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Abstract: Although a plethora of DNA modifications have been extensively investigated in the
last decade, recent breakthroughs in molecular biology, including high throughput sequencing
techniques, have enabled the identification of post-transcriptional marks that decorate RNAs; hence,
epitranscriptomics has arisen. This recent scientific field aims to decode the regulatory layer of the
transcriptome and set the ground for the detection of modifications in ribose nucleotides. Until now,
more than 170 RNA modifications have been reported in diverse types of RNA that contribute to
various biological processes, such as RNA biogenesis, stability, and transcriptional and translational
accuracy. However, dysfunctions in the RNA-modifying enzymes that regulate their dynamic level
can lead to human diseases and cancer. The present review aims to highlight the epitranscriptomic
landscape in human RNAs and match the catalytic proteins with the deposition or deletion of a specific
mark. In the current review, the most abundant RNA modifications, such as N6-methyladenosine
(m6A), N5-methylcytosine (m5C), pseudouridine (Ψ) and inosine (I), are thoroughly described, their
functional and regulatory roles are discussed and their contributions to cellular homeostasis are
stated. Ultimately, the involvement of the RNA modifications and their writers, erasers, and readers
in human diseases and cancer is also discussed.

Keywords: post-transcriptional modifications; mRNA stability; translation efficiency; alternative
splicing; writers; erasers; readers; m6A; m5C; Ψ

1. Introduction

Ever since the central dogma of molecular biology was proposed by Francis Crick, our
perception of the flow of genetic information has been dramatically broadened. Over the
years, the flux of information has revealed numerous processing steps that ensure proper
gene expression and has highlighted the high complexity of the human genome, paving the
way for deciphering the hidden aspects of life [1]. Moreover, the identification of various
transcription factors and the functional clarification of the transcriptional machinery, as
well as the rise of genomics, has provided new insights into the genetic programs that
govern human development [2]. Although a plethora of chemical DNA modifications had
been reported decades before the sequencing of the first nucleic acid, recent breakthroughs
in sequencing techniques has enabled the in-depth study of genomes and has led to the
introduction of epigenomics [3]. In the same manner, through the rise of epitranscriptomics,
RNA sequencing attempts to decode the regulatory layer that rests between genome and
proteome, namely transcriptome, and set the ground for the detection of modifications in
ribose nucleotides [4,5].

For decades, it was known that RNA molecules were decorated with various chemical
modifications, but it was only after the revolution in molecular biology and the advent of
RNA sequencing techniques that the emerging field of epitranscriptomics spawned. Until
now, more than hundreds of multiple RNA chemical modifications have been reported,
whereas only a few of them have been systematically studied [6] (Figure 1). These post-
transcriptional changes have been observed in a wide spectrum of newly transcribed RNAs,

Int. J. Mol. Sci. 2023, 24, 2387. https://doi.org/10.3390/ijms24032387 https://www.mdpi.com/journal/ijms

https://doi.org/10.3390/ijms24032387
https://doi.org/10.3390/ijms24032387
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/ijms
https://www.mdpi.com
https://orcid.org/0000-0003-3939-357X
https://orcid.org/0000-0002-4071-6076
https://orcid.org/0000-0003-2427-4949
https://doi.org/10.3390/ijms24032387
https://www.mdpi.com/journal/ijms
https://www.mdpi.com/article/10.3390/ijms24032387?type=check_update&version=1


Int. J. Mol. Sci. 2023, 24, 2387 2 of 25

including transfer RNAs (tRNAs), messenger RNAs (mRNAs), ribosomal RNAs (rRNAs),
small non-coding RNAs, circular RNAs (circRNAs) and long non-coding RNAs (lncRNAs)
(Supplementary Table S1).
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Figure 1. Venn diagram demonstrating the number of common RNA modifications that exist among
many classes of RNA molecules, including tRNAs, mRNAs, and rRNAs, as well as snRNAs.

RNA modifications are implicated in the regulation of several facets of RNA processing,
thus possessing an indispensable role for the generation of functional RNA molecules [7,8].
These changes can be added or removed by different types of enzymes that catalyze their
biosynthetic reactions. More precisely, the deposition of the chemical marks onto the
RNAs is mediated by “writers”, a protein family that forms multiprotein complexes. The
“writers” constitute a class of enzymes that act on RNAs and covalently introduce methyl
and/or acetyl groups into the RNA nucleotides [9,10]. On the contrary, “erasers” represent
enzymes that remove these epitranscriptomic marks, whereas “readers” are binding pro-
teins responsible for the selective recognition of RNA modifications [11]. Notably, each
modification is deposited, erased, or read by different members of the respective protein
group that causes the alteration.

Interestingly, N6-methyladenosine (m6A), N5-methylcytosine (m5C), pseudouridine
(Ψ) and inosine (I) are the most abundant RNA modifications in eukaryotic cells and their
roles have been extensively investigated. Additionally, 7-methylguanosine (m7G), N1-
methyladenosine (m1A), 3-methylcytidine (m3C), queuosine (Q), uridine (U) and ribose
methylation (2′-O-Me or Nm) are RNA-related chemical marks that also fall under the
scope of modern epitranscriptomics research (Supplementary Table S1) [6]. The present
review aims to depict the human epitranscriptomic landscape in various types of RNA
molecules and match the different RNA-modifying proteins with a specific mark. An
additional goal is to summarize the functional and regulatory roles of each modification,
among the different types of RNAs, in order to elucidate their contribution to cellular
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homeostasis. Ultimately, a thorough investigation of their involvement in human diseases,
including cancer, is also discussed.

2. The Landscape of RNA Modifications

The widespread post-transcriptional process of RNA editing affects all nucleotides: A,
U, C, and G. Of note, RNA modifications have been reported in all RNA types, including
coding and non-coding ones. The abundancy of each modification among the different
RNA species varies and depends on the phase of the cell cycle, the cell type, as well as the
cellular responses and requirements. Additionally, it should be noted that several RNA
modifications (e.g., m1A, I) can affect the Watson–Crick base-pairing, leading to either the
misincorporation of nucleotides in the cDNA synthesis procedure or a blockage in the
reverse transcriptase (Table 1). Consequently, these chemical marks induce ‘modified base
pairs’ that impact on the RNA folding, 3D structures and flexibility of the molecules [12].

2.1. Chemical Modifications of Adenine RNA Base

Adenine, the most heavily modified RNA nucleotide, can be altered in different
ways; this includes, for example, methylations on the nitrogen atoms of the adenine base
generating m6A and m1A modifications, as well as conversions of adenine to inosine
(A-to-I).

2.1.1. N6-Methyladenosine (m6A)

Although it has been over 40 years since m6A was discovered, it is still the center of
attention; many studies aim to investigate this type of RNA modification and its functional-
ity, since it constitutes the most prevalent internal RNA change both in yeast and higher
eukaryotes [13]. Going back to 1975, different research teams found that approximately
0.3% of total adenine bases are N6-methyl-modified [14,15], indicating its high abundancy
in the transcriptome. Recent studies have confirmed that more than 8000 human mRNAs
and more than 300 ncRNAs harbor m6A sites [16]. More precisely, Meyer et al. identified
>40,000 m6A peaks in human RNAs, while their bioinformatics analysis supported that
~95% of the m6A are located at mRNAs, whereas <2% of the m6A sites are found in ncR-
NAs [16]. In human cells, m6A is in abundance on mRNAs, highlighting its involvement in
multiple biological processes, whereas its presence in rRNAs affects translation. It should
be noted that m6A methylation has also been detected in other RNA species, such as
microRNAs (miRNAs) and circRNAs, contributing to their biogenesis and maturation;
meanwhile, in lncRNAs m6A, bases are responsible for mediating transcriptional repres-
sion, thus affecting their functionality (Supplementary Table S1) [17]. On the contrary,
although several epitranscriptomic studies focusing on tRNAs support the existence of a
plethora of modifications, there is no evidence of m6A in the nucleotide sequence of the
human tRNAs.

The deposition of a methyl group onto the sixth nitrogen atom of A is catalyzed by spe-
cific enzymes, called m6A-methyltransferases [11]. More precisely, Methyltransferase-like 3
(METTL3) is the first confirmed methyltransferase that can individually incorporate m6A
modifications into mRNAs and lncRNAs [18]. In the same manner, the high homolog of
METTL3, Methyltransferase-like 14 (METTL14), catalyzes the formation of m6A (Figure 2).
Multiple studies have reported that both METTL3 and METTL14 exhibit catalytic functions
by themselves, indicating that they constitute the most significant m6A writers [19].
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Figure 2. Common eukaryotic mRNA modifications that have been identified. The abundancy of each
modification is strictly regulated by (a) “writers”, proteins that incorporate the specific modification
in specific mRNA sites, (b) “erasers”, which catalyze the removal of a specific modification from the
mRNA and (c) “readers”, which interact with specific modifications to regulate a wide spectrum of
cellular processes.

However, these enzymes form a multi-subunit complex that mediates the genera-
tion of m6A sites, synergistically targeting specific sequences known as DRACH motifs
(D = G/A/U, R = G/A, H = A/U/C). Additional proteins, such as the Wilms tumor 1-
associated protein (WTAP), the Vir-like m6A methyltransferase-associated (VIRMA) protein,
the RNA binding motif protein 15/15B (RBM15/15B), and the Zinc-finger CCCH-type-
containing 13 (ZC3H13) protein, are implicated in the formation and regulation of the m6A
methyltransferase complex [20,21]. For instance, WTAP stabilizes the methyltransferase
complex, whereas VIRMA guides the complex near the 3′ untranslated regions (UTRs) and
the stop codon regions of the mRNAs [22–24]. Furthermore, except from these fundamental
methyltransferases, it has been recently verified that an additional member of the protein
family, Methyltransferase-like 16 (METTL16), can act in an independent manner, catalyzing
the m6A formation in both mRNAs and lncRNAs [25,26].

In the case of miRNAs, various scientific reports have supported that pri-miRNAs can
be methylated by either METTL3 or METTL14, which facilitate miRNA maturation [27,28].
In the same manner, METTL3 regulates m6A levels in circRNAs [29]. Interestingly, although
limited information is known about the enzymes that are responsible for base modifications
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on human rRNAs, it has been proven that Methyltransferase-like 5 (METTL5) is the m6A
“writer” of the 18S rRNA, which is stabilized by TRMT112, whereas ZCCHC4 acts on the
28S rRNA (Table 1) [30–32].

Table 1. Enzymes catalyzing the addition, removal and recognition of common RNA modifications
in human cells.

Modification Base Pairing Enzyme Type Enzyme Name

m6A Canonical

Writers METTL3, METTL14, METTL16, METTL5, ZCCHC4
Erasers ALKBH5, FTO

Readers YTHD, IGF2, IGF2BP1-3, eIF3, FMR1, LRPPRC,
HNRNPC, HNRNPA2B1

m1A Non-canonical
Writers TRM6, TRMT10C, TRM61A, TRM61B, NML
Erasers ALKBH1, ALKBH3
Readers YTHDF2?, YTHDF3

A-to-I Non-canonical
Writers ADAT2-ADAT3, ADAT1, ADAR2, ADAR1
Erasers DAP3?
Readers ?

m5C Canonical
Writers NSUN1 to NSUN7, DNMT2, p120, TRDMT1
Erasers TET1 to TET3?, MBD2/4?, ALKBH1?, ALKBH6?
Readers ALYREF, YBX1, RAD52

m3C Non-canonical
Writers METTL2A, METTL2B, METTL6, METTL8
Erasers ALKBH1, ALKBH3
Readers ?

m1G Non-canonical
Writers TRMT5, TRMT10, RG9MTD2, RG9MTD1,

RG9MTD3, SDR5C1
Erasers ?
Readers ?

m7G Canonical
Writers WBSCR22/TRMT112, RNMT, WDR4, METTL1
Erasers ?
Readers ?

Q Non-canonical
Writers ?
Erasers ?
Readers ?

C-to-U Non-canonical
Writers APOBEC1, APOBEC3A?, APOBEC3G?
Erasers ?
Readers ?

D Non-canonical
Writers DUS1 to DUS4
Erasers ?
Readers ?

Ψ Non-canonical
Writers PUS1 to PUS10, PUS7L, RPUSD1 to RPUSD4, DKC1
Erasers ?
Readers PUM2?

Uridylation Non-canonical
Writers TUT4, TUT7
Erasers ?
Readers DIS3L2

Nm Canonical

Am Writer FTSJ1 to FTSJ3, FBL
Cm Writer FTSJ1 to FTSJ3, CCDC76, FBL
Gm Writer TARBP1, FTSJ1, MRM1, RNMTL1, TrmH, FBL
Um Writer FTSJ1 to FTSJ3, FBL, TRMT44

On the other hand, only two demethylases have emerged as the universal molecular
“erasers” of m6A, the fat mass and obesity-associated protein (FTO), and the Human
AlkB homolog H5 (ALKBH5) protein [33,34]; meanwhile, various binding proteins can
read m6A alterations, including members of the YT521-B homology domain-containing
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proteins (YTHDF1-3 and YTHDC1-2), insulin-like growth factor 2 (IGF2), mRNA-binding
proteins (IGF2BP1-3), Fragile X messenger ribonucleoprotein 1 (FMR1), Leucine-rich PPR
motif-containing protein (LRPPRC), heterogeneous nuclear ribonucleoprotein (HNRNP)
protein family members (HNRNPC and HNRNPA2B1) and the eukaryotic initiation factor
3 (eIF3) [10,11,13,35].

Undoubtedly, the existence of m6A in multiple RNA types manifests its involvement
in the regulation of almost all phases of RNA metabolism, including RNA structure,
localization, stability, and shelf life [21]. In human rRNAs, two m6A sites have been
reported: one at position A1832 in 18S rRNA, as well as one at position A4220 in 28S rRNA
(Tables 2 and 3) [32,36,37]. Structural analyses have revealed that these RNA modifications
are located at catalytic ribosomal regions and, therefore, may affect the function of the
ribosomes being involved in different processes, such as ribosome heterogeneity, and
translation rate and efficiency [38].

Table 2. Position and type of RNA modifications that have been detected in human 18S rRNA.

Position Modification Position Modification Position Modification Position Modification

27 Am 484 Am 822 Ψ 1328 Gm
34 Ψ 509 Gm 863 Ψ 1337 ac4C
36 Ψ 512 Am 866 Ψ 1347 Ψ
93 Ψ 517 Cm 867 Gm 1367 Ψ
99 Am 572 Ψ 897 Ψ 1383 Am

105 Ψ 576 Am 918 Ψ 1391 Cm
109 Ψ 590 Am 966 Ψ 1442 Um
116 Um 601 Gm 1004 Ψ 1445 Ψ
119 Ψ 609 Ψ 1031 Am 1447 Gm
121 Um 621 Cm 1045 Ψ 1490 Gm
159 Am 627 Um 1046 Ψ 1625 Ψ
166 Am 644 Gm 1056 Ψ 1639 m7G
172 Um 649 Ψ 1081 Ψ 1643 Ψ
174 Cm 651 Ψ 1136 Ψ 1668 Um
210 Ψ 668 Am 1174 Ψ 1678 Am
218 Ψ 681 Ψ 1177 Ψ 1692 Ψ
296 Ψ 683 Gm 1232 Ψ 1703 Cm
354 Um 686 Ψ 1238 Ψ 1804 Um
406 Ψ 797 Cm 1244 Ψ 1832 m6A
428 Um 799 Um 1248 m1acp3Ψ 1842 ac4C
436 Gm 801 Ψ 1272 Cm 1850 m6

2A
462 Cm 814 Ψ 1288 Um 1851 m6

2A
468 Am 815 Ψ 1326 Um

Recently, multiple studies have focused on the functional role of m6A modification
in mRNAs, and its involvement in the mRNA metabolism and fate. m6A sites have been
detected in various sites across the mRNAs of eukaryotic cells, such as the 5′ and 3′ UTRs,
and the coding sequence (CDS); however, it is particularly enriched in 3′-UTRs around the
termination codons. In particular, approximately 50% of the m6A sites are located at the last
exon of the transcripts [16]. In addition, m6A modifications have been observed near exonic
splice junctions in the CDS region and have been shown to affect the alternative splicing
of human precursor mRNAs. More precisely, the mechanism involves the binding of the
nuclear reader YTHDC1 to m6A sites, which recruits multiple splicing factors, including the
SRSF3 that enhances exon inclusion and regulates the mRNA splicing by directly guiding
the spliceosome in the appropriate splice sites [13,39].
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Table 3. Position and type of RNA modifications that have been detected in human 28S rRNA.

Position Modification Position Modification Position Modification Position Modification

389 Am 2495 Ψ 3804 Am 4417 m5C
391 Am 2619 Ψ 3809 Am 4426 Cm
1303 Gm 2774 Am 3820 Cm 4427 Ψ
1309 m1A 2791 Cm 3823 Ψ 4441 Ψ
1310 Am 2802 Am 3830 Ψ 4463 Ψ
1313 Am 2811 Cm 3832 Ψ 4464 Gm
1327 Cm 2824 Um 3846 Am 4468 Um
1509 Gm 2826 Ψ 3848 Cm 4469 Gm
1511 Am 2830 Ψ 3863 Ψ 4470 Ψ
1521 Am 2848 Cm 3866 Cm 4491 Ψ
1523 Ψ 2863 Gm 3878 Gm 4493 Am
1569 Ψ 3606 Gm 3899 Ψ 4500 m3U
1612 Gm 3616 Ψ 3904 Um 4502 Ψ
1664 Ψ 3618 Ψ 3923 Gm 4401 Ψ
1670 Ψ 3674 Ψ 3938 Ψ 4506 Cm
1731 Ψ 3680 Cm 4020 Gm 4522 Ψ
1747 Gm 3694 Ψ 4032 Cm 4541 Am
1760 Um 3697 Am 4166 Gm 4546 Ψ
1766 Ψ 3703 Am 4197 Um 4549 Ψ
1768 Ψ 3709 Ψ 4198 Gm 4560 Am
1769 Ψ 3713 Ψ 4220 m6A 4588 Gm
1779 Ψ 3723 Gm 4263 Ψ 4590 Um
1847 Ψ 3737 Ψ 4266 Ψ 4593 Gm
1849 Ψ 3739 Am 4269 Ψ 4598 Ψ
1858 Am 3741 Ψ 4276 Um 4606 Ψ
1868 Cm 3743 Ψ 4282 Ψ 4607 Gm
2338 Cm 3747 Ψ 4323 Ψ 4643 Ψ
2350 Am 3749 Ψ 4331 Ψ 4659 Ψ
2351 Gm 3761 m5C 4340 Gm 4937 Ψ
2352 Cm 3764 Am 4362 Gm 4966 Ψ
2388 Am 3771 Gm 4373 Ψ 4975 Ψ
2402 Um 3787 Cm 4390 Ψ 4506 Cm
2409 Cm 3797 Ψm 4393 Ψ
2411 Gm 3801 Ψ 4412 Ψ

The nuclear export of mature transcripts is catalyzed by writers, erasers, and read-
ers of m6A. Specifically, m6A hypermethylated sites facilitate the transportation of the
mRNA into the cytosol by their binding to the nuclear protein YTHDC1, which delivers
the molecule to nuclear export proteins [40]. Furthermore, into the cytosol, the m6A methy-
lation regulates protein synthesis through a plethora of enzymes that cooperate to increase
translation efficiency [41,42]. METTL3 incorporates m6A into the UTRs and binds to eIF3
to form the mRNA loop and promote translation, whereas YTHDF1 and YTHDF3 can also
enhance translation through the YTHDF-eIF3 pathway [43,44]. Notably, the recruitment of
m6A readers is also necessary for maintaining mRNA stability, while m6A sites regulate
secondary structures [45]. Associated studies have supported that, in human cells, the
downregulation of the writer protein METTL3 has led to an increase in the half-life of the
mRNAs, indicating that m6A levels directly affect the mRNA’s fate [46].

2.1.2. N1-Methyladenosine (m1A)

The m1A constitutes an additional methylation of adenine and the m1A RNA-modifying
proteins regulate its dynamic abundancy in both ncRNAs and mRNAs. Most m1A sites
have been identified at specific positions in tRNAs, around the GC-rich regions, (Figure 3),
whereas m1A is conserved in position 1309 of the human 28S rRNA (Table 3).
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M1A has also been found in specific sites in mitochondrial RNA (mt-RNA), as well as
in HGGAGRA motifs ((H = A/U/C, R = G/A) of the lncRNAs [47]. In the case of mRNAs,
studies have shown that only one m1A modification is present in each transcript within the
GUUCNANNC sequence, which is mainly located in the 5′ UTRs and/or in the first splice
site [48,49]. In contrast to m6A, the addition of a methyl group into the first atom of the
base is catalyzed by TRMT10 and the TRMT6/TRMT61 complex, which are members of
the tRNA methyltransferase protein family (TRMT); meanwhile, ALKBH1 and ALKBH3
are the key enzymes that erase this type of modification (Table 1). Notably, Nucleomethylin
(NML), an additional methylase, introduces methylations on 28S rRNA [50,51]. As for the
proteins that recognize m1A sites, it has been shown that YTHDF2 and YTHDF3 have a low
binding affinity for m1A. Although Heat-responsive protein 12 (HRSP12) is characterized
as a factor involved in the RNase P/MRP-mediated endoribonucleolytic cleavage of m6A,
a recent report supports that HRSP12 functions as a reader protein for m1A [52].

To continue, m1A methylations may play a regulatory or stabilizing role in modified
RNAs. As for the tRNA molecules, m1A in position 58 stabilizes the T-loop structure.
Especially in tRNAiMet, the m1A58 increases translation by activating polysomes [53]. On
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the contrary, it is known that the overexpression of m1A erasers decreases the translation
levels, while in the case of ALKBH3 overexpression, tRNA fragments (tRFs) can be formed
through tRNA cleavage [54]. In rRNAs, m1A participates in the formation of the 60S
subunit of the 80S complex [55]. Although m1A alterations in 5′ UTRs of the mRNAs
enhance translation efficiency, m1A in the CDS prevents protein synthesis [56]. Finally, the
m1A YTHDF2 and YTHDF3 proteins mediate the mRNA destabilization [50,57].

2.1.3. Adenine to Inosine (A-to-I)

In humans, the most common RNA editing procedure that results in the substitu-
tion of a specific nucleotide is adenine-to-inosine (A-to-I); in mRNA, this is catalyzed
by adenosine deaminase enzymes, namely ADARs, that act on double-stranded RNAs
(dsRNAs). The ADAR family includes three proteins, which are encoded by three ADAR
genes [58]. The typical protein structure of ADARs includes two distinct domains: the
dsRNA binding domain in the N-terminal and the deaminase domain in the C-terminal.
More precisely, ADAR1 and ADAR2 are globally expressed, possess a well-characterized
adenosine deamination activity and typically act on pre-mRNAs; however, in the case of
ADAR3, which is expressed in brain tissues, no deamination activity has been reported and
thus its function remains unclear (Table 1) [59]. However, recent studies have connected
ADAR3 with RNA editing inhibition, suggesting that ADAR3 acts as a negative regulator
of A-to-I editing [60,61]. Especially on tRNAs, the formation of inosine at position 34 is
catalyzed by the ADAT2/ADAT3 complex (Figure 3) [62,63].

Recent RNA-seq studies have confirmed a great number of A-to-I RNA editing sites
in human mRNAs. Interestingly, the majority of inosine residues are located at UTRs and
intronic regions; meanwhile, approximately 1000 editing sites have been found in protein-
coding regions, indicating that A-to-I editing has two distinct and critical roles in RNAs
[58,64,65]. Firstly, I bases affect the mRNA’s structure and influence the binding affinity
of proteins to the mRNA. Additionally, splicing and translation machineries recognize G
instead of I, influencing both splicing patterns and translation accuracy [66]. Secondly, I34
of tRNA is located at the wobble position and has been related to the codon recognition
mechanism [62,63]. Taken together, A-to-I editing constitutes a significant modification
that mediates protein synthesis in different layers, giving birth to various proteins that,
therefore, increase the proteome diversity.

2.2. Chemical Modifications of Cytosine RNA Base

Apart from adenine, a great number of post-transcriptional marks have also been
found in cytosine, among which m5C, m3C methylations, C-to-U RNA editing and the
synthesis of pseudouridine and dihydrouridine participate in various biological processes;
thus, these are at the center of epitranscriptome research.

2.2.1. N5-Methylcytosine (m5C)

The most dominant methylation of C in RNAs is the one occurring in the fifth nitrogen
atom of the C, namely m5C. This type of modification has been found in diverse types of
RNAs. Two distinct methyltransferase groups have been confirmed to incorporate m5C
in RNAs: the NOP2/Sun RNA methyltransferase (NSUN) family that includes seven
proteins and the DNMT2 [67]. On the contrary, Ten-eleven translocation methylcytosine
dioxygenase 1 (TET1) is a recently identified m5C eraser, whereas TET2 and TET3, MBD2/4,
ALKBH1 and ALKBH6 are potential m5C demethylases; however, none of them have
been confirmed [68–72]. Furthermore, the Aly/REF export factor (ALYREF), Y-box binding
protein 1 (Ybx1) and the Radiation sensitive 52 (RAD52) have been identified as the m5C
recognition proteins [73–77].

To begin with, m5C is present at multiple positions in human tRNAs, including C38,
C48 and C72, which are modified by NSUN2, NSUN6 and DNMT2 (Figure 3) [67]. In
particular, the incorporation of the methyl group at C38 in the anticodon loop is catalyzed
by DNMT2. Studies have reported that DNMT2 prevents tRNA from degradation and
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hence m5C38 enhances translation. Methylation in C48 facilitates the binding of m5C38
with nucleoside at position 15, forming the “Levitt pair”. This bond leads to the generation
of the characteristic L-structure that stabilizes the molecule. Additionally, C72 in the
acceptor stem is critical for tRNA biogenesis and is methylated by NSUN6, whereas the
3′-CCA motif is required [78]. The m5C modifications on tRNAs ensure the increased
stability of the molecules and their appropriate folding, and facilitate codon–anticodon
interactions [79,80].

In human rRNAs, m5C methylations have only been detected in the 28S rRNA and
incorporated by two NSUN proteins, NSUN1 and NSUN5. NSUN1 regulates transcription
and targets the C4417 residue, whereas NSUN5 binds to the position 3761 of the 28S
rRNA [81,82]. Both modified nucleotides support the translational fidelity and the proper
folding of the 28S rRNA. Furthermore, NSUN4 introduces a methyl group into the mt-12S
rRNA at position C841 [83]. m5C is also found in lncRNAs, where it facilitates its biogenesis
and ensures its stability [84]. Several studies report NSUN7 as the potential writer of m5C
in ncRNAs [78,85].

For more than 60 years, it has been known that m5C decorates mRNAs, but the exact
locations of this mark were unknown until the advent of liquid chromatography–mass
spectrometry and next-generation sequencing, which enabled the mapping of the m5C in
single nucleotide resolution [77]. Relevant studies support that UTRs are rich in m5C, while
in CDS regions, the m5C sites are depleted [73,86]. Until now, NSUN2 is the only confirmed
m5C mRNA writer, whereas ALYREF serves as the reader protein. Remarkably, the m5C
status regulates a plethora of cellular responses that affect mRNA fate and its exportation
from the nucleus. The wide distribution of m5C within the mRNAs affects the translation
efficiency in multiple ways. Firstly, the enriched m5C sites in 5′ UTRs modulate the
protein translation, while during cell aging, erasers are activated to demethylate these sites.
Additionally, the increased accumulation of m5C modifications in the 3′ UTRs demonstrates
an increased translational capacity [78,87]. As for the internal mRNA regions that are
subjected to m5C methylations, m5C can reduce translation efficiency by altering the codon–
anticodon binding affinity [88]. Overall, m5C in mRNAs are associated with vital biological
processes, including nuclear–cytoplasmic shuttling, maternal mRNA stabilization, splicing
and the translation rate [89].

2.2.2. N3-Methylcytidine (m3C)

The m3C represents a tRNA modification, which is found in position 32 in different
species [90,91]; however, in some human tRNAs, it is also located at the e2 position of
the variable loop (Figure 3). Additional reports have mentioned the presence of m3C on
mRNAs, but in much lower levels [92]. Although it was known that TRM140 methyltrans-
ferase inserts m3C in tRNAs of Saccharomyces cerevisiae, METTL2A, METTL2B, METTL6,
and METTL8 have recently been confirmed as human m3C methyltransferases [93,94].
Notably, METTL2A, METTL2B and METTL6 act on tRNAs, whereas METTL8 methylates
sites on mRNAs.

On the contrary, the human ALKBH3 erases m3C on tRNAs, but demethylation on
mRNAs is achieved by ALKBH1 [95,96]. As the molecular role of m3C32 in tRNAs, it has
been shown to interact with the nucleotide at position 38, which leads to the maintenance
of the anti-codon loop structure and the increase in the decoding accuracy. Due to its low
abundancy, the functionality of m3C in mRNAs remains unclear [97].

2.2.3. Cytidine to Uridine (C-to-U)

Except from A-to-I, another RNA editing mechanism that involves the conversion of
bases is the formation of U by C. The Apolipoprotein B mRNA editing enzyme (APOBEC)
converts the ribobase C to U in mRNA editing sites [98]. Although C-to-U editing has been
suggested to be involved in mRNA stability and translation accuracy, there are no relative
studies to prove that statement.
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2.2.4. Pseudouridine (Ψ)

The Ψ modification is the well-studied derivative of U and is prevalent in all classes
of RNAs. In humans, Ψ is mainly formed by members of the pseudouridine synthase
(PUS) family, PUS1-PUS10, while its readers and erasers remain uncertain. Ψ writers can
be divided into two separate groups: the guide RNA-dependent synthases that include
the small ribonucleoproteins H/ACA sRNPs, and the guide-independent PUS enzymes.
Briefly, the guide-dependent process is catalyzed by a two-step reaction that requires a
complementary RNA to guide the enzyme in the target region and a protein that forms the
modification [99]. On the contrary, the guide-independent pathway utilizes the members
of the PUS family, which can directly recognize the target sites [100]. However, the RNA-
binding protein PUM2 can recognize the UGUAR motif in human cells and, therefore, is a
candidate for being a potential Ψ reader [101,102]. Undoubtedly, the high levels of Ψ in all
the types of RNA reflect on its multidimensional implications in the RNAs’ life. Notably,
the great thermodynamic stability of the Ψ-modified RNAs is based on the strength of
the bond that is created between Ψ and A, whereas Ψ can also stabilize single-stranded
RNAs. In tRNAs, Ψ affects a plethora of cellular responses, including tRNA biogenesis,
degradation, and the production of tRFs. In particular, Ψ39 in the anticodon arm increases
the melting temperature, controlling the tRNA folding process [103].

rRNAs are also subjected to pseudouridylation through Dyskerin Pseudouridine
Synthase 1 (DKC1), an alternative enzyme that incorporates Ψ in 28S rRNAs [104]. Notably,
although an increased number of Ψ sites had already been detected, seven additional Ψ
residues have recently been identified in significant ribosomal regions: the first four at the
positions 897, 1045, 1136, 1232 of the 18S rRNA and the rest at positions 1768, 2619 and 4463
of the 28S (Tables 2 and 3). The 5.8S rRNA is also subjected to Ψ modifications at specific
locations (Figure 4). The high density of Ψ in rRNAs underlines its importance in ribosome
assembly and translational fidelity [105].
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In mRNAs, Ψ is added co-transcriptionally by PUS1, PUS7, and RPUSD4 enzymes,
and plays a critical role in the alternative pre-mRNA processing steps that affect gene
expression [105–107]. Moreover, Ψ sites are distributed throughout mRNA sequences,
being present in UTRs and CDS regions, and their regulatory role is to control mRNA
metabolism [105]. The mapping of Ψ sites uncovered that human mRNAs are highly
modified, ranging from 10–50% [108]. Briefly, Ψ can alter the primary protein sequence
through the misincorporation of one or more amino acids, or even promote the termination
codon readthrough during protein synthesis [109]. Furthermore, it should be mentioned
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that snRNAs harbor a plethora of Ψ sites crucial for their interactions with other RNAs and
protein molecules. For instance, Ψ6, Ψ7 and Ψ15 in the U2 snRNA sequence are necessary
for the assembly of the spliceosome machinery [110,111]. In the same manner, similar
modifications in U4, U5 and U6 snRNAs enhance the mechanism of splicing [112].

2.2.5. Dihydrouridine (D)

Besides Ψ, C can be edited into U to synthesize D, a highly conserved alteration found
in great abundancy at specific positions in the D-loop of tRNAs [113]. Dihydrouridine
synthase (DUS) enzymes are four protein molecules that form D in human tRNAs, with
DUS2 being the most dominant one. The incorporation of D into tRNAs has been linked to
tRNA folding and the increased flexibility of tRNAs, and it is possible to destabilize their
3D structures [114,115]. Although D was determined to be a tRNA-specific modification,
recent sequencing-based studies have supported the existence of D in coding RNAs and
lncRNAs; however, its biological role is still ambiguous [116].

2.3. Chemical Modifications of Guanine RNA Base

Even though modern epitranscriptomics is mainly focused on modifications occurring
in adenine and cytosine, several guanine-based alterations are vital for the fate of RNAs
and are thus worth mentioning.

2.3.1. N7-Methylguanosine (m7G)

Although the m7G mark is widely known due to its presence in tRNAs originat-
ing from multiple organisms, it is also associated with the eukaryotic 5′ capping of the
mRNA [117,118]. Different methyltransferase complexes act in the RNAs to incorporate
this type of modification. Specifically, in humans, the METTL1/WDR4 complex participates
in the formation of m7G in tRNAs, whereas WBSCR22 and TRMT112 proteins act synergis-
tically to add m7G on the 18S rRNA [119–121]. METTL1 can also methylate miRNAs, such
as let-7 miRNA, a critical procedure for their biogenesis [122]. On the other hand, RNA
guanine-7 methyltransferase (RNMT) is responsible for the m7G addition to the mRNA
cap [47].

As for the physiological role of m7G in tRNAs, the formation of m7G46 promotes
the mRNA translation and increases the tRNA stability [117]. It should be noted that,
although the catalytic activity of WBSCR22 recruits the m7G1639 in the human 18S rRNA,
this modification is not necessary for the biogenesis of the 40S ribosomal subunit [120].
Moreover, the special features of m7G in the 5′ cap of the mRNA enable its involvement in
vital biological pathways, including RNA maturation, nuclear export and cap-dependent
translation [118].

2.3.2. N1-Methylguanosine (m1G)

In human RNAs, the addition of a methyl group into the first atom of the ribose
ring of G is mediated by various writers that act independently. More precisely, tRNA
methyltransferase 5 (TRMT5) is the enzyme that catalyzes the incorporation of m1G at
tRNA position 37; meanwhile, in case of mitochondrial tRNAs, TRMT5 demonstrates a
notably lower activity and is replaced by TRMT10C, an additional tRNA methyltransferase
that introduces the m1G9 mt-tRNA modification [123,124]. Furthermore, the m1G9 methyl-
transferase TRMT10C can form multiprotein complexes with RG9MTD1 and SDR5C1, in
order to catalyze the process of G methylation [125,126]. According to several studies, the
formation of m1G in tRNAs is vital for proper tRNA folding and its tertiary structure, and
can prevent frameshifting during protein production [127]. Moreover, as far as mRNA is
concerned, although m1G writers have not been reported, the incorporation of a single m1G
mark into the mRNA sequence destabilizes the translation machinery, leading to reduced
levels of the generated protein [128].
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2.3.3. Queuosine (Q)

Q represents a tRNA-specific hyper-modified guanosine nucleoside derived from G,
which forms a plethora of derivatives, including galactosyl-queuosine (GalQ), mannosyl-
queuosine (ManQ), and glutamyl-queuosine (GluQ) [129,130]. It is worth mentioning that
Q34 on tRNAs protects tRNAs from ribonuclease degradation and affects the translation
accuracy [131,132].

2.4. Chemical Modifications of Uracil RNA Base

Although chemical modifications mainly occur in adenine, cytosine and guanine, few
studies have reported the existence of post-transcriptional marks in U.

2.4.1. N5-Methyluridine (m5U)

In RNAs, the methylation of the fifth nitrogen atom of the U ring creates the 5-
methyluridine (m5U), which constitutes a common modification both in tRNAs and rRNAs.
However, high-throughput sequencing studies have also revealed the existence of m5U in
mRNAs. Although TRMT2A and TRMT2B are the m5U-catalyzing protein enzymes that
add the methyl group into human tRNAs, rRNAs and mRNAs, neither erasers nor readers
have been identified yet [133,134]. Of note, m5U regions have been extensively studied in
human tRNAs and are found at position m5U54 in the T-loop, but also in the mitochondrial
tRNAs [134]. Its function is to maintain and stabilize the tertiary structure of tRNAs; as a
result the absence of the m5U54 mark can cause tRNA’s degradation and the generation of
tRFs [135].

2.4.2. N3-Methyluridine (m3U)

m3U is a major rRNA modification in multiple species, including humans, that is
detected in human 28S rRNA at position 4500 (Table 3). Until now, although recent reports
support that Beta-mannosyltransferases, Bmt5 and Bmt6, are responsible for the addition
of methyl groups into the rRNA of Saccharomyces cerevisiae, the human m3U writer remains
unknown [136]. Hence, its functional role in the rRNAs is unclear.

2.4.3. Uridylation

In higher eukaryotes, the post-transcriptional addition of nucleotides in the 3′ UTRs is
a major procedure for the stabilization of the newly synthesized RNA molecules [137]. The
3′ uridylation constitutes a widespread mechanism that is catalyzed by the terminal uridyl-
transferases TUT4 and TUT7 on different types of RNAs, in order to mark the molecules
for degradation [138,139]. Notably, the TUT4/TUT7 complexes target mRNAs and miR-
NAs, and control both stability and RNA homeostasis by fine-tuning RNA levels during
apoptosis [140]. An additional member of the TUT family, TUT1, has also been reported
to catalyze uridylation, while DIS3 Like 3’-5’ Exoribonuclease 2 (DIS3L2) recognizes the
uridylated sites [141].

2.5. 2′-O-Methylation (Nm) Modification

The Nm modification occurs post-transcriptionally via the incorporation of a methyl
substituent into the 2′-hydroxyl of the ribose in any base. Consequently, the Am, Cm, Gm
and Um modifications are generated. The Nm is widely distributed in all RNA types;
however, tRNAs and rRNAs are particularly enriched in this type of alteration [142,143].
It has been shown that Nm affects the RNA structure by increasing the thermodynamic
stability of the molecule in order to protect it from ribonucleases, and to enhance the
RNA:RNA base pairing and the formation of RNA duplexes [144–146]. On the contrary,
the tertiary RNA structures are disrupted, and the RNA–protein interactions are inhibited.

In tRNAs, Nm marks are mainly deposited by FtsJ RNA 2’-O-Methyltransferase 1
(FTSJ1), which recognizes the C32 and N34 regions in the anticodon loop, and the creation
of Cm32 and Nm34 influences the translation [147]. Additionally, TRMT44 constitutes a
potential Um writer in tRNASer [148]. In rRNAs, in the same manner as Ψ, Nm modifica-
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tions are formed in pre-rRNAs and their role is to prevent hydrolysis and thus increase
the structural rigidity of rRNAs [149]. Nm methylations are induced by snoRNAs that
activate and guide Fibrillarin (FBL), the 2′-O-RNA methyltransferase, to the target rRNA,
contributing to the fine-tuning of its function [143,150].

In mRNAs, Nm is present in the UTRs and more precisely in the 5′ mRNA termini,
whereas in CDS regions, the AGUA motif has been found to harbor this type of mod-
ification [151]. The 5′ mRNA termini of eukaryotic organisms are heavily methylated
and can form three types of caps: cap-0, cap-1 and cap-2. Nm is involved in the 5′ cap-1
(m7GpppNm) that is produced by CMTR1 and the 5′ cap-2 that includes the highly con-
served m7GpppNmNm region, generated by CMTR2 [152]. The Nm modifications are
highly involved in transcription processing, the mRNA stability and the protein synthesis
efficiency [152].

3. RNA Modifications in Human Disease

Over the years, systematic efforts to catalog the repertoire of modifications that are
embroidered on RNA molecules in different tissues and diverse pathophysiological condi-
tions has illuminated the correlation between epitranscriptome deregulation and disease
development (Table 4).

Table 4. Regulatory roles of RNA modifications in various human diseases.

Modification Physiological Role Human Diseases References

m6A
mRNA splicing, translation efficiency,

transcriptional repression
by lncRNAs

AML, CML, Obesity, Osteoporosis,
hepatocellular carcinoma, ADHD,

AD, PD
[21,153–155]

m1A
Translation efficiency, rRNA folding,

tRNA folding and stability
Breast, ovarian, cervical, pancreatic
and hepatocellular cancer, leukemia [95,156–158]

A-to-I Wobble codon recognition in tRNAs,
mRNA stability and localization

Colorectal, gastric, esophageal and
lung cancer, HCC [159,160]

m5C
mRNA stability, translation efficiency,

rRNA folding, tRNA folding and
stability, lncRNA stability

Breast and bladder cancer, hypotonia,
acidosis, ARID, DS [161,162]

m3C
tRNA:mRNA stability,
translation efficiency

Asthma, neoplastic and
developmental pathologies [163,164]

m1G Reduces translation efficiency Colorectal cancer [165]
m7G Translation regulators, tRNA stability Lung cancer, HCC [166,167]

Q Protects tRNA from
ribonuclease cleavage Colorectal cancer, lymphoma [130,168,169]

D mRNA splicing, translation efficiency,
tRNA structure Lung cancer [170]

Ψ Ribosome assembly, translational
efficiency, tRNA stability Breast, prostate and lung cancer, HCC [161]

Nm Stability of RNAs AD, asthma [143]

More specifically, mutations, as well as irregular expression patterns in numerous
RNA modification enzymes, have been linked with defects in the epitranscriptome and,
subsequently, with several human diseases, including cancer and neurological and car-
diovascular disorders; thus, research has been propelled towards the elucidation of the
enigmatic molecular mechanisms driving these pathological conditions [162].

First and foremost, a wide array of RNA modifiers have been associated with guiding
normal cells towards the acquisition of traits distinctive of cancer cells, widely known as
the “hallmarks of cancer” [171]. For instance, the m6A writer METTL3 has been found
to be overexpressed in acute myeloid leukemia (AML) cell lines; it is considered to be
accountable for the increased m6A methylation profiles and the translational activation
of the MYC proto-oncogene, phosphatase and tensin homolog (PTEN), and the BCL2
apoptosis regulator mRNA transcripts, thus sustaining cell survival and proliferation [172].
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On the other hand, in AML, the upregulated m6A eraser FTO contributes to the bypassing
of growth suppressors by demethylating; this reduces the stability and negatively regulates
the retinoic acid receptor alpha (RARA), the ankyrin repeat and SOCS box-containing
2 (ASB2) mRNAs, hampering cell differentiation and promoting leukemogenesis [173].

Notably, recent studies have also underlined the involvement of the m6A readers
YTHDF1 and YTHDF2 in hindering the efficiency of immune responses against tumor
antigens, and assisting leukemia stem cells to evade apoptosis, respectively. Specifically,
YTHDF1 recognizes the m6A signature and enhances the translation of the lysosomal
proteases’ mRNAs found in dendritic cells, which, in turn, degrade the engulfed anti-
gens, inhibiting their cross-presentation and suppressing the induction of CD8+ T cell re-
sponses [174]. On the contrary, overexpressed YTHDF2 in AML cells spots m6A-methylated
target transcripts, such as the tumor necrosis factor (TNF) receptor superfamily member
1B (TNFRSF1B) mRNAs, and promotes their degradation, affecting the TNF apoptotic
signaling pathway [175].

Despite being the most frequently encountered RNA modification, m6A is not the only
epitranscriptomic mark that can promote malignancy. In the cytoplasm, Lin-28 homolog A
(LIN28A) normally regulates the expression of let-7 miRNAs, the recruitment of writer
TUT4. In turn, TUT4 adds uridines at the 3′ end of the precursor miRNAs (pre-let7), thus
inhibiting their cleavage by Dicer and promoting their degradation [176]. In breast cancer,
however, an overexpression of LIN28A has been detected to lead to the deregulation of the
aforementioned pathway and consequently the downregulation of the tumor-suppressing
let-7 miRNAs [177]. Moreover, in chronic myeloid leukemia (CML), the activity of A-to-I
writer ADAR1 has been proven to hinder let-7 miRNAs’ biogenesis, enhancing the replica-
tive capacity of leukemia stem cells and promoting cancer progression [178]; meanwhile,
in colon and lung cancer, the downregulation of the m7G writer METTL1 interferes with
the methylation and maturation of the same miRNA family, resulting in the enhanced
migration of cancer cells [122].

As far as the Ψ writer DKC1 is concerned, mutations in this gene have been linked with
the reduced pseudouridylation of rRNA molecules, and subsequently with the modified
translation of several cancer-associated transcripts, such as the vascular endothelial growth
factor (VEGF) and the tumor suppressor p53 mRNAs [179–181]. On the other hand, the
overexpression of NSUN2 in bladder carcinoma, and thus the m5C aberrant methylation
of the oncogenic transcripts of the heparin binding growth factor (HDGF) gene, have
been shown to augment mRNA stability and correspond with poor cancer prognosis [95].
Finally, the elevated expression of the eraser ALKBH3 and, therefore, the increased m1A
demethylation of tRNA molecules, participate in the production of tRNA-derived small
RNAs (tDRs) and contribute to an enhanced cancer cell proliferation [95].

Given its critical role in governing brain development and functionality, it is not
surprising that perturbations in the m6A signature could also be implicated in numerous
neurological diseases [182]. So far, several alterations in the m6A machinery have been
detected, underlining the potentially critical role of defective methylation in the establish-
ment and progression of these diseases [183]. Specifically, the FTO gene has already been
correlated with neurodevelopmental and neuropsychiatric disorders, such as structural
malformations and functional deficiencies of the brain, growth retardation, psychomotor
retardation, attention-deficit/hyperactivity disorder (ADHD) and major depressive disor-
der (MDD) [184–186]; meanwhile, an increasing number of studies also highlight the link
between this specific eraser and neurodegenerative disorders, such as Alzheimer’s disease
(AD) [187–189], Parkinson’s disease (PD) [190,191] and amyotrophic lateral sclerosis (ALS)
(Table 4) [192]. Furthermore, recent studies have reported the elevated expression levels of
METTL3 in mouse models for AD [189], whereas mutations in the m6A eraser ALKBH5 and
the m6A reader YTHDC2 have been shown to participate in MDD and autism spectrum
disorder, respectively [193,194].

As for the remaining epitranscriptomic marks, alterations in the NSUN2 gene have
been identified as a cause of developing autosomal-recessive intellectual disability (ID) [195]
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and Dubowitz syndrome (DS) [196], while mutations in PUS7 have been proven to result in
the reduced pseudouridylation of specific sites in tRNA molecules, leading to microcephaly
and ID [197]. Finally, increased Ψ marks seem to be linked with early-stage AD and
myotonic dystrophy [198,199], whereas the reduced editing of AMPA and kainate glutamate
receptors, due to the downregulated expression of ADAR2, has been correlated with the
etiology of mental disorders such as bipolar disorder and schizophrenia [200].

Last but not least, RNA modifications are the key regulators in multiple cardiovascular
diseases, including adipogenesis, obesity, type 2 diabetes, different types of atherosclerosis
and limb ischemia (Table 4). In particular, the levels of m6A are responsible for the glucose
metabolism by regulating the β-cells in the pancreas and urging liver gluconeogenesis, thus
affecting the progression of type 2 diabetes. Both METTL3 and METTL14 are downregu-
lated in patients with type 2 diabetes, whereas FTO demonstrates an increased expression
pattern, which enhances the expression of forkhead box O1 (FoxO1), glucose-6-phosphatase
(G6PC), and diacylglycerol acyltransferase 2 (DGAT2) enzymes; this finally leads to hy-
perglycemia, due to insulin secretion dysregulation. According to additional studies, an
m6A-dependent pathway, in which FTO and METTL3 possess significant roles, controls
lipid production and switches on/off both adipogenesis and obesity.

In the case of atherosclerosis, the expression levels of m6A writers, readers and erasers
can also promote and/or inhibit chronic inflammation and lipid deposition, which form the
atherosclerotic plaques. For instance, the overexpression of METTL14 in endothelial cells is
responsible for monocyte aggregation, via affecting either the m6A levels of FoxO1 mRNA
or the binding affinity of the FoxO1 protein, resulting in the progression of atherosclerosis.
The dysfunction of endothelial cells is also induced by the m5C RNA modification levels.
Notably, NSUN2 can promote the translation of ICAM-1, which increases the adhesion of
leukocytes to the surface of endothelial cells. On the contrary, limb ischemia is connected
to other RNA modifications, such as A-to-I, Ψ and m7G. Studies support that A-to-I editing
and Nm can alter the targets of the tumor suppressor microRNA, miR487b, and hence pro-
mote angiogenesis; meanwhile, the increased levels of the Ψ writers, RPUSD3 and RPUSD4,
induce mitochondrial protein synthesis, leading to the defective assembly of OXPHOS [201].
Recent studies have pointed out that m7G modification in tRNAs is involved in vascular
development due to the significant role of METTL1 in neovascularization [202]. Notably,
m7G and the downregulation of METTL1 affect the pluripotency of the human-induced
pluripotent stem cells, enable their differentiation to endothelial progenitor cells, and thus
promote post-ischemic angiogenesis [203].

4. Conclusions

In summary, the rise of epitranscriptomics has led to the identification of a wide
spectrum of RNA modifications that exist in many RNA classes. Each modification is
located at specific regions in RNAs and possesses specific roles that are often vital to cellular
responses. A variety of enzymes are implicated in the mechanisms that incorporate or erase
each modification, thus underlining the complexity of the eukaryotic transcriptomes. The
dysfunction of the catalytic enzymes that are responsible for the post-transcriptional marks
into the RNAs can lead to human diseases, such as cancer. Modern epitranscriptomics aims
to decipher the molecular mechanisms that generate the RNA modifications and decode
the involvement of RNA marks in cellular homeostasis. Undoubtedly, breakthroughs
in molecular biology, including RNA-sequencing techniques, will enhance our efforts to
unveil the mysteries of the features of RNA molecules.
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