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Abstract: Microbiome alterations are emerging as one of the most important factors that influence
the course of alcohol use disorder (AUD). Recent advances in bioinformatics enable more robust
and accurate characterization of changes in the composition of the microbiome. In this study, our
objective was to provide the most comprehensive and up-to-date evaluation of microbiome alterations
associated with AUD and alcoholic liver disease (ALD). To achieve it, we have applied consistent,
state of art bioinformatic workflow to raw reads from multiple 16S rRNA sequencing datasets. The
study population consisted of 122 patients with AUD, 75 with ALD, 54 with non-alcoholic liver
diseases, and 260 healthy controls. We have found several microbiome alterations that were consistent
across multiple datasets. The most consistent changes included a significantly lower abundance of
multiple butyrate-producing families, including Ruminococcaceae, Lachnospiraceae, and Oscillospiraceae
in AUD compared to HC and further reduction of these families in ALD compared with AUD. Other
important results include an increase in endotoxin-producing Proteobacteria in AUD, with the ALD
group having the largest increase. All of these alterations can potentially contribute to increased
intestinal permeability and inflammation associated with AUD and ALD.
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1. Introduction

Alcohol use disorder (AUD) is one of the most significant contributors to the global
burden of mortality and disease [1]. It is a risk factor for more than 200 diseases, of which
more than 40 are fully attributable to alcohol [2]. Of these, alcoholic liver disease (ALD)
is the largest contributor to the health harm caused by AUD [1]. ALD is responsible for
almost 50% of all deaths attributed to liver diseases in adults [1]. Considering the significant
increase in the prevalence of AUD [3] and, in the best case, the moderate effectiveness of
currently approved therapies [4], new therapeutic approaches are urgently needed.

ALD is divided into several stages, ranging from relatively benign and reversible
hepatic steatosis to severe and irreversible cirrhosis. Hepatic steatosis will affect 90% of
heavy drinkers, however, only 10–35% will progress to alcoholic steatohepatitis (ASH)
and 8–20% to cirrhosis [5]. Identification of individuals at increased risk of progression to
more advanced stages of ALD could potentially help the development of novel and more
personalized approaches for the treatment and prevention of ALD by, for example, finding
patients who could potentially benefit from early fecal microbiota transplantation from a
donor with desired microbiome composition. Although significant advances have been
made in recent years, the pathophysiology of ALD development and progression remains
largely unknown. Multiple, partially overlapping mechanisms have been proposed as
potential causes of liver injury, including advanced glycation end-products [6], oxidative
stress [7], and genetic factors [8]. A growing body of evidence shows that microbiome
alterations are another factor that influences the development and course of ALD [9].
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Significant technological advances have reduced the cost of sequencing faster than pre-
dicted by Moore’s law [10]. This has enabled the development of cultivation-independent
methods for studying the human microbiome. Of these methods, due to their low cost and
high accuracy, 16S rRNA sequencing remains the most widely used. Rapid progress in
sequencing technologies is accompanied by significant advances in bioinformatic methods
associated with the study of the microbiome. Advances include novel denoising methods,
enabling better removal of spurious sequences caused by PCR errors [11], more accurate
taxonomic classification methods [12], and more robust methods for differential abundance
(DA) testing [13]. Although often overlooked, the impact of the choice of correct bioin-
formatic methods for microbiome analysis is tremendous; in some cases, frequently used
tools for differential abundance testing have been shown to have a false discovery rate
(FDR) as high as 70%, meaning that up to 70% of bacteria discovered as significant could
be wrong [13]. Analysis of 14 differential abundance testing methods on 38 datasets has
shown that the proportion of bacteria discovered as significant strongly depends on the
used method; for example, the use of the Wilcoxon test on data normalized as centered
log ratio (CLR) resulted in the detection of up to 90% of bacteria as significantly different
between studied groups; when using ANCOM-II on the same datasets, on average only
0.8% of bacteria were detected as significant. The authors concluded that ANCOM-II
produced the most consistent and conservative results of all the methods studied [14]. The
recently developed novel method for differential abundance testing called ANCOM-BC
provides further improvement over ANCOM-II, with an additional reduction in FDR while
maintaining adequate power [13].

Studies examining the microbiome in AUD used different, and in some cases, subopti-
mal bioinformatic tools for reads preparation and differential abundance testing, including
statistical tests which do not account for the compositional nature of the microbial abun-
dance data, lack of adjustment for multiple testing, and tools with high FDR such as LEfSe.
As discussed above, these inconsistencies could potentially influence the obtained results.
For this reason, to provide a more accurate and consistent assessment of the microbiome,
we have applied a standard workflow consisting of state-of-the-art bioinformatics methods
characterized by the best performance in benchmarking studies to datasets that examine
the microbiome composition in AUD and ALD. In addition, the inclusion of multiple
datasets has enabled us to use dataset identifiers as confounding variable, which reduced
variability due to non-bioinformatic technical differences, such as choice of primers and
DNA extraction methods.

2. Results
2.1. Diversity Analysis and Variance Contribution

The variance contribution of the disease status differed significantly between the
datasets and ranged from less than 1% to 20% (Figure 1). Most studies reported variance
contribution of disease status smaller than 10%. In the combined dataset approach, the
variance contribution of the batch effect was approximately two times larger than that of
disease status.

Alpha diversity did not differ significantly between HC and AUD, both for estimated
and observed measures (Figure 2). The rarefication–extrapolation curves for these com-
parisons are provided in Supplementary Figure S2. Patients with ALD had a lower alpha
diversity for all three measures compared with AUD for both estimated and observed
measures (Figure 3). The non-alcoholic liver diseases group had higher alpha diversity
than the ALD group; however, the species richness differed significantly only for estimated
values (Figure 4).

In three out of five data sets (DRP003174, SRP187981, and SRP300989), beta diversity
was significantly different for the comparison of HC versus AUD (Figure 5). Beta-diversity
differed significantly also for the ALD vs. nonalcoholic liver disease and AUD vs ALD
comparison (both examined by one dataset each, SRP185798 and SRP187981, respectively).
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dot denotes statistically insignificant results. Error bars indicate 95% confidence intervals. 

  

Figure 2. Observed and estimated alpha diversity for comparison between patients with alcohol use
disorder and healthy controls denoted as Agresti’s generalized odds ratio and summarized with
random effects model; values greater than 0 indicate greater richness in healthy controls. An open
dot denotes statistically insignificant results. Error bars indicate 95% confidence intervals.
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curves for alpha-diversity measures. Each curve represents the alpha diversity of a single sample. 

Dots represent observed read depths, which were extrapolated to a common read depth of 20,000. 

Curves without dots indicate samples that had the read depth already above 20,000 and thus were 
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p < =0.001, ****—p < = 0.0001. 

  

Figure 3. (A) Observed and estimated alpha diversity for comparison between patients with alcoholic
liver disease and alcohol use disorder (without liver disease). (B) Rarefication–extrapolation curves
for alpha-diversity measures. Each curve represents the alpha diversity of a single sample. Dots
represent observed read depths, which were extrapolated to a common read depth of 20,000. Curves
without dots indicate samples that had the read depth already above 20,000 and thus were rarefied to
that level; ALD—alcoholic liver disease, AUD—alcohol use disorder, **—p < = 0.01, ***—p < = 0.001,
****—p < = 0.0001.
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Figure 4. (A) Observed and estimated alpha diversity for comparison between patients with alcoholic
liver disease and patients with other, non-alcoholic etiologies of liver disease. Black dots denote
outliers. (B) Rarefication–extrapolation curves for alpha-diversity measures. Each curve represents
the alpha diversity of a single sample rarefied to a common read depth of 20,000; ALD—alcoholic
liver disease, *—p < = 0.05, **—p < = 0.01, ns—non-significant.
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Figure 5. Principal coordinate analysis (PCoA) plots of beta-diversity measured with Euclidean
distance after normalization using PhilR. The label above each graph indicates the SRA identifier for
the corresponding dataset; ALD—alcoholic liver disease, AUD—alcohol use disorder, HC—healthy
controls, NALD—other, non-alcoholic liver disease, *—p < = 0.05, ***—p < = 0.001.

2.2. Alcohol Consumption Causes Unfavorable Changes in the Fecal Microbiome

The complete results for all comparisons at each of the studied taxonomic levels are
presented in Figure 6 and Supplementary Figures S3–S8.

2.3. Alcohol Use Disorder versus Healthy Controls

At the phylum level, patients with AUD had a lower relative abundance of
Firmicutes, Cyanobacteria, and a Verrucomicrobiota, and a higher abundance of
Proteobacteria and Fusobacteria (Supplementary Figure S3). The decrease in the relative abun-
dance of Firmicutes was accompanied by a nonsignificant decrease of the
Firmicutes/Bacteroidetes ratio (F/B ratio, a frequently used marker of gut health) in most
of the datasets. This result remained nonsignificant after pooling with a random-effects
model (Supplementary Figure S9). At the class level, patients with AUD were enriched in
Fusobateria, Gammaproteobacteria, and Negativicutes, whereas HC had a higher abundance
of Clostridia, Verrucomicrobiae, and Alphaproteobacteria (however, several classes had very
wide confidence interval crossing 0, Supplementary Figure S4). At the order level, the
highest increase of relative abundance in AUD was observed for Fusobacteriales and the
largest reduction for Oscillospirales (Supplementary Figure S5). Patients with AUD com-
pared with HC presented with a reduced relative abundance of Acutalibacteraceae and sev-
eral families containing short-chain fatty acid (SCFA) producing bacteria (Ruminococcaceae,
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Oscillospiraceae, Butyricicoccaceae, Lachnospiraceae, Clostridiaceae, and Barnesiellaceae, Figure 6).
Patients with AUD were enriched in Enterobacteriaceae; however, confidence intervals
were wide and crossed 0. Among the more abundant families in AUD patients, only
Burkholderiaceae, Fusobacteriaceae, and Xanthobacteraceae had confidence intervals that did
not cross 0 and were detected as significant in the random effects model. Changes at the fam-
ily level were partially repeated at the genus level (Supplementary Figure S6), and several
genera from Lachnospiraceae (Scatomonas, Fusicatenibacter, Roseburia, Choladousia, Dorea_A,
Lachnoclostridium, Roseburia, Eubacterium), Ruminococcaceae (Bittarella), and Butyricicoccaceae
(Agathobaculum) were decreased in AUD, and two genera from Burkholderiaceae (Duodeni-
bacillus, Parasutterella) were increased.
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Figure 6. Changes in the relative abundance between patients with alcohol use disorder and healthy
controls at the family level. (A) Number of datasets in which the given family was detected as
significant. (B) Change in the relative abundance of a given family in the combined dataset reported
as log-ratio. Blue denotes bacteria more abundant in healthy controls, and red more abundant in
alcohol use disorder. (C) Change in the relative abundance of a given family after summarizing
results from individual datasets using the random-effects model, expressed as a mean difference
in centered log ratios. Values larger than zero denote greater abundance in healthy controls. A
full dot denotes a statistically significant effect. Error bars indicate 95% confidence intervals. Only
bacteria detected as significant in at least two datasets or significant in the random-effects analysis
are presented.

2.4. Alcoholic Liver Disease versus Alcohol Use Disorder without Liver Disease

Patients with ALD showed a further reduction in Firmicutes and Cyanobacteria, and an in-
crease of Proteobacteria compared to AUD without liver disease; other changes included a reduction
of Methanobacteriota and a very slight increase in Campylobacterota (Supplementary Figure S7a). The
F/B ratio did not differ significantly between ALD and AUD without liver disease
(Supplementary Figure S10). Patients with ALD compared with AUD showed further enrich-
ment of Campylobacteriota, an increase of Gammaproteobacteria, and a reduction of Clostridia and
Methanobacteria (Supplementary Figure S7b). The most notable changes at the order level were
a reduction of Oscillospirales and an increase of Enterobacterales in patients with alcoholic liver
disease (Supplementary Figure S7c). ALD was associated with further reduction in Acutalibacter-
aceae and SCFA-producing families compared with AUD. Nine families were detected as more
abundant in ALD, with the largest increase in Enterobacteriaceae, Veillonellaceae, Neisseriaceae, and
Campylobacteraceae (Supplementary Figure S7d). Changes at the genus level included further re-
duction of genera from Lachnospiraceae (Mediterraneibacter, Dorea, Scatomonas, Blautia_A), Ruminococ-
caceae (Ruminococcus_C), and Butyricicoccaceae (Agathobaculum) families and an increase in several,
potentially pathogenic genera such as Streptococcus in the ALD group (Supplementary Figure S7e).

2.5. Alcohol Liver Disease versus Other, Non-Alcoholic Causes of Liver Diseases

Compared with other causes of liver disease, ALD was characterized by lower rel-
ative abundances of Verrucomicrobiota, and a higher abundance of Campylobacterota and
Patescibacteria (Supplementary Figure S8a). Interestingly, compared with other causes
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of liver disease, ALD was characterized by a lower abundance of Clostridia, an increase
of Bacilli, and slight alterations of Verrucomicrobiae, Campylobacteria, and Saccharimonadia
(Supplementary Figure S8b). At the order level, ALD was associated with the highest reduc-
tion of Lachnospirales and the highest increase in Lactobacillales (Supplementary Figure S8c).
Compared to other causes of liver disease, ALD was characterized by a lower abun-
dance of Oscillospiraceae, Lachnospiraceae, and Butyricicoccaceae (and multiple other families,
Supplementary Figure S8d) and a higher abundance in 10 families, with Lactobacillaceae hav-
ing the largest increase. Consistently, patients with ALD were enriched in the Lactobacillus
genus compared with other causes of liver disease (Supplementary Figure S8e).

2.6. AUD and Liver Disease Cause Alterations in Predicted Functional Metagenomic Profiles

Multiple pathways enriched in AUD patients were related to heme synthesis. In
addition, several aerobic pathways and pathways related to citrate (TCA) and glyoxylate
cycle (Figure 7) were enriched in AUD. Patients with ALD showed further enrichment of
pathways related to TCA and glyoxylate cycles and biosynthesis of heme. Additionally,
among pathways with the largest increase in ALD was the LPS-related super pathway of
(Kdo)2−lipid A biosynthesis; among other changes, the most consistent was the enrichment
of multiple pathways related to menaquinol biosynthesis (Supplementary Figure S11). Re-
cently, we have shown that alcoholic liver disease is associated with an increase in plasma
concentration of a novel advanced glycation end product (AGE10). Synthetically obtained
melibiose-derived AGE mimics this AGE10 epitope. We hypothesized that microbiome
alterations could be associated with increased availability of melibiose in the gut. Melibiose
can be delivered to the human organism from a plant diet or provided by gut micro-
biota. In dysbiosis, melibiose could be translocated to circulation thus contributing to
AGE10 increase, whereas in healthy conditions, melibiose is hydrolyzed with microbial
α-galactosidase. For this reason, we performed additional analysis of PICRUST2 data
with the Kyoto Encyclopedia of Genes and Genomes as a reference database, targeting
α-galactosidase (KEGG identifier K07407), which catalyzes the reaction of melibiose hy-
drolysis. The abundance of α-galactosidase did not differ significantly between healthy
control, patients with AUD, and patients with ALD.
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Figure 7. Changes in the relative abundance of the inferred metagenomic pathways between patients
with alcohol use disorder and healthy controls (A). Number of datasets in which given pathway was
detected as significant. (B). Change in the relative abundance of a given pathway in the combined dataset
reported as log-ratio. Blue denotes bacteria more abundant in healthy controls, and red more abundant
in alcohol use disorder. (C). Change in the relative abundance of a given pathway after summarizing
results from individual datasets using the random-effects model, expressed as a mean difference in
centered log ratios. Values larger than zero denote greater abundance in healthy controls. A full dot
denotes a statistically significant effect. Error bars indicate 95% confidence intervals. Only pathways
detected as significant in at least two datasets or significant in random-effects analysis are presented.

2.7. Diagnostic Accuracy of Deep Learning in Predicting the Disease Status

The metrics related to the diagnostic accuracy of deep learning are provided in Figure 8.
Although the diagnostic accuracy for the combined dataset had an acceptable performance
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with 0.71 AUC, when applied to individual datasets we observed significant variance, with
values of AUC ranging from 0.92 to only 0.02. The F1 score ranged from 0.37 to 0.81. The
lowest AUC and F1-score were obtained for dataset SRP187981. To reduce overfitting, we
have increased the lambda value of L2 regularization; however, it did not reduce variance
across datasets and led to a further decrease of all metrics for the SRP187981 dataset. We
hypothesized that weak performance on this dataset might be associated with significant
class imbalance (i.e., a much larger number of AUD samples compared with HC). To combat
this effect we performed random oversampling, which resulted in a significant increase of
AUC to 0.25 (Supplementary Figure S12).
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Figure 8. Accuracy of the deep learning model for microbiome-based differentiation between alcohol
use disorder and healthy controls; AUC—area under the curve, F1—F1-score, harmonic mean of
precision and recall. Larger values indicate better performance.

3. Discussion

The last decade has witnessed an exponential increase in studies that examine the
microbiome in a wide range of diseases. During that time, several reports on microbiome
alterations in AUD and ALD have been published [15–20]. The incorporation of multiple
datasets in an analysis enables a more robust estimation of the dysbiosis patterns associated
with AUD. However, differences in the methodologies used and the significant batch effect
between studies make a direct comparison of the results unreliable. The use of raw reads
from different datasets has allowed us to apply a consistent bioinformatical pipeline that
reduced the variance associated with the choice of statistical tools. In addition, it allowed
the estimation of the batch effect and then correcting for it. The batch effect in our study
was a greater contributor to variance than the effect of disease status, a result consistent
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with previous reports that examined multiple microbial datasets [21]. The use of statistical
methods that account for it resulted in finding consistent patterns of microbiome alterations
associated with AUD and ALD.

Alpha-diversity analysis showed significant differences between patients with AUD,
ALD, and other (nonalcoholic) liver diseases. No significant changes were detected between
the AUD and HC groups. However, rarefication–extrapolation curves revealed that in most
of the included studies, sequencing depth was not sufficient to capture the true diversity.
Although the use of Hill’s numbers with asymptotic extrapolation provides more robust
results than frequently used rarefication to common sequencing depth [22], it is still an
estimation that could potentially differ from the true underlying diversity. For most of the
datasets, beta diversity was significant, with the principal coordinate analysis (PCoA) plots
showing some level of separation between the HC, AUD, and ALD groups.

Deep learning analysis has shown a strong variance in accuracy across datasets, even
with increased L2-regularization (which is one of the most commonly used methods for the
reduction of overfitting in neural networks). This shows that the good performance of deep
learning models for microbiome-based predictions on individual datasets does not necessarily
translate across datasets, confirming the common knowledge that training deep learning
models requires diverse datasets. In the case of microbiome-based predictions, where the
batch effect is often larger than the effect of disease status, this is especially crucial.

Our results show alterations in the microbiome that are consistent across multiple
datasets. Patients with AUD were characterized by a reduction in Firmicutes, which was
mostly attributed to a reduction in the Clostridia class. At the family level, this reduction can
be explained by the lower abundance of Ruminococcaceae, Lachnospiraceae, Oscillospiraceae,
and Butyricicoccaceae which contain multiple butyrate-producing bacteria. Patients with
ALD showed a further reduction in most of these families compared to those with AUD
without liver disease. The role of butyrate in maintaining gut health is multidirectional
and is maintained through multiple mechanisms. Butyrate is the main source of energy for
colonocytes [23]. Butyrate beta-oxidation induces physiological hypoxia in the colon [24].
Reduction of butyrate-producing bacteria, resulting in smaller availability of substrate for
beta-oxidation leads to greater availability of oxygen, making the colonic environment
more favorable to facultative anaerobes. This is reflected in our results: we have shown a
significant increase in facultative anaerobes (such as the Enterobacteriaceae family) and a
significant increase in multiple aerobic pathways in inferred metagenomic analysis. Due to
the preferential use of butyrate as an energy source, a relatively small portion (about 5%)
is absorbed into circulation [25]. However, even in small quantities, butyrate appears to
have a strong anti-inflammatory effect on the host. This effect is achieved through multiple
pathways, including interactions with G-protein coupled receptors (most notably GPR41
and GPR43 [26]), activation of nuclear factor kappaB (NF-kB), activation of PPAR-gamma,
and inhibition of IFN-gamma signaling [27]. An additional mechanism through which the
reduction of Ruminococcaceae, Lachnospiraceae, and other butyrate-producing bacteria could
influence the course of AUD and its complications is through their effect on the intestinal
barrier. Butyrate has been shown to have a protective effect on alcohol-induced intestinal
barrier impairment, leading to a reduction in intestinal permeability [28]. The increase in
intestinal permeability associated with the lower availability of butyrate allows increased
endotoxin translocation, leading to sustained systemic inflammation [29]. Patients with
AUD with and without liver disease have increased intestinal permeability; however, the
increase is larger in patients with ALD [30]. This is consistent with our results, where
patients with AUD had a smaller relative abundance, compared to HC, of the Ruminococ-
caceae family (which includes multiple intestinal barrier-protective bacteria), and patients
with ALD showed further reduction of this family compared to AUD without liver disease.
Patients with ALD are characterized by increased circulating levels of LPS, and the level of
endotoxin correlates with the severity of liver injury [31]. Our results indicate that AUD is
associated with a significantly higher abundance of Proteobacteria and that this increase is
larger for patients with ALD. The increase in Proteobacteria is mainly attributed to the higher
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abundance of Gammaproteobacteria. The increase in this class is significantly correlated with
higher serum levels of LPS [32]. Furthermore, the immunogenicity of LPS derived from
Proteobacteria is significantly stronger compared to bacteria from other phyla [33]. Increased
intestinal permeability combined with a greater abundance of highly immunogenic Pro-
teobacteria-derived LPS are important contributors to systemic inflammation associated
with AUD and ALD. At the family level, the most notable increase in bacteria from the
Proteobacteria phylum was observed in Enterobacteriaceae and Burkholderiaceae. Enterobac-
teriaceae play an important role in the course of liver diseases. In patients with hepatic
encephalopathy, and they have been shown to be associated with systemic inflammation
and worsening of cognition [34]. Furthermore, Enterobacteriaceae are responsible for most
cases of spontaneous bacterial peritonitis, which is the most common infection in patients
with liver cirrhosis [35]. Burkholderiaceae further increases ethanol-associated inflammation.
It is significantly correlated with IFN-gamma-inducible protein 10 (IP-10, sometimes called
CXCL10), which exacerbated the inflammatory response in the murine model of ALD [36].
Fusobacteria, the phylum with the largest increase in AUD compared to HC in our study,
further contributes to inflammation. It has been shown to be significantly correlated with
higher levels of pro-inflammatory cytokines IL-2 and IL-13 [34]. In light of a report showing
that supplementation with Lactobacillus rhamnosus GG ameliorates liver injury in a murine
model [37], the increase in Lactobacilli in ALD compared to other causes of liver disease
might appear paradoxical. However, a previous shotgun metagenomic study of ALD
has shown that the increase in Lactobacillus was mostly attributed to oral species (such
as Lactobacillus salivarius) and did not include Lactobacillus rhamnosus. We provide two
potential mechanisms for the higher abundance of Lactobacillus in ALD compared to other
causes of liver injury. First, it could be attributed to alcohol-induced disturbances in bile
acids metabolism. Feces of patients with ALD had a lower concentration of deoxycholic
acid (DCA) [38], which exhibits strong antimicrobial properties. Reduction in a DCA could
result in a colonic environment more favorable for bacteria typically present in the oral
microbiome (including Lactobacillus) [39]. Second, the higher abundance of Lactobacillus
could be attributed to its metabolic abilities, namely, the ability to metabolize ethanol [40].
Inferred metagenomic analysis revealed some interesting alterations in AUD. The glyoxy-
late cycle enables the use of ethanol as a source of acetyl coenzyme A [41]. Enrichment
of this pathway could be one of the adaptive strategies employed by bacteria more abun-
dant in the AUD. Another interesting insight is provided by the enrichment of multiple
pathways associated with the synthesis of heme. Dietary heme has been shown to alter
the composition of the microbiome and increase intestinal inflammation [42]. Whether
microbiome-derived heme has similar biological effects remains to be elucidated.

Our study has an important limitation. Although we have provided a comprehensive
examination of the microbiome changes associated with AUD and ALD, the exploratory
nature of our study means that we cannot establish causality based on our findings. To
fully understand the associations identified in our study, it is crucial to conduct further,
mechanistic studies that aim to establish causality.

4. Materials and Methods
4.1. Characteristics of the Included Datasets and Overview of the Pipeline

We have included publicly available datasets from NCBI’s Sequence Read Archive
(SRA) or European Nucleotide Archive (ENA), which provided raw 16S rRNA sequencing
data and corresponding metadata for the following groups: (1) patients with AUD and
healthy controls (HC), (2) patients with AUD without liver disease and patients with
ALD, (3) patients with ALD and liver disease of other etiology. The characteristics of the
included studies are presented in Table 1. The overview of the pipeline is illustrated in
Supplementary Figure S1. Datasets providing samples for patients with AUD and HC
were analyzed using two approaches: the combined dataset approach (where data from
all qualifying studies was pooled for downstream quality control and statistical analysis)
and the individual dataset approach (where each study was analyzed separately). Since
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only one dataset was available for both comparison of ALD with other causes of liver
disease and with AUD (with respective accession IDs SRP185798 and SRP187981), they
were analyzed using an individual study approach only. Statistical analysis was performed
using R, version 4.1 [43].

Table 1. Characteristics of the included datasets.

Dataset Region Platform Primers Country Samples

DRP003174 [15] V1–V2

454 GS FLX Titatnium
and Junior (Roche
Applied Science,
Penzberg, Upper
Bavaria, Germany)

27F/338R Japan AUD n = 16, HC n = 40

SRP182072 [16] V3–V4 Illumina HiSeq
(Illumina, USA) 342F/806R Norway AUD n = 21, HC n = 30

SRP185798 [17] V3–V4 Illumina MiSeq and
HiSeq (Illumina, USA) 341F/805R USA ALD n = 6, NALD n = 54

SRP187981 [18] V4 Illumina MiSeq
(Illumina, USA) 515F/806R USA, Mexico, Europe ALD n = 31, AUD n = 30, HC n = 4

SRP246894 [19] V4 Illumina MiSeq
(Illumina, USA) 515F/806R USA AUD n = 55, HC n = 159

SRP300989 [20] V3–V4 Illumina MiSeq
(Illumina, USA) 338F/806R China ALD n = 38, HC n = 27

4.2. Data Preparation

The entire workflow was run using Snakemake version 7.14.0 [44]. Primers were
removed using Cutadapt [45] with a minimum read length set to 30 and other parameters set
to default (i.e., a maximum error rate of 0.1). The reads were then merged (with a maximum
number of mismatches set to 1 and minimum % identity of alignment set to 80), truncated to
250 bases, and quality filtered (with a maximum expected error of 1.0). Obtained sequences
were denoised using the UNOISE3 algorithm implemented in USEARCH v11.0.667 [11,46],
resulting in the generation of zero-radius operational taxonomic units (zOTUs). zOTUs
are generally equivalent to OTUs (however, with some notable differences, e.g., in contrast
to normal OTUs, zOTUs undergo denoising) with a 100% identity threshold, that is, each
zOTU represents one correct biological sequence. The use of a 100% identity threshold
is the optimal approach for the data from the V4 hypervariable region sequencing [47].
Taxonomy was determined using DECIPHER IDTAXA [12], with GTDB version 07-RS207
as a reference database [48]. The obtained zOTU table, corresponding metadata, and
taxonomy have been imported into the Phyloseq object for downstream analysis [49].
Functional abundance prediction was performed using PICRUSt 2 [50] with the Metacyc
database as a reference. The plots were generated using ggplot2 version 3.3.6 [51].

4.3. Variance Contribution and Beta-Diversity

Before calculating variance contribution and beta diversity, the zOTU tables were
normalized using PhilR [52]. The beta diversity was then assessed using Euclidean distance.
The use of PhilR with Euclidean distance has several advantages over commonly used meth-
ods for asserting beta diversity. It incorporates phylogenetic information, but contrary to
other phylogenetically-aware methods (such as UniFrac), it accounts for the compositional
nature of microbiome datasets, which is crucial for the reduction of spurious results [53].
The statistical significance of beta diversity was determined using PERMANOVA with
999 permutations. The variance contribution was calculated using redundancy analysis
(RDA, implemented in the Vegan package version 2.6–2 [54]). The disease status (both
for the individual and combined dataset approach) and the SRA identifier (only for the
combined approach) were used as constraining variables.

4.4. Alpha Diversity

To account for differences in the read depth between samples (which influences
alpha-diversity estimates [55]), samples were normalized using asymptotic extrapolation.
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In contrast to ordinary rarefication to a given read length, the asymptotic extrapolation
does not require throwing away valid reads and, as a result, enables a more accurate
estimation of alpha diversity [22]. Alpha diversity was measured using Hill numbers with
q values equal to 0 (species richness), 1 (Hill–Shannon diversity), and 2 (Hill–Simpson
diversity). The use of Hill numbers solves several problems associated with traditional
alpha diversity measures such as Shannon or Simpson diversity; it offers conceptually
simpler interpretation (e.g., reduction of 1/3 of the species in a community results in a 1/3
reduction of Hill diversity; in contrast for both ordinary Shannon and Simpson indices,
the reduction is much smaller than anticipated). For a more comprehensive description of
asymptotic estimation and Hill numbers, we refer the reader to the seminal paper by Chao
et al. [22]. Both asymptotic estimation and Hill number calculation were performed using
the iNEXT package [56].

4.5. Differential Abundance Testing

Differential abundance testing was performed using ANCOM-BC [13]. ANCOM-BC
is one of the compositionally aware methods for DA testing which accounts for uneven
sampling using a novel method of bias correction. It has been shown to significantly reduce
FDR compared to other approaches while maintaining adequate statistical power [13,57].
A comprehensive discussion of the statistical properties and assumptions underlying
ANCOM-BC can be found in the manuscript by Lin et al. [13]. Differential abundance
testing was performed at phylum, class, order, family, and genus levels. Since sequencing
of individual subregions of 16S rRNA (e.g., V4) does not achieve the taxonomic resolution
required for accurate classification of species [58], differential abundance testing at this
level was not performed.

4.6. Combined Dataset Analysis

In the combined approach, all datasets that provided samples for patients with AUD
and HC were analyzed as one dataset, with a pipeline analogous to the individual study
approach. To obtain globally aligned reads (i.e., starting and ending at the same posi-
tion of 16S rRNA), we have used 515F (5′-GTGYCAGCMGCCGCGGTAA-3′) and 805R
(5′-GACTACHVGGGTATCTAATCC-3′) primers. The dataset DRP003174 was excluded
from the combined approach due to sequencing of the V1–V2 region, which could not be
globally aligned with V3–V4. The significance testing was performed analogously to the
individual study approach (with one notable difference of using SRA ID as a concomitant
variable in ANCOM-BC). Alpha-diversity and CLR-transformed microbial abundances
from the individual study approach were transformed to Agresti’s generalized odds ratios
using the genodds package [59] and summarized with the random-effects model using the
meta package [60].

4.7. Deep Learning Analysis

We used the PopPhy-CNN convolutional neural network for taxonomy-based pre-
diction of disease status (AUD versus HC) [61]. The model was trained using default
settings (L2Lambda = 0.001). Due to the high variance across datasets, we re-trained the
model with increased lambda values (0.003 and 0.01) to strengthen the L2-regularization.
L2-regularization reduces the weights features by adding the sum of squares of feature
weights to the loss function. Higher values of lambda result in bigger punishment of large
feature weights. Due to a significant class imbalance in one of the datasets, we performed
random oversampling (ROS). ROS is a technique that combats class imbalance by multiply-
ing randomly chosen samples from a minority class in the training set. The metrics used
for the evaluation of the model were precision, recall, an area under the curve (AUC), and
F1-score (harmonic mean of precision and recall).
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5. Conclusions

In conclusion, we have shown that the batch effect is one of the largest contributors
to variance across different datasets that examine AUD. The most consistent changes in
the microbiome in AUD were related to a reduction in SCFA-producing bacteria and an
increase in bacteria associated with inflammation. Inferred metagenomic analysis showed
that ALD is associated with an increase in multiple pathways related to bacterial heme
synthesis, which so far has not been studied in the context of alcoholic liver disease. Deep
learning analysis has shown significant variance in the microbiome-based prediction of
AUD. Our findings confirm that AUD is associated with negative microbiome alterations,
which could be mechanistically linked to liver injury.
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