Supplementary Figure S1. Principal Component Analysis (PCA) of all coding genes. PCA
plot of PC1 and PC2 showing levels of healthy controls (HC), mild/moderate (MIdMod) and
severe (Svre) COVID-19 cases by different colours. PCA was generated from normalized rlog
data. Note that this analysis and the results are very similar to our previous study ("Blood
transcriptome responses in patients correlate with severity of COVID-19 disease"
10.3389/fimmu.2022.1043219. Accepted but not yet available at PubMed) with a slightly
different sample selection (here, we did not include multiple samples from the same patient).
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Supplementary Figure S2. Deconvolution analysis of all coding genes. Mean values for
mild/moderate, severe, and healthy control groups were calculated and subjected to a
deconvolution analysis. Deconvolution was performed with the package immunedeconv
(version 2.0.4) [1] using the method mcp_counter [2]. Y-axis: severity categories, X-axis:
scores from mcp_counter analysis for the different cell populations. HC: healthy controls;
mld_mod: mild and moderate; svre: severe. This analysis revealed a slight increase in
endothelial cell and neutrophil in the mild/moderate cases compared to the healthy controls. A
much stronger increase was observed in the severe cases. Conversely, for B, T, and dendritic
cells, a slight decrease was observed for the mild/moderate cases compared to healthy controls
whereas a strong decrease was evident in the severe cases compared to either healthy controls
or mild/moderate cases. For macrophage/monocyte and NK cells, an increase in their relative
abundance was observed in the mild/moderate cases compared to the healthy controls and a
strong reduction in the severe cases compared to both the health controls and the mild/moderate
cases. Note that this analysis and the results are very similar to our previous study ("Blood
transcriptome responses in patients correlate with severity of COVID-19 disease”
10.3389/fimmu.2022.1043219. Accepted but not yet available at PubMed) with a slightly
different sample selection (here, we did not include multiple samples from the same patient).
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Supplementary Figure S3. Functional analysis of mitochondria specific DEGs. Functional
analysis using GO term enrichment for DEGs from the contrast of mild/moderate versus severe
cases. Pathway association analysis was performed with the package clusterProfiler [3] (A) up-
regulated (higher in severe), (B) down-regulated (higher in mild/moderate).
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Supplementary Figure S4. Metacore network analysis of genes from the enriched
pathways. (A) Bar diagram showing Log2 Fold Change (LFC) of the genes that contribute to
enrichment of the top 10 pathways from Figure 3D (Svre vs MldMod_UP). Network analysis
of the genes from six of the ten pathways (highlighted in red) were shown in (B) cell adhesion
ECM remodelling (C) androgen signalling in HCC (D) IL-b and endothelin-1-induced
fibroblast/myofibroblast migration and ECM production in asthmatic airways (E) stromal-
epithelial interaction in prostate cancer (F) cell cycle chromosome condensation in
prometaphase (G) DNA damage ATM/ATR regulation of G2/M checkpoint: nuclear signalling.
(H) Bar diagram showing Logz Fold Change (LFC) of the genes that contribute to enrichment
of the top 10 pathways from Figure 3E (Svre vs MIdMod_DOWN). Network analysis of the
genes from four of the ten pathways (highlighted in blue) were shown in (1) COVID-19:
immune dysregulation (J) COVID-19: regulation of antiviral response by SARS-CoV-2 (K)
glomerular injury in lupus nephritis (L) dual function of Treg cells in cancer (M) MAPK-
independent proliferation of normal and asthmatic smooth muscle cells (N) CD8" Tc1 cells in
allergic contact dermatitis. Red and blue circles denote upregulated and downregulated genes
from the respective enriched pathway. The coloured solid line with arrows represents activation
(green), inhibition (red) and unspecified (grey) effects between the two genes. Bold light green
lines represent well-known canonical pathways. Abbreviations: E stands for extracellular space;
PM stands for plasma membrane; C stands for cytosol; N stands for nucleus.
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