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Abstract: Next Generation Sequencing (NGS) technologies are rapidly entering clinical practice. A
promising area for their use lies in the field of newborn screening. The mass screening of newborns
using NGS technology leads to the discovery of a large number of new missense variants that need
to be assessed for association with the development of hereditary diseases. Currently, the primary
analysis and identification of pathogenic variations is carried out using bioinformatic tools. Although
extensive efforts have been made in the computational approach to variant interpretation, there
is currently no generally accepted pathogenicity predictor. In this study, we used the sequence–
structure–property relationships (SSPR) approach, based on the representation of protein fragments
by molecular structural formula. The approach predicts the pathogenic effect of single amino acid
substitutions in proteins related with twenty-five monogenic heritable diseases from the Uniform
Screening Panel for Major Conditions recommended by the Advisory Committee on Hereditary
Disorders in Newborns and Children. In order to create SSPR models of classification, we modified a
piece of cheminformatics software, MultiPASS, that was originally developed for the prediction of
activity spectra for drug-like substances. The created SSPR models were compared with traditional
bioinformatic tools (SIFT 4G, Polyphen-2 HDIV, MutationAssessor, PROVEAN and FATHMM). The
average AUC of our approach was 0.804 ± 0.040. Better quality scores were achieved for 15 from
25 proteins with a significantly higher accuracy for some proteins (IVD, HADHB, HBB). The best
SSPR models of classification are freely available in the online resource SAV-Pred (Single Amino acid
Variants Predictor).

Keywords: bioinformatics; human genetic variation; single amino acid variant (SAV); variant effect
prediction; newborn screening; SAR; structure–property relationships

1. Introduction

Newborn screening (NBS) is a meaningful, priority, globally-accepted public health
program. All born infants are advised to undergo blood spot screening, also known as
the heel prick test, to find any inherited diseases that are severe after an asymptomatic
period. The overall detection rate is up to 1 in 500 births [1]. The testing is intended to
provide an early diagnosis and treatment before significant, inevitable damage ensues. The
core conditions panels mainly include monogenic autosomal recessive disorders, most of
which are inborn errors of metabolism. The conditions may be indicated by biochemical
analysis, tandem mass spectrometry and immunoassay techniques as well as DNA-based
methods [2].

Over the past few years, next-generation sequencing (NGS) technologies have been
actively implemented in the clinic. As the cost of sequencing decreased, the field of
application increased, leading to the first cases of using NGS in NBS [3,4]. Since NGS has a
high throughput and can identify the majority of genetic defects, DNA sequencing has the
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capability to become a suitable NBS method. At the same time, the increasing screening
rate and the availability of NGS technologies contribute to the detection of new variants
without a clinical interpretation. In addition, NGS may expand the existing panels to other
diseases as it does not require special protocols and reagents to obtain a result.

Variants of clinical interpretation involve multiple evidence categories: population
data, functional studies, and clinical presentations. As an outcome, a genetic variant is
assigned a pathogenic class if it causes a disease, or a benign class if it is proven to have no
such relationships. Quite often, the criteria produce an opposite interpretation, e.g., eventu-
ally causing a variant of uncertain significance (VUS) or some conflict of interpretation [2].
Such variants cannot assist in making medical decisions.

Preliminarily, for variants with a VUS classification as well as unclassified ones, pre-
dicted pathogenicity estimates can be obtained using computational tools (e.g., PolyPhen-
2 [5], SIFT [6], MutationAssessor [7]). The most common genetic alterations happening and
requiring clinical classification are missense. Missense variants modify codons, resulting in
an encoded amino acid (a.a.) alteration. In turn, the alteration affects protein primary struc-
tures, the basis of the secondary, tertiary, and quaternary structures, and may disrupt their
implementing function. The existing bioinformatics predictors are trained on heterogenic
datasets, which may lead to a decreased prediction accuracy in specific clinically important
genes [8,9].

Here, we introduce SAV-Pred—a public web-application to predict the effect of single
amino acid variants (SAVs) for 25 core conditions from a newborn screening panel. This
work is intended to present the sequence–structure–property relationships (SSPR) analysis
of a.a. substitutions and their surroundings in specific proteins to predict the clinical effect
of the variants as an additional interpretation.

2. Results
2.1. SAV-Pred Contents and Comparison with Other Bioinformatic Tools

Disease-related proteins were selected from the Uniform Screening Panel for Major
Conditions recommended by the Advisory Committee on Hereditary Disorders in New-
borns and Children and approved by committees of the American College of Obstetricians
and Gynecologists (ACOG) [2]. The panel includes the following disease groups: congenital
organic acid/amino acid/fatty acid metabolic errors, hemoglobinopathies, and various
multisystem disorders such as cystic fibrosis or hypothyroidism. For these monogenic
diseases the benefits of screening and treatment availability have been confirmed. Thus,
the SSPR approach can be applied to them.

The data selection scheme is shown in Figure 1. The final set included 25 proteins
with a total of 2124 missense variants. These variants were initially found with clinical
classification (see Material and Methods). It turned out that for many of the proteins the
databases contained few benign variants, insufficient for training classifiers. For instance,
there was only one benign variant for PAH and two benign variants for the HADHB
and HMGCL genes (Table 1, column “B”). Therefore, 8397 polymorphisms unrelated to
pathological conditions were added as a negative class in the curated manual analysis. The
resulting number of SAVs in the training datasets are shown in Table 1.
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Figure 1. Illustration of the project workflow. SAVs—single amino acid variants, P—pathogenic,
LP—likely pathogenic, B—benign, LB—likely benign.

For each of the proteins, 195 SSPR models were created (with different levels of the
multi-level neighborhoods of atoms (MNA) descriptors (15 levels, from 1 to 15)) and peptide
length (13 size options with an odd number of a.a. in a peptide, from 7 to 31) (see Material
and Methods). The most accurate SSPR models in terms of the area under the receiver
operating characteristic curve (AUC) obtained in leave-one-out (LOO-CV) and 20-fold
cross-validation (20F-CV) procedures were selected, and their parameters are presented
in Table 1. Twenty-four SSPR models exceeded the accuracy threshold of 0.7. For such
conditions as isovaleric acidemia, hemoglobinopathies, and trifunctional protein deficiency,
the AUC values of the created models were greater than 0.9. Only the SSPR model for
galactose-1-phosphate uridylyltransferase displayed an AUCF20-CV value of less than 0.7
(0.686). This may be linked to the presence of contradictions in the clinical classification
data due to the existence of Duarte galactosemia, which differs from classical galactosemia
in that patients with Duarte galactosemia have a partial GALT deficiency.

The best created SSPR models were compared with known bioinformatic tools: SIFT
4G, Polyphen-2 HDIV, MutationAssessor, PROVEAN, and FATHMM [5–7,10,11] (Table 2.).
The same approach had been used in our previous study [12]. For the aforementioned
methods, we obtained scores of SAV effects from dbNSFP4.1a [13] for almost all proteins
and calculated AUC. In quantitative terms, our approach (SAV-Pred) was the most accurate
for 15 proteins. For several genes, HADHB, HBB, and IVD, the prediction accuracy was
over 0.9, while for the alternative methods it was kept at 0.796. The performances of the
rest of the models are inferior to the other methods but are not much lower and are roughly
in the average accuracy range. At the same time, the highest average AUC (0.804 ± 0.040;
CI95%) was achieved and corresponds to the previous results [12].
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Table 1. The list of investigated proteins with associated diseases, data on training sets, and parameters of SSPR models.

Gene Disease OMIM UniProt B P B+ Total PL MNA AUCLOO-CV AUC20F-CV

ABCD1 X-linked adrenoleukodystrophy 300371 P33897 31 58 306 395 19 9 0.849 0.839
ACADM Medium-chain acyl-CoA dehydrogenase deficiency 607008 P11310-1 3 63 253 319 9 7 0.792 0.793
ACADVL Very long-chain acyl-CoA dehydrogenase deficiency 609575 P49748-1 9 91 382 482 19 10 0.800 0.801
ASL Argininosuccinic aciduria 608310 P04424-1 9 29 288 326 7 9 0.850 0.853
ASS1 Homocystinuria Citrullinemia, type I 603470 P00966 10 25 162 197 13 6 0.787 0.792
BTD Biotinidase deficiency 609019 P43251-1 5 133 317 455 17 15 0.849 0.830
CFTR Cystic fibrosis 219700 P13569-1 56 350 697 1103 17 11 0.781 0.787
FAH Tyrosinemia, type I 613871 P10253-1 4 15 248 267 29 3 0.843 0.837
GAA Glycogen Storage Disease Type II (Pompe) 606800 P10253-1 53 72 353 478 13 11 0.742 0.733
GALT Classic galactosemia 606999 P07902-1 5 119 120 244 23 4 0.695 0.686
GCDH Glutaric acidemia type I 608801 Q92947-1 5 58 208 271 21 15 0.703 0.707
HADHA Long-chain L-3 hydroxyacyl-CoA dehydrogenase deficiency 600890 Q96RQ3 12 9 476 497 9 11 0.813 0.808
HADHB Trifunctional protein deficiency 143450 P50747-1 2 14 309 325 17 5 0.961 0.961
HBB Hemoglobinopathies 141900 P68871 27 149 79 255 7 7 0.912 0.903
HLCS Holocarboxylase synthase deficiency 609018 P40939-1 17 12 463 492 7 8 0.776 0.776
HMGCL 3-Hydroxy-3-methylglutaric aciduria 613898 P35914-1 2 6 188 196 9 8 0.740 0.714
IDUA Mucopolysaccharidosis type 1 252800 P35475-1 19 46 556 621 29 15 0.890 0.853
IVD Isovaleric acidemia 607036 P26440 6 30 326 362 13 11 0.908 0.906
MCCC1 3-Methylcrotonyl-CoA carboxylase deficiency 609010 P16930-1 12 16 449 477 7 12 0.764 0.754
MCCC2 3-Methylcrotonyl-CoA carboxylase deficiency 609014 Q9HCC0-1 5 25 411 441 23 15 0.814 0.797
MMUT Methylmalonic acidemia 609058 P22033-1 8 70 355 433 29 9 0.712 0.712
PAH Classic phenylketonuria 612349 P00439 1 288 131 420 11 7 0.798 0.798
PCCB Propionic acidemia β-ketothiolase deficiency 232050 P05166-1 4 26 490 520 17 12 0.794 0.796
SLC22A5 Carnitine uptake defect/transport defect 603377 O76082-1 9 68 319 396 9 6 0.870 0.875
TSHR Primary congenital hypothyroidism 603372 P16473-1 8 30 511 549 19 3 0.803 0.764

B—Benign variants in the sets; P—Pathogenic variants in the sets; B+—benign variants that initially did not have clinical classification; AUCLOO-CV—AUC obtained by leave-one-
out validation procedure; AUC20F-CV—AUC obtained by twenty-fold cross-validation procedure; PL (peptide length) and MNA (the level of MNA descriptors)—parameters of
sequence–structure–property relationships (SSPR) models.
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Table 2. Accuracy comparison of the tools in predicting single amino acid substitution effects in proteins related to neonatal diagnosis.

Protein
SAV-Pred SIFT 4G PolyPhen-2 HDIV Mutation Assessor PROVEAN FATHMM

AUCF20-CV % AUC % AUC % AUC % AUC % AUC %

ABCD1 0.839 100 0.886 99 0.868 99 0.878 99 0.872 99 0.734 99
ACADM 0.793 100 0.585 95 0.657 95 0.619 95 0.664 95 0.549 95
ACADVL 0.801 100 0.734 97 0.761 97 0.693 97 0.652 97 0.609 97

ASL 0.853 100 0.783 98 0.841 98 0.738 98 0.795 98 0.659 98
ASS1 0.792 100 0.711 100 0.721 100 0.815 100 0.754 100 0.635 100
BTD 0.830 100 - 0 0.792 96 0.797 96 - 0 - 0

CFTR 0.787 100 0.678 100 0.727 100 0.702 100 0.706 100 0.516 100
FAH 0.837 100 0.848 99 0.863 99 0.850 99 0.838 99 0.651 99
GAA 0.733 100 0.762 99 0.821 100 0.824 100 0.802 99 0.690 100
GALT 0.686 100 0.711 100 0.736 100 0.724 97 0.721 100 0.534 100
GCDH 0.707 100 0.751 100 0.758 100 0.751 100 0.687 100 0.519 100

HADHA 0.808 100 0.856 99 0.790 99 0.873 97 0.774 99 0.572 99
HADHB 0.961 100 0.596 98 0.635 98 0.569 98 0.739 98 0.603 98

HBB 0.903 100 0.707 99 0.796 99 0.725 99 0.686 99 0.635 99
HLCS 0.776 100 0.766 98 0.751 98 0.699 98 0.716 98 0.645 98

HMGCL 0.714 100 0.877 99 0.877 99 0.872 99 0.829 99 0.796 99
IDUA 0.853 100 0.745 100 0.722 100 0.733 100 0.744 100 0.609 100
IVD 0.906 100 0.695 96 - 0 - 0 0.751 96 0.555 96

MCCC1 0.754 100 0.697 98 0.695 98 0.734 90 0.632 98 0.500 98
MCCC2 0.797 100 0.637 95 0.601 95 0.611 95 0.574 95 0.581 95
MMUT 0.712 100 0.768 100 - 0 - 0 0.762 100 0.680 100

PAH 0.798 100 0.769 98 0.766 98 0.796 98 0.762 98 0.728 98
PCCB 0.796 100 0.790 96 0.773 96 0.831 96 0.725 96 0.540 96

SLC22A5 0.875 100 0.725 97 0.776 97 0.780 97 0.786 97 0.624 97
TSHR 0.764 100 0.659 99 - 0 - 0 0.697 99 0.491 99

Mean 0.803 100 0.739 94 0.760 86 0.755 85 0.736 94 0.611 94

AUC—Area under the receiver operating characteristic curve; AUCF20-CV—AUC obtained by twenty-fold cross-validation procedure; %—Percentage of predicted SAVs (for the other
methods, it was calculated based on the data from dbNSFP4.1a.).
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2.2. SAV-Pred Web Application

The best SSPR models became the basis for the creation of the freely available web
application, SAV-Pred (Single Amino acid Variants Predictor), hosted at the way2drug.com
portal (http://www.way2drug.com/SAV-Pred/) (accessed on 29 December 2022).

Figure 2 illustrates an example of the output window with predictions for three single
amino acid substitutions. The substitutions were published in the ClinVar [14] database
after May 2022 and did not belong to the training sets. The predicted effect shown in the
“Annotation” column is consistent with the current clinical classification. The data in the
values in the Confidence column are calculated as Pa—Pi (see Materials and Methods)
for the prediction of the pathogenic effect. Positive values of Confidence mean that the
queried a.a. substitutions may belong to the class of pathogenic substitutions. The higher
the Confidence value, the higher the probability that the variant is pathogenic. Negative
values of Confidence mean that the queried a.a. substitutions may belong to the class of
benign substitutions. The more negative the Confidence value, the more likely the variant
is benign. During the analysis of the prediction results, one should also take into account
the value of the prediction accuracy in the last column (AUC) for the appropriate SSPR
model. The columns in the table with prediction results may by sorted. Moreover, the
appropriate fields for filtration of the data are under each column. Here, one can also
see the references to the description of diseases in OMIM as well as protein identifiers in
UniProt [15]. The left side of the screen shows the protein sequence with the highlighted
location and replacement of the letter. The user can select the protein and substitution of
interest manually with the “Input” button, or they can load a query list of substitutions in
the following format:

<gene name> <position> <a.a. substitution>

The prediction results can be saved as a file in the CSV or XLS formats, or simply copied.
The data on composition, the datasets, and AUC values are also provided.
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Figure 2. SAV-Pred web page with prediction results for the input example. On the left part of the
screen, the input list form contains gene name, sample counts in the training set, associated disease
and protein sequence with marked red substitution. The result table with confidence score as well as
its interpretation and ROC-AUC metrics are located on the right side. The examples were published
in the ClinVar database after May 2022 and were not included in the training sets of the appropriate
SSPR models. All three predictions are consistent with the current clinical classification in the ClinVar
database.
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3. Discussion

In this paper, we present a new freely available web-based application, SAV-Pred—
twenty-five SSPR models were created to identify amino acid substitutions related to
monogenic heritable diseases recommended for universal newborn screening by calcu-
lating and interpreting pathogenicity scores. The models are Naïve Bayesian classifiers
trained on describing the structural properties of peptide fragments, thus linking the effect
to the primary structures of the proteins. Since the secondary/tertiary/quaternary struc-
tures, physicochemical, and functional properties of proteins also depend on the primary
sequence, SSPR models take them into account indirectly.

In summary, the SSPR models obtained comparable accuracy, often exceeding the ac-
curacy of the individual methods. For example, the developed predictors outperformed the
widely used tools: SIFT 4G in 16/24 cases and PolyPhen-2 HDIV 16/22 cases, respectively.
Depending on the method and the protein, SSPR models and individual bioinformatics
tools outperform each other to diverse degrees, in keeping with the previous studies [16,17].
However, protein-specific datasets are often unbalanced due to a lack of annotated variants
and this may cause a negative impact on protein-specific predictors. The absence of differ-
ences in AUC in the leave-one-out and twenty-fold cross-validations, as well as the similar
average accuracy with the previous study, suggest the robustness of the obtained classifiers
(Table 1).

Based on the best SSPR models, we have created a web application SAV-Pred, which is
freely available at http://www.way2drug.com/SAV-Pred/ (accessed on 28 December 2022).
In the prospective application, SAVs features such as secondary structure parameters and
evolutionary data are going to be used as descriptors to increase the predictor’s accuracy.
Additionally, we going to apply the approach to the secondary conditions table and other
similar diagnostic panels.

4. Materials and Methods
4.1. Datasets Collection

Of 32 core conditions from the ACOG screening panel, 24 monogenic diseases were
chosen and 25 associated genes were found based on the OMIM database (accessed on 10
January 2022) (Table 1). The annotated data on missense variants related to the known
genes, including clinical significance, variant supporting evidence, and protein allele were
obtained from ClinVar [14] (accessed on 14 January 2022), humsavar [15] (accessed on 14
January 2022), LOVD [18] (accessed on 12 January 2022), and dbSNP [19] (accessed on 14
January 2022) databases using the BioMart data mining tool [20] (accessed on 14 January
2022) (Figure 1). SAVs currently classified as pathogenic or likely pathogenic constituted
the positive class, and substitutions that were interpreted as benign/likely benign, as well
as all those that were in no way related to the phenotype/disease, constituted the negative
class. Based on the known annotated SAVs and an appropriate protein sequence, we
created the datasets containing fix length peptides (from 7 to 31 a.a. in the peptide) from
the substitution and its a.a. surroundings in the form of structural formulas in the MOL
V3000 format, plus their effect indicators (0-benign, 1-pathogenic). A similar algorithm
was used earlier for the prediction of phosphorylation sites in proteins [21]. Amino acid
surroundings were taken from canonical reference protein sequences from the UniProt [15]
(accessed on 3 February 2022) database by related positions.

4.2. Building the SSPR Models

Classification models were created and validated in the modified command line
version of the Prediction of Activity Spectra for Substances (PASS) software [12,21–23]—
MultiPASS (version 2022, Institute of Biomedical Chemistry, Moscow, Russia)—which
allows one to use different levels (up to 15) of Multilevel Neighborhoods of Atoms (MNA)
descriptors to describe the structural formula of peptides [19]. Each of the fifteen MNA
levels was used to build the individual SSPR model on each of thirteen different pep-
tide fragment length datasets. Originally, PASS prediction results are a list of predicted

http://www.way2drug.com/SAV-Pred/
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characteristics of molecules with Pa (probability of “to be active”) and Pi (probability of
“to be inactive”) values. In this study, the Pa value is the probability that the peptide
with the a.a. substitution belongs to the class of pathogenic variants, and the Pi value is
the probability that the peptide with the a.a. substitution does not belong to the class of
pathogenic variants.

Multilevel Neighborhoods of Atoms (MNA) descriptors were used for the descriptions
of molecular structures. The MNA descriptor is a representation of an atom-centered
fragment of a molecule in the form of a string of characters. The level of the MNA descriptor
reflects the order of proximity. Figure 3 shows an example of the representation of the
first three levels for a carbon atom marked with a gray circle. Thus, the structural and
physicochemical properties of molecules are embedded in the MNA descriptors. Similar to
our previous work [12], descriptors from levels 1 to 15 were used for the creation of SSPR
models.
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Figure 3. The example of 0–3 levels of MNA (Multilevel Neighborhoods of Atoms) descriptors
is shown for the carbon atom of alanine in the polypeptide chain fragment. The numbers in the
structural formula show the most distant atoms included in the descriptor of the related level of
MNA descriptors. The appropriate descriptors of the chosen level are generated for all atoms in the
structural formula. Such description helps to depict the linear structure of peptides completely and
explicitly.

4.3. Validation and Performance Assessment

SSPR models based on datasets with an appropriate length of peptides and a level
of MNA descriptors were created and selected based on the leave-one-out and 20-fold
cross-validation procedures implemented in MultiPASS. For every disease (protein), the
best SSPR model was chosen with the highest the area under the ROC curve (AUC) value.
We used individual methods (SIFT 4G, Polyphen-2 HDIV, MutationAssessor, PROVEAN
and FATHMM) to compare against the SSPR models, and we used the scores from the
dbNSFP (accessed on 9 October 2022) and sklearn.metrics package [24] in Python 3.9 to
calculate AUC as a statistical indicator of accuracy. In doing so, we used the thresholds
recommended by authors to obtain protein-related AUC values.
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Abbreviation

NGS Next Generation Sequencing
SNP Single Nucleotide Polymorphism
SAV Single Amino acid Variant
VUS Variant of Uncertain Significance
SAR Structure-Activity Relationships
SSPR Sequence-Structure-Property Relationships
MNA Multi-level Neighborhoods of Atoms
MultiPASS Modified command line version of Prediction of Activity Spectra for Substances
SAV-Pred Single Amino acid Variants Predictor
SIFT Sorting Intolerant From Tolerant
Polyphen-2 Polymorphism Phenotyping v2
PROVEAN Protein Variation Effect Analyzer
Mutation Assessor Functional impact of protein mutations
FATHMM Functional Analysis through Hidden Markov Models
NBS Newborn Screening
ACOG American College of Obstetricians and Gynecologists
db Data Base
OMIM Online Mendelian Inheritance in Man
ClinVar Public archive of reports of the relationships among human variations and

phenotypes
LOVD Leiden Open Variation Database
UniProt Leading high-quality resource of protein sequence and functional information
humsavar All missense variants annotated in UniProtKB/Swiss-Prot human entries
gnomAD The Genome Aggregation Database
TOPMed The Trans-Omics for Precision Medicine program
dbNSFP Functional prediction and annotation of all potential missense variants in humans
SDF Structured Data File
AUC Area under the receiver operating characteristic curve
LOO-CV Leave-One-Out Cross-Validation
20F-CV 20-Fold Cross-Validation
ABCD1 ATP binding cassette subfamily D member 1
ACADM Acyl-CoA dehydrogenase medium chain
ACADVL Acyl-CoA dehydrogenase very long chain
ASL Argininosuccinate lyase
ASS1 Argininosuccinate synthase 1
BTD Biotinidase
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CFTR Cystic Fibrosis transmembrane conductance regulator
FAH Fumarylacetoacetate hydrolase
GAA Alpha glucosidase
GALT Galactose-1-phosphate uridylyltransferase
GCDH Glutaryl-CoA dehydrogenase
HADHA Hydroxyacyl-CoA dehydrogenase trifunctional multienzyme complex subunit

alpha
HADHB Hydroxyacyl-CoA dehydrogenase trifunctional multienzyme complex subunit

beta
HBB Hemoglobin subunit beta
HLCS Holocarboxylase synthetase
HMGCL 3-hydroxy-3-methylglutaryl-CoA lyase
IDUA Alpha-L-iduronidase
IVD Isovaleryl-CoA dehydrogenase
MCCC1 Methylcrotonyl-CoA carboxylase subunit 1
MCCC2 Methylcrotonyl-CoA carboxylase subunit 2
MMUT Methylmalonyl-CoA mutase
PAH Phenylalanine hydroxylase
PCCB Propionyl-CoA carboxylase subunit beta
SLC22A5 Solute carrier family 22 member 5
TSHR Thyroid stimulating hormone receptor
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