.e., the presence of the APOE ε4 allele) [47,64].
Overall, an increased value of tCho or tCho/tNAA is more often reported, especially in the
posterior cingulate of AD patients [48,51]. One suggestion for the increasing tCho is that
it results from the insufficient acetylcholine production in AD and thus the catabolism
of phosphatidylcholine membranes to provide free choline. However, characteristically
increased tCho/Cr in the posterior cingulate has been revealed in Lewy body dementia and
frontotemporal dementia, compared with controls [54]. Similarly, higher tCho levels have
been shown in the frontal and parietal lobes (especially in the white matter) in vascular
dementia. In contrast, AD subjects have higher tCho concentrations in the hippocampus
and posterior cingulate gyrus [48].

mIns (multiples at 3.3, 3.5, and 4.0 ppm; concentration ~7 mmol/L in the brain [20])

The signal of this peak (Figure 4) is composed of free myo-Inositol and myo-Inositol-
phosphate and has been designated as a “glial marker” because of their high abundance
in glial cells (especially in astrocytes) rather than in neurons [20,48,54]. Several functions
are attributed to mIns, such as detoxification, cellular ion regulation, the synthesis of
inositol-containing membrane phospholipids, and protein phosphorylation [48,54]. Fur-
thermore, mIns has been established as a crucial growth-promoting factor, a co-factor of
several enzymes, a regulator of glucose and osmotic homeostasis, and a messenger in signal
transduction [20,65]. Based on a meta-analysis, the usual observation in AD patients is
an elevated mIns in the posterior cingulate but not in the hippocampus [48,54]. Increased
mIns might reflect gliosis, which is possibly an early AD manifestation that is more pro-
nounced than neural loss or dysfunction (i.e., tNAA decrease). Since both metabolites,
namely mIns and tNAA, indicate the most typical changes occurring in AD, tNAA/mIns is
understandably considered the best biomarker for AD assessment [55]. MCI patients also
exhibit decreased tNAA/mIns in the posterior cingulate gyrus and increased mIns/tCr
in the hippocampus [51]. Compared with MCI patients, higher mIns concentrations have
been found in AD [23]. Similarly, increased mIns/tCr values have been detected in AD
compared with vascular dementia or Lewy body dementia but not frontotemporal de-
mentia [47,54]. A correlation has furthermore been observed between tNAA/mIns and
Mini-Mental State Examination score in patients with AD, but no correlation has been seen
with vascular dementia subjects [66]. In contrast, AD patients have higher mIns levels in
the hippocampus and posterior gyrus than vascular dementia patients, whose increased
mIns have been more pronounced in the frontal and parietal cortex [48].

Glx (multiples at 2.1, 2.4, and 3.7 ppm; concentration ~10 mmol/L in the brain [20])
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This peak (Figure 5) consists of hardly distinguishable signals of glutamate and glu-
tamine, which are closely associated with the communication network between neurons,
astrocytes, oligodendrocytes, and endothelial and immune cells (i.e., synapse formation,
dendrite pruning, cell migration, and differentiation) [20,48]. Even though glutamate can-
not cross the blood-brain barrier (BBB), it can be found in all brain cells with the highest
abundance in the synaptic vesicles of nerve terminals, from where it can be released into the
synaptic cleft [20,67]. Since approximately 85% of cortical neurons are glutamatergic [20,67],
glutamate is considered to be the major excitatory neurotransmitter in regulating circadian
rhythms and sensory-motoric coordination and controlling emotional, cognitional, and
learning functions [20,68]. However, the disturbance in glutamate homeostasis leads to
neural hyperexcitability, so-called glutamate excitotoxicity, which evokes a whole range
of pathological processes such as the dysfunction of mitochondria and endoplasmic retic-
ulum, an increase in free radicals, microglial activation, and subsequent reactive gliosis
ultimately leading to neurodegeneration [20,67–69]. Therefore, Glx has been pronounced
as a “marker of neuro-excitotoxicity” [20]. The most reported finding in the context of
the Glx peak in AD patients is its reduced concentration compared with that in normal
brain tissue, especially in the hippocampus, cingulate gyrus, and parieto-occipital white
matter [54,70,71]. A lower Glx value has been demonstrated not only in patients with AD
but also in healthily aging people (especially in the cingulate gyrus and hippocampus [71]),
and in MCI patients [72,73]. Therefore, the detected Glx decrement most likely reflects a
decline in metabolic activity in the elderly, leading to cognitive impairment, and might
further indicate AD progression. This is further suggested by the finding that decreased
Glx/tCr in the hippocampus and cingulate gyrus is more pronounced in AD than in MCI,
and both have lower Glx/tCr than in the controls [71]. The same metabolic ratio further
seemed to distinguish AD both from vascular dementia with its higher Glx levels and from
dementia with Lewy body, which shows a lower extent of affected brain areas [74,75].
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Figure 5. Example of 1H MRS neuroimaging (T1-weighted MRI at 3 Tesla MR-scanner) measured by
the multivoxel Mescher–Garwood-editing MRS approach with the represented spectra (one selected
voxel indicated with the red square and arrow) showing the main metabolite peaks: glutamate
with glutamine (Glx) and γ-aminobutyric acid (GABA). The 1H MRS spectra for a control subject
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(35-year-old female) and AD patient (42-year-old female) are depicted with the typical metabolic
peak changes being indicated by black arrows (↓: decreased, ↑: increased). Metabolic maps of the
brain tissue are also shown (GABA and Glx maps).

GABA (multiples at 1.9, 2.3, and 3.0 ppm; concentration ~2 mmol/L in the brain [20])

The primary function of this amino acid in the brain is its role as the major inhibitory
neurotransmitter [20,48]. GABA (Figure 5) can be referred to as a “marker of neuro-
plasticity” because it plays a unique role in forming action potentials during learning,
sensory-motoric processing, and reacting to situations and is therefore essential for psycho-
cognitive regulation [20]. Its homeostasis regulates psychological manifestation. On the one
hand, normal GABA levels inhibit neuronal hyper-excitability causing irritability, seizures,
movement disorders, anxiety, insomnia, fatigue, and various psychiatric disorders; on
the other hand, its excessive values cause sedation, sleepiness, and lethargy [76–78]. The
synthesis of GABA depends on its major precursor, glutamate, forming a vital neurotrans-
mitter cycle, namely the glutamate-glutamine-GABA cycle [20]. However, the detection
of GABA is complicated because of interactions between nuclei and signal overlapping,
which can be overcome by several methods enabling its quantification, chiefly by Mescher–
Garwood-editing of MRS [20,47,71,79]. Several studies have reported decreased GABA in
AD, focusing on the temporal, frontal, and parietal lobes [50,77], although no significant
GABA changes in AD compared with controls have been confirmed across the frontal lobe,
hippocampus, and cingulate gyrus [50,71]. Since the brain regions of AD subjects show
changes in Glx but not in GABA, ongoing asymmetric involvement of glutamatergic and
GABAergic neurons or different rates of excitation-inhibition might occur in AD-affected
cortical areas [80,81]. Furthermore, in assessing GABA changes in AD, we need to consider
the age of the patient, because decreased GABA has been confirmed in the cingulate cortex,
hippocampus, and frontal and parietal cortex of normal-aging controls [71,77,82]. GABA
levels in the frontal cortex have been reported to be correlated with verbal and nonverbal
memory and, in the anterior cingulate and occipital cortex, with visuoperceptual functions,
supporting the link between the GABAergic and cholinergic neuronal system, a link that is
disrupted in AD [77,83]. Since episodic memory decline in individuals is supposed to be a
risk factor for AD, GABA might represent an important predictive marker for AD pathol-
ogy [83]. However, as has previously been mentioned, the relationship between GABA and
cognitive perception does not only involve memory. Furthermore, GABA downregulation
is not part of a specific pattern for AD; it has also been revealed in the subcortical type of
vascular dementia, frontotemporal dementia, or Parkinson’s disease [84,85].

GSH (multiples at 2.9 and 4.5 ppm; concentration ~1.5 mmol/L in the brain [86])

The signal of this peak consists of the three amino acids: glutamate, cysteine, and
glycine. Although they exist in reduced and oxidized forms, 1H MRS applications measure
predominantly (with a ratio of 500:1) their reduced conformation [87,88]. Since GSH
detection is complicated because of its low abundance and spectral overlapping with other
peaks, several signal-editing MRS methods have been developed [86]. In particular, GSH
is entitled as a “marker of oxidative stress” because it is the most abundant intracellular
antioxidant and free radical scavenger that is responsible for redox balance maintenance
and detoxification in oxidative stress caused by reactive oxygen and nitrogen species, free
radicals, peroxides, and heavy metals [86,89,90]. Therefore, GLS is thought to be enrolled
in oxidative stress–invoked diseases such as neurodegenerative and psychiatric disorders,
including AD [90,91]. As expected, in AD, decreased GSH concentrations and increased
oxidative stress are correlated with higher Aβ deposition, suggesting GSH as a possible
AD biomarker [89]. Reduced GSH levels have been observed in the hippocampus and
frontal cortex of AD patients [48,91,92]. Additionally, the decline in GSH levels has been
reported to predict the accumulation of Aβ plaques in AD, especially in the temporal and
parietal lobes [89,93]. This agrees with several studies presenting GSH as an identifying
pattern for AD progression, with the trend of GSH reduction being associated with disease
severity [70,90,91]. Related to this is an observation that GSH downregulation accurately
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discriminates between healthy subjects, MCI, and AD patients [91,92]. These findings
suggest early compensatory responses occur in the brain against the increased oxidative
stress seen during the early onset of AD [86,89]. Although GSH is not an AD-specific
marker, GSH dysregulation has been confirmed in several neurologic disorders, including
epilepsy, multiple sclerosis, Parkinson’s disease, and psychiatric disorders [86].

2.2. Nuclear Medicine Neuroimaging

PET and SPECT are perfusion imaging methods, with the radiotracers injected into
the arteries being delivered to the brain through the BBB. Isotopes, during their decay,
emit gamma rays that are collected in detectors and produce 3D scans reflecting brain
functions such as regional blood flow, glucose metabolism, abnormal protein deposition,
and neurotransmitter deficits [4,6,94,95]. Neuroimaging with SPECT and PET provides
valuable information about the functional and molecular pathological processes within the
brain many years before the appearance of clinical symptoms of AD; therefore, the results
of these methods have been recommended to be considered as diagnostic criteria for the
early diagnosis and progression of AD [4,6,95]. Furthermore, both methods are used in
differential diagnostics based on their ability to define strokes, seizures, bone illnesses, and
infections [94]. Compared with SPECT, PET has advantages such as greater sensitivity
(higher detection efficiency of the radioactive emission) and higher spatial resolution
(3–4 mm/PET vs. 5–8 mm/SPECT) [18,94]. However, the complex cyclotron production
of PET radiotracers and the more sophisticated equipment required by PET makes the
cost of PET several times higher than that of SPECT [6,18,94,95]. Furthermore, most
positron-emitting radioisotopes in PET radiotracers have shorter half-lives (approximately
6 h/SPECT vs. 2 min/PET radiotracer) compared with the single-photon emitters used
for SPECT radiopharmaceuticals, making SPECT radiotracer easily distributable [94,95].
Despite the many advantages of SPECT, this method has been pushed into the background
by PET and has become a somewhat experimental method in AD diagnostics, whereas PET
has clinically expanded.

2.2.1. PET Neuroimaging

PET uses small amounts of radiopharmaceuticals labeled with positron-emitting
isotopes (mostly carbon-11C and fluorine-18F) to acquire images of functional metabolic
radiotracer distribution [6,94,95]. The emitted positron (after traveling at most a few
millimeters) collides with an electron from the tissue resulting in annihilation, and the
emission of two photons in opposite directions. PET scanners consist of multiple detectors
that are located around the patient and that detect the coincidence of this pair of photons.
This process makes it possible to infer the position of the emitting of the positrons and
to reconstruct tomographic images [18,94]. The most widely used radiopharmaceutical
in clinical practice is the glucose analog 18F-fluorodeoxyglucose (18F-FDG), which allows
the direct measurement of regional brain glucose metabolism, and the recently developed
radiotracer for Aβ and Tau imaging [3,4,18]. The main problem of protein radiotracers is
their off-target binding when they recognize either healthy, undamaged proteins or other
misfolded proteins forming beta sheets. However, there is an ongoing effort to improve
the selective binding of radiotracers to pathologically changed proteins [96]. Other PET
methods based on 18F-fluoro-thia-heptadecanoic acid or 11C-palmitate tracers are also being
tested to research cerebral lipid metabolism [97].

18F-FDG PET

The positron-emitting 18F substituting a hydroxyl group on the glucose molecule
is taken up by glucose transporters, phosphorylated, and accumulated in metabolically
active cells [5]. In general, glucose metabolism responsible for cerebral activity depends on
brain tissue perfusion, which might be affected before any degeneration occurs and thus
might enable early AD diagnosis and its differentiation from other types of dementia [6]. A
typical early-onset AD pattern on 18F-FGD topography is that of hypometabolism in the
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parietotemporal region, precuneus, and posterior cingulate cortex [3,18]. Hypometabolism
involves first the frontal cortex, then increases with the progression of the disease, and
usually expands to the sensorimotor cortex and occipital region, as generally corresponds
to the atrophic changes depicted on structural images [5,18]. A differentiating sign of MCI
to AD progression has been suggested to be hypometabolism in the posterior parietal
cortex, precuneus, and posterior cingulate [3,6]. In addition, regional hypometabolism
in 18F-FDG is considered to be a better predictor for MCI to AD progression than results
from MR-volumetry [3]. Moreover, typical patterns of some forms of dementia can be
distinguished based on 18F-FDG. For example, vascular dementia shows a well-defined
decrease in 18F-FDG metabolism in a specific vascular territory, usually in the subcortical
gray matter structures. In contrast, AD has more typical hypometabolism in the posterior
temporoparietal cortex [98]. Similarly, frontotemporal dementia, in which hypometabolism
involves the frontal and temporal lobes but spares the occipital lobe and precuneus, can be
differentiated from AD, in which both the latter regions are typically affected [5]. Lewy body
dementia is characterized by decreased 18F-FDG metabolism in the occipital lobe without
the involvement of the posterior cingulate gyrus, which is almost invariably hypometabolic
in AD [5,99].

PET with Aβ Radiotracer

Since Aβ accumulation is generally accepted as being the characteristic pattern of
AD, various radiotracers have been developed, such as the thioflavin-T analog called 11C-
labeled Pittsburg compound B (11C-PiB) and the fluorinated analogs called 18F-florbetaben,
18F-florbetapir, and 18F-flutemetamol, all of which enable the imaging and quantification of
Aβ depositions [3,18,95].

11C-PiB does not bind Lewy bodies or neurofibrillary tangles, thus enabling selective
quantification of cerebral amyloidosis [4,100]. Therefore, a typical AD pattern has been
established for 11C-PiB uptake, with the highest retention in the frontotemporal cortex
and cingulate regions having histologically confirmed larger amounts of Aβ plaques [3–5].
Currently, the majority (50–80%) of MCI subjects who are shown to be Aβ-positive by PET
have been found to progress to AD; however, the Aβ-negative PET results represent a low
risk of AD progression (0–10%) [6,18]. Unfortunately, the Aβ radiotracer for PET is not
without its limitation; a persisting problem is the high prevalence of false-positive cases
in older subjects (with a rate of 10% at the age of 60–70 years and 50% at the age of 80–90
years), a complication for establishing causality between the presence of Aβ deposits and
AD deterioration in elderly patients [101]. Nonetheless, PET is beneficial in diagnosing
AD as opposed to frontotemporal dementia with its lack of 11C-PiB uptake compared with
high radiotracer uptake in early- and late-onset AD [6].

18F-labeled amyloid radiotracers, 18F-florbetapir and 18F-florbetaben are both stilbene
derivatives, whereas another radiotracer, 18F-flutemetamol (Figure 6), is derived from
11C-PiB [4,94]. Overall, the 18F-labeled amyloid radiotracers show similar features to 11C-
PiB but have the great benefit of a longer half-life [4,95]. These radiotracers have been
widely used in AD assessment, showing increased radiotracer uptake in cortical areas,
including the frontal, temporal, occipital, parietal, cingulate, and precuneus regions, in
AD patients than in healthy individuals [102–104]. Like 11C-PiB, the 18F-florbetapir Aβ-
positivity in MCI patients is correlated with AD progression [105]. Whereas 18F-florbetapir
has been reported as a suitable radiotracer for distinguishing cognitively normal young
and elderly controls and individuals with AD, another radiotracer, 18F-florbetaben, has
been proposed as being appropriate for differentiating AD from frontotemporal, vascular,
and Lewy body dementia [106].
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Figure 6. Example of 18F-flutemetamol (Vizamyl) PET neuroimaging of a control subject (73-year-old
male) and AD patient (72-year-old male). Note the visualization of subtle cortical atrophy with
enlarged ventricles (T1-weighted MRI at 3 Tesla MR-scanner) and increased retention of the Vizamyl
radiotracer demonstrating the presence of Aβ deposition in the AD brain tissue, compared with that
of the control subject.

PET with Tau Radiotracer

Neurofibrillary tangles are the pathologic hallmark of neurodegenerative disorders
known as tauopathies, among which AD represents the most significant cause of mor-
bidity and mortality [4,5]. Nuclear medicine neuroimaging of neurofibrillary tangles is
technically challenging since six isoforms of abnormal Tau protein exist with different
ultrastructural conformations and multiple posttranslational modifications [107]. The radi-
olabeled radiotracer naphthol (18F-FDDNP) has been widely used in AD, although it has a
nonspecific binding affinity to Tau and to Aβ protein [6,108]. Moreover, several quinoline-
derived radiotracers have been developed (e.g., 18F-THK523, 18F-THK5105, 18F-THK5117,
18F-THK5317, 18F-AV1451) with a higher affinity for Tau than for Aβ [4,6,107]. In general,
higher Tau-radiotracer than that in healthy controls has been observed in the orbitofrontal,
lateral parietal, and temporal cortices, and in the posterior cingulate and hippocampus
of AD patients, correlating with their cognitive impairment [4,6]. Since the presence of
pathological Tau protein aggregates in the AD-affected brain is associated with disease
severity, the neuroimaging of neurofibrillary tangles should also reflect AD progression
and cognitive decline. Indeed, greater Tau radiotracer retention has been shown in AD with
early onset compared with late onset [109]. Furthermore, based on Tau uptake, imaging has
also made it possible to determine the severity of disease progression with the radiotracer
uptake for MCI patients lying between that for AD patients and normal controls [4,6]. In
addition, differences in Tau retention have been reported to be linked with the presence
of the APOE ε4 allele. The uptake of 18F-AV1451 radiotracer is lower in the parietal and
occipital cortex and higher in the entorhinal cortex of AD patients with a positive rather
than a negative presence of the APOE ε4 allele [110].
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2.2.2. SPECT Neuroimaging

SPECT, compared with PET, involves the use of other types of detectors because of
the different types of radioisotopes present in the administrated radiotracers. In principle,
SPECT radioisotopes decay straightforwardly giving one gamma ray, that passes through
the collimator and forms a pixel in the detector during reconstruction [111]. In SPECT,
applied gamma-emitting radioisotopes are typically iodine-123I, metastable technetium-
99mTc, xenon-133Xe, thallium-201Tl, and indium-111In [94]. The most extensively used radio-
tracers are 99mTc-ECD (technetium-99m-ethyl cysteinate diethylester) and 99mTc-HMPAO
(technetium-99m-hexamethyl propylene amine oxime) [6,18]. Neuroimaging based on these
blood flow radiotracers depends on cortical perfusion and thus can reveal hypometabolic
regions as a corresponding decrease in tissue perfusion [18,94]. Other promising SPECT
approaches have been developed for Aβ neuroimaging [6,94].

SPECT Perfusion

In particular, hypoperfusion in the posterior cingulate, posterior parietal cortex, and
precuneus has been documented during the early onset of AD, with a spreading tendency
into the posterior temporoparietal and frontal cortices providing the high discriminative
pattern for MCI to AD progression [6,18]. Anterior temporal and frontal hypoperfusion is a
typical deficiency in patients with frontotemporal dementia, as opposed to the posterior
temporoparietal SPECT pattern determining AD [18,98]. However, various posterior
cortical alterations have been reported in frontotemporal dementia and atypical AD frontal
involvement, making it challenging to discriminate between the two clinical entities [112].
Lewy body dementia also shows a similar SPECT finding to that for AD and is represented
by hypoperfusion in the posterior parietotemporal cortex. However, the typical extension
of Lewy body dementia to the occipital cortex, with the highest involvement in the primary
visual cortex is distinguishable. The visual cortex is not affected in AD, which is considered
to be the SPECT criterion for the differential diagnosis between Lewy body dementia
and AD [18].

SPECT with Aβ Radiotracer

An ongoing research undertaking is to develop SPECT agents for imaging Aβ

plaque [95,98]. Several gamma-emitting radioisotopes have been shown to be suitable
for Aβ plaque binding; however, the technical challenge is their poor ability to cross the
BBB [6,94]. 123I-based radiotracers such as 123I-ioflupane, 123I-IMPY, and 123I-ABC577 seem
to be promising [5,6,113,114], with the last-mentioned showing a high binding affinity for
Aβ in a similar context to that of PET Aβ radiotracers [114]. Furthermore, this radiotracer
determines AD patients based on its retention in the frontal cortex, temporal cortex, and
posterior cingulate compared with normal subjects [6,94]. Another SPECT radiotracer,
123I-ioflupane, exhibits decreased uptake in the putamen and spares the caudate head
in Lewy body dementia, in contrast to the situation in AD, in which it shows normal
striatal uptake [5].

2.3. Advantages, Disadvantages, and New trends in Neuroimaging of AD

Neuroimaging is a critical component in the secondary prevention, diagnosis, and
treatment of Alzheimer’s disease. Among known methods, CT and MRI are still consid-
ered to be the most powerful in neurological practice with respect to revealing detailed
morphological information about the brain tissue. Both structural radiological methods are
able to reveal typical AD widespread cortical atrophy and thinning of medial temporal lobe
structures. However, in favor of MRI are its non-invasiveness, higher sensitivity, and lack
of radiation risk (further critical advantages and disadvantages of neuroimaging methods
are listed in Table 1).
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Table 1. An overview of the most distinctive advantages and disadvantages of neuroimaging
methods applicable for AD assessment. Abbreviations: ASL, arterial spin labeling; CT, computed
tomography; DCE, dynamic contrast-enhanced magnetic resonance imaging (MRI); DSC, dynamic
susceptibility contrast-enhanced MRI; DTI, diffusion tensor imaging; DWI, diffusion weighted
imaging; EMA, European Medicines Agency; EU, European Union; fMRI, functional MRI; MRS, mag-
netic resonance spectroscopy; PET, positron emission tomography; SPECT, single-photon emission
computed tomography.

Methods Principal
Advantages

Principal
Disadvantages

CT short examination time;
less critical contraindication criteria

X-ray exposure;
contrast agents may worsen kidney function;
poorer definition of critical brain structures

(hippocampus, brain stem)

MR methods

no radiation exposure;
less expensive examination;

widespread availability;
wide range of examinations;

(standardly) no contrast agents

relatively poor pathological specificity;
contraindication criteria (presence of magnetic

non-compatible medical devices or foreign
bodies);

uncomfortable with noise and limited size of
MR-gantry

MRI high-resolution morphology insensitive to small amount of calcification and
bone fracture

MR-volumetry sensitive tissue volume changes several non-standardized softwares

fMRI disrupted brain functions challenging tasks for attention

MRS non-invasive detection of metabolic changes

robustness;
difficult absolute quantification;

non-unambiguous predictive or distinguishable
biomarkers

diffusion MRI
(DWI, DTI)

demyelinated axons;
damaged nerve tracks;

3D visualization of neural pathways

pitfall of mucinous or hemorrhagic lesions;
highly motion sensitive

perfusion MRI (ASL, DCE,
DSC)

acute inflammation;
tissue degradation;

! in the case of ASL no contrast agent

susceptibility artifacts;
! in the case of non-ASL methods (DCE, DSC)

contrast agent

PET and SPECT definitive diagnostics;
functional and molecular pathological processes

radiation exposure;
more expensive examination;

not routine equipment;
Tau tracer (Tauvid©) not registered by EMA and

thus not commercially available in EU

Other over-standard MR methods (Table 1) sharing benefits of MRI might be used
to uncover some typical AD patterns. These are: MR volumetry (evaluating exact cranial
atrophy), fMRI (revealing decreased activation of cognitive-affecting brain areas), MRS
(detecting metabolic alternations such as decreased tNAA connected with neuronal dys-
function, increased mIns reflecting reactive astrogliosis, elevated tCho caused by neuronal
membrane catabolism, altered Glx and GABA linked to disbalanced neuronal activity, and
decreased GSH due to ongoing oxidative stress), diffusion MRI (showing worsening in the
global network density as reduced FA and higher tissue diffusivity, lower/hypointense
ADC and DWI, and lower white matter fiber tract on DTI), and perfusion MR (proving
tissue hypoperfusion and reduced CBF).

Despite some disadvantages of nuclear medicine neuroimaging methods (Table 1),
PET and SPECT are increasingly being used for definitive AD assessment. Both radiotracer-
based perfusion methods are successfully used to assess the presence and/or quantitative
aspects of the molecular hallmarks of AD (Tau protein and Aβ) in vivo. The overall more
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popular PET enables the identification of defects in cerebral activity based on glucose
hypometabolism and the detection of amyloid plaques and neurofibrillary tangle depletion
by higher Aβ- or Tau-radiotracer uptake. SPECT, the less preferred method, can also
detect hypometabolic cortical regions due to radiotracer hypoperfusion or Aβ aggregation
neuroimaging based on Aβ-radiotracer uptake.

Each neuroimaging method contributes to understanding the pathophysiology of
AD manifestation and is therefore the preferred choice in clinical practice and preclinical
research. Finding a reliable predictor of neurophysiological worsening (i.e., clinical behav-
ioral observations or self-reported observations) has become critical in neuropsychiatry. A
promising tool seems to be the identification and classification of AD using multi-modality
neuroimaging data and an artificial intelligence approach [115–117]. Chen et al. [115]
provided an excellent overview of various types of machine learning and multimodal data
fusion, as well as conceptual and practical challenges and opportunities for future psy-
chiatric disease research. The deep learning method has been sufficiently applied directly
in AD using (1) resting-state electroencephalography [116], (2) a convolutional network
of multi-modality brain imaging (i.e., MRI, 18F-FDG PET, 18F-florbetapir PET) [117], or
by using (3) automated MRI-based software tools to assess entorhinal cortex thickness,
hippocampal volume, and supramarginal gyrus thickness [118], all of which have high sen-
sitivity and specificity for differentiating MCI from AD. Based on the multi-modal artificial
machine learning algorithm, several non-unambiguous (i.e., non-specific, non-predictive,
or non-distinguishable) neurological examinations (Table 2) have the potential to become
meaningful.

Table 2. The overview of non-common neurological examinations applicable for AD assessment. Ab-
breviations: ECoG, electrocorticography; EEG, electroencephalography; MEG, magnetoencephalogra-
phy; SWI, susceptibility-weighted magnetic resonance imaging; TSC, transcranial sonography.

Methods Utility Principal
Advantages

Principal
Disadvantages

EEG
[115,116]

neuronal electrical activity is
measured via electrodes positioned

on the scalp

low cost examination;
easy and non-invasive performance multiple signal distortions

ECoG
[115]

intracranial EEG
that measures signals directly from

the cortical surface

excellent spatial and spectral
resolution

minimizing inter-electrode spacing

invasive performance;
necessity of surgery

MEG
[115,116]

EEG measured as magnetic fields
produced by brain and evaluating

by superconducting quantum
interference devices

non-invasiveness;
high temporal and spatial resolution

technically chalenging
(necessity of specialized

shielding to eliminate the
magnetic interference)

TSC
[119]

evaluating brain tissue echogenicity
through an intact skull bone using

ultrasound technique

non-invasiveness;
low cost examination

insufficient temporal acoustic
bone windows; diagnostic

precision depends on
neurosonographers skills

T2-relaxometry
[20,120]

T2 relaxation time (one of MRI
measurable parameters) is sensitive
to microstructural changes (i.e., Aβ,
Tau, and iron deposition; changes in

water homeostasis)

non-invasiveness;
early changes detection also in deep

brain structures

sensitivity to magnetic
susceptibilities, magnetic field

variation, and
inhomogeneities

SWI
[121,122]

MRI method suitable for the
detection of microhemorrhages that

may indicate cerebral
amyloid angiopathy

non-invasiveness; easy (routine) and
fast examination of the whole brain

difficult to differentiate small
venous structures from small
hemorrhages and thrombosis
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3. AD as Insulinopathy

Tau protein accumulation and the Aβ plaque hypotheses are the most frequently
quoted to address the pathology behind AD. However, recently an exciting hypothesis
suggesting that regional (brain) insulin resistance triggers the onset and progression of AD
has been proposed [14]. Insulin is an essential anabolic hormone that maintains periph-
eral glucose homeostasis [11,14]. Although the brain has, for decades, been considered an
insulin-insensitive organ, insulin is now clearly seen to play an essential role in a plethora of
brain physiological processes (e.g., regulation of glucose homeostasis; energy metabolism;
neuronal differentiation, maturation, and proliferation) and in the regulation of psychic pro-
cesses (e.g., anxiety, depression) and cognitive functions (e.g., execution, attention, learning,
memory) [11,16,76]. Insulin is known to be a prominent activator of the protein kinase B
(Akt/PKB) signaling node (Figure 7), which is a principal regulator of pro-proliferative,
pro-growth, and anti-apoptotic pathways essential for tissue regeneration, including the
remodeling of dendrites and synapses [14,123,124]. Insulin-dependent mitochondrial bio-
genesis is regulated by phosphatidylinositol-3-kinase (PI3K) – Akt/PKB signaling through
the inhibition of glycogen synthase kinase-3β (GSK-3β) [125]. Therefore, the inhibition of
GSK-3β increases mitochondrial dynamics, attenuates mitochondrial permeability, and
promotes mitochondria-dependent apoptosis [126]. Conversely, GSK-3β hyperactivity is
a causal factor in progressive neurodegenerative and psychiatric conditions. It has been
shown that overexpression of GSK-3β leads to cognitive impairment and AD [127–129].
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sensing insulin (INS) and neuritin (N; a member of the neurotrophic factor family, promotes neu-
ritogenesis, neuronal survival, and synaptic maturation). Abbreviations: Akt/PKB, Akt protein
kinase B; AMP, adenosine monophosphate; cAMP, cyclic adenosine monophosphate; GSK3, glycogen
synthase kinase-3 β; IRS-1/2, insulin receptor substrate 1 and 2; mTOR, mammalian target of ra-
pamycin; PDE3b, phosphodiesterase 3B; PDK1, phosphoinositide-dependent protein kinase 1; PI3K,
phosphoinositide 3-kinase; PIP2, phosphatidylinositol 4,5-bisphosphate; PIP3, phosphatidylinositol
(3,4,5)-trisphosphate; PKA, protein kinase A; PKC λ/ζ, protein kinase C λ/ζ.

Despite the importance of insulin, the brain was originally assumed to be largely
independent of insulin from the peripheral circulation [11]. However, the transport of
insulin from peripheral circulation into the brain is now known to be secured by a highly
regulated, saturable transport mechanism (receptor-mediated endocytosis or receptor-
mediated transcytosis) that occurs in the vascular endothelium and allows insulin to cross
the BBB [2,11,76]. Its derangement has been found in ailments such as obesity, starvation,
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hyperglycemia, DM, and AD [130,131]. Insulin is also centrally synthesized directly in
the brain, in subpopulations of cortical and hippocampal neurons and neural progenitor
cells [14,16,132]. The expression of insulin inversely correlates with AD progression ac-
cording to Braak’s scale [133]. Several studies utilizing 18F-FDG PET have also confirmed
that insulin resistance is related to lower glucose metabolism, which is further linked to
declining memory functions and even connected to AD [97]. Liu et al. [134] have demon-
strated that, in rat hippocampal neurons, neurotoxic Aβ-derived diffusible ligands induce
abnormal insulin receptor expression and insulin signaling, which consequently might
contribute to the central insulin resistance seen in AD [134,135]. Aβ itself can be degraded
by a variety of peptidases, including insulin degrading enzyme (IDE), which represents the
further relation between hyperinsulinemia, insulin resistance, and AD [14,136]. Recently,
Lauer et al. [137] demonstrated a link between Aβ-production and Aβ-degradation forming
a regulatory cycle in which APP intracellular domain (AICD) promotes Aβ-degradation via
IDE and IDE itself limits its own production by degrading AICD. When brain tissue passes
into a state of insulin resistance, hyperglycemia arises, a condition characteristic of DM
type-2 [2]. Moreover, several other pathophysiological conditions have been reported to be
associated with insulin resistance, such as oxidative stress, insulin signaling disorder, mito-
chondrial dysfunction, neuroinflammation, accumulation of glycosylation-end products
(i.e., glycated proteins or peptides), and metabolic syndrome [2,14,15]. The link between
AD and DM type-2 has been suggested by a simple correlation showing that a significant
proportion of AD patients suffer from DM type-2 or systemic insulin resistance [2,10,138].
Specifically, the onset of DM type-2 before the age of 60 doubles the risk of AD, and every 5
years of living with DM type-2 increases the risk of the development of AD by 24% [139].
DM type-2 has been further concluded to correlate with reduced brain perfusion and BBB
fitness, disrupting the transfer of substances between the periphery and the brain [140].
Similarly, an early BBB dysfunction has been shown before AD-related neurodegeneration
and cognitive impairment occurs [140–142]. BBB breakdown induces neurodegenerative
pathophysiological processes such as chronic inflammation, oxidative stress, deterioration
of mitochondrial homeostasis, and related damage to the energy metabolism of neurons,
sentencing them to gradual death [141,143]. Although neuronal loss can be compensated
to a large extent at the level of synaptoplasticity [20], excess loss over a critical limit can
manifest itself as the onset of clinical AD symptoms and their progression [140,143]. In
connection with the function of BBB and the etiopathology of AD, insulin has been found
to protect pericytes from the toxic effect of Aβ [143,144]. Pericytes are cell types that occur
in capillaries and are of fundamental importance in regulating various microvascular func-
tions such as angiogenesis, BBB fitness, capillary blood flow, and the transfer of immune
cells into the brain [145]. They also form part of the glial scar, isolating damaged parts
of the brain, and have stem-cell-like properties [146]. Only recently, pericytes have been
shown to play a crucial role in the pathogenesis of many neurological disorders, including
DM type-2 and AD [145,147]. Another high-risk factor for AD development is obesity,
which often precedes the onset of DM type-2 [138]. Obesity further contributes to vascular
damage and BBB breakdown [140,148]. Current evidence suggests that a single insulin
dose can reverse the increase in brain-soluble Aβ and in behavioral impairment induced
by a long-term high-fat diet [148,149]. Adiponectin, an adipokine produced primarily
by adipose tissue cells, but also in muscles, regulates fatty acid metabolism and glucose
levels and has recently been found in the brain [150]. Increased adiponectin expression has
been shown to correlate with a reduced risk of developing DM type-2 [151,152]. On the
other hand, long-term adiponectin deficiency leads to a loss of cell sensitivity to insulin,
a loss caused by the inactivation of adenosine monophosphate-activated protein kinase
(AMPK) [153]. AMPK is an essential component of insulin signaling; in rodent muscles, it
phosphorylates and activates the insulin receptor, suggesting a direct link between AMPK
and the insulin signaling pathway [154]. Although the phosphorylation of the insulin
receptor by AMPK in human neurons is disputed, this kinase is directly involved in the
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pathophysiological processes leading to the hyperphosphorylation and aggregation of
Tau protein [155].

3.1. Suggestive non-Neuronal Imaging in AD

If AD is an insulinopathy, neuroimaging might uncover only a part of the clinical
image. The study of patients suffering from DM, dyslipidemia, or insulin resistance
with early signs of MCI might reveal important biochemical and structural hallmarks in
organs strongly correlated with systemic insulinopathy, namely the pancreas and liver. The
appearance of these hallmarks might well precede the onset of AD and, thus, be crucial for
the development of AD preventive measures and treatment.

The liver is an integral part of the body’s metabolism. It has a prominent and di-
rect impact on the functional performance of the brain, primarily via the regulation of
pyruvate levels required for glucose production and the maintenance of brain energy
homeostasis [14,156]. The latter has been elegantly demonstrated by Serres et al. [157].
They showed that pyruvate recycling (observed through the labeling of brain metabo-
lites) mainly originates from peripheral (liver) metabolism [157]. Furthermore, the liver
modulates the concentration of glutamate, a prominent neuromodulator (responsible for
neuronal synaptoplasticity) and neurotransmitter [14,158]. The potential involvement of
peripheral (liver)/central glutamate homeostasis in the development of neurodegenerative
disorders has been recently reviewed by Oanolapo et al. [159]. It was also demonstrated
that the liver adipose tissue secretes several proinflammatory factors, such as interleukin
6 (IL-6) and tumor necrosis factor alpha (TNF-α), which play a role in inducing systemic
insulin resistance. In AD patients, IL-6 is implicated in the formation of APP. Both IL-6 and
APP contribute to neuroinflammation and neurodegeneration [14,160].

The pool of available data points toward the strong linkage between the development
and onset of AD and liver dysfunction and the consequent systemic metabolism patholo-
gies [161,162]. Nho et al. [163] have correlated aberrant liver function (represented by
the activities of serum-based liver enzymes alanine aminotransferase (ALT) and aspartate
aminotransferase (AST)) in 1,500 AD patients to more significant brain atrophy detected by
MRI, disrupted brain glucose metabolism measured by 18F-FDG PET, and increased Aβ

accumulation showed by 18F-florbetapir PET. Their study further suggests that the monitor-
ing of the liver status (especially via plasma AST/ALT ratio) is indicative of patients with a
higher risk of AD. Other studies have shown a strong association between insulin resistance
and hepatic steatosis (affecting up to 70% of patients with DM type-2), which biochemically
presents as altered ALT and AST values [164,165]. Therefore, the pathological accumulation
of lipids in hepatocytes (liver steatosis), the infiltration of inflammatory immune cells in
the liver parenchyma, and the secretion of pro-inflammatory cytokines resulting in liver
damage might be involved in the development of AD [161,162].

DM does not occur without substantial impairment of intrapancreatic insulin secretory
capacity [166]. Recent reports acknowledge that not only an impairment of pancreatic
functions but also pronounced morphological changes (tissue atrophy) are hallmarks of DM
type-1 and DM type-2. Pancreas atrophy has been postulated to occur in response to the
loss of the trophic effect of hyperglycemia or to be attributable to the chronic inflammation
associated with progressive beta cell destruction [167]. Further, increased levels of fatty
acids have been demonstrated to cause pancreatic beta cell de-differentiation, a mechanism
underlying the development and onset of DM type-2 [166,168]. Thus, the exact loss of the
pancreatic volume and the fat content in the pancreas should be quantified, not only in
strictly diabetic patients but prospectively also in prediabetic patients. In agreement with
the latter proposal, pancreatic islets of diabetic patients have been shown to accumulate
deposits of islet amyloid polypeptide that are structurally similar to Aβ precursor proteins
in the brain of AD subjects [169,170]. Janson et al. [169] showed that islet amyloid is
more frequent and extensive in AD patients than in non-AD controls, and that diffuse
and neuritic plaques are not more common in DM type-2 patients than in control subjects.
Moreover, they demonstrated that if diffuse and neuritic plaques are present in DM type-2
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patients, duration of DM type-2 correlates with their density [169]. Therefore, AD has
recently been speculated to predispose patients to DM type-2, which is in accordance with
the observation that diabetic patients suffer more frequently from AD when compared with
the non-diabetic population [169,171]. Additional multicentric (global) studies should be
conducted to provide clear conclusions.

3.1.1. Liver Imaging Linked with AD

For decades, the standard method for determining the fatty liver score was hepatic
needle biopsy, a method that suffers from the disadvantage of being invasive. Currently,
imaging techniques such as transabdominal ultrasound (US), CT, and a wide range of MR
methods have become more common for in vivo liver assessment [172]. Although US is
the first-line imaging test for liver assessment because of its cost-effectiveness, safety, and
availability, its specificity and sensitivity are highly variable. The measurement itself is
influenced by operator experience and confounded by the surrounding body fat in the case
of obese patients [173–175]. The greatest disadvantage of CT hepatic examination is its
ionizing radiation that limits regular screening of liver diseases [172,175]. MR has a clear
advantage over both US and CT based on its non-ionizing features, higher sensitivity of
the detection of liver fat, lower variability, and higher reproducibility [172,175,176]. The
common hepatic MRI examination consists of T1- and T2-weighted MRI for assessing hep-
atic lipid and/or iron content but can be extended by gadolinium-enhanced T1-weighted
MRI for grading more severe acute hepatitis and fibrosis and for delineating vascular ab-
normalities [177,178]. Another increasingly applied method is MR elastography (MRE), the
principle of which is based on an image-encoding response of the stimulated soft tissue pro-
duced by harmonic mechanical vibrations and the reconstruction of parameters denoting
viscoelastic (i.e., the degree of liver stiffness) tissue properties [174,175,179]. Hepatic MRE
enables an examination of the entire liver and is suitable as a screening method for liver
fibrosis [177,179,180]. The variety of MR modalities facilitates the evaluation of abnormal
liver fatty infiltration (e.g., T1-weighted fast spoiled gradient echo [178], MRI-estimated
proton density fat fraction [180], in-phase and opposed-phase imaging [174], and Dixon
sequences or 1H MRS [181]) based on distinguishing the fat–water composition within soft
tissues. A prognostic marker for hepatic steatosis seems to be MR-estimated proton density
fat fraction, defined as the ratio of protons bound to fat and water [181]. In this concept,
1H MRS has been considered to be more accurate than MRI methods and shows a close
correlation with histological results [174,181]. The liver 1H MRS spectrum is represented by
a water singlet peak resonating at 4.7 ppm effectively quantifying lipid (triglyceride) peaks
echoing as multiples at 0.9-1.1 ppm (methyl -CH3 protons) and 1.3–1.6 ppm (methylene
-CH2 protons) [174,182]. Globally, the increasing lipid peaks relative to the water peak corre-
late with increasing steatosis grade [174,182]. In addition to liver lipids choline-containing
compounds (tCho singlet at 3.2 ppm) can be visualized, in 1H MRS spectra, representing
metabolite alterations in focal hepatic malignancies [174]. Increased tCho in liver tissue is
suggested to be associated with elevated cell membrane turnover, cell proliferation, and
carcinogenesis [183]. The ratio of tCho/lipids is an especially useful marker for differenti-
ating benign and malignant liver tumors representing the proportion of cell proliferation
(biosynthesis of membrane phospholipids) to cell necrosis (membrane breakdown) [183].
Finally, many modified MRI-based techniques, including diffusion and perfusion MRI or
magnetization transfer, have been developed for staging liver fibrosis [177].

3.1.2. Pancreas Imaging Linked with AD

Visualization of the pancreas by standard US is difficult because of its small size,
irregular shape, and challenging position, all of which are usually aggravated by overlying
bowel gas or surrounding fat, especially in obese patients [184,185]. However, these issues
compensate for CT imaging being handicapped by ionizing radiation unsafe for repeated or
screening use [186]. Overall, a variety of MR technologies can effectively execute pancreatic
imaging; however, difficulties are encountered inherent to MR field susceptibility and
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motion artifacts [185–187]. Quantitative MRI techniques, mainly T1-weighted MRI and
DWI, based on differentiating tissue fat and water signals in the pancreas, have become
prognostic clinical tools for characterizing and staging pancreatic diseases, including acute
and chronic pancreatitis steatosis, or pancreatic cancer [186,188–190]. However, to date,
MRI of the pancreas has a limited spatial resolution that does not enable the image of
the very small pancreatic islets, which are directly involved in DM pathogenesis [185].
Nevertheless, MRI can delineate the borders of the pancreas and can thus quantify its
volume, which is, in both types of DM, lower than in healthy subjects [184]. In addition,
several MR methods enable the establishment of pancreatic fat composition, as protons
associated with water and of the primary methylene groups of triglyceride fatty acid
chains with slightly different frequencies [187]. Recent research suggests that 1H MRS
and fat–water MRI methods (i.e., Dixon, IDEAL) are especially suitable for rapid, robust,
and accurate characterization of the fat and water content in entire organs [186]. Quickly
resolved peaks of water, tCho, and lipids are seen in pancreatic 1H MRS spectra, enabling
lipids to be distinguished in adipocytes and in triglyceride droplets and cytosol [187,191].
Generally, the higher the pancreatic fat concentration, the more the reduced beta cell
function and the risk of DM type-2 development [185]. MR perfusion methods also seem
to be essential tools, enabling the characterization of the dense pancreatic network of
capillaries with a high rate of blood flow that is altered in dysfunctional islet vasculature as
a typical sign of DM [185].

4. Conclusions

Neuroimaging (in particular, the basic methods of radiology and nuclear medicine)
remains a fundamental diagnostic step toward identifying AD and monitoring its progres-
sion. Furthermore, new technological modalities of neuroimaging combined with modern
artificial intelligence and machine learning approaches have further potential to advance
the diagnostic and prognostic algorithms in identifying neurodegenerative disorders and
monitoring their progression or efficacy of treatment regimens.

Recent advances in the understanding of AD pathoetiology indicate that AD is not
purely a neurodegenerative disease but rather a highly complex metabolic disease af-
fecting not only the central nervous system but also other organs such as the liver and
pancreas. Therefore, pathological changes at the level of their functions and structures
might be of great importance, mainly because of their involvement in AD pathogenesis
during the prodromal phase of the disease. Furthermore, disturbed insulin homeostasis
and glucose metabolism associated with MCI and AD led to the hypothesis that AD could
be an insulinopathy. This has triggered an outburst of research, bridging the molecular
pathophysiology of the pancreas, liver, and brain in MCI and AD, which has resulted in
the identification of prominent overlaps between, at first sight, very distant disease units,
namely AD and DM. This new way of looking at AD pathoetiology also makes a reevalua-
tion of the diagnostics, treatment, and preventive strategies for AD an urgent undertaking.

In light of the foregoing, it becomes obvious that the use of comprehensive examina-
tions combining above-standard neuroimaging methods with suggestive non-neuronal
imaging, of at least the liver and pancreas, may strengthen the diagnostic algorithm in MCI
patients, early AD patients, and patients at a higher risk of cognitive impairment due to DM
and prediabetes. Moreover, further identification of relevant combinations of radiological
and biochemical/molecular markers is much needed to ensure the quality and widespread
accessibility of standardized AD diagnostics and monitoring of disease progression.
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