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Abstract: In order to achieve smart biomedical micro/nanomaterials, promote interaction with
biomolecules, improve osteogenic/chondrogenic differentiation, exhibit better dispersion in bone
implants and ultimately maximize functionality, we innovatively and successfully designed and
synthesized polymer PBLG-modified GdPO4·H2O nanobunches by hydroxylation, silylation and
glutamylation processes. The effects of different feeding ratios on the surface coating of GdPO4·H2O
with Si-OH, the grafting γ-aminopropyltriethoxysilane (APS) and the in situ ring-opening poly-
merization reaction of poly(g-benzyl-L-glutamate) (PBLG) were investigated, and the physical and
chemical properties were characterized in detail. When GdPO4·H2O@SiO2–APS:NCA = 4:1, the
PBLG-g-GdPO4·H2O grafting rate was 5.93%, with good stability and dispersion in degradable poly-
meric materials. However, the MRI imaging signal was sequentially weakened as the modification
process proceeded. Despite this, the biological effects had surprising findings. All the modifiers at
appropriate concentrations were biocompatible and biologically active and the biomacromolecules
of COL I and COL II in particular were expressed at least 3 times higher in GdPO4·H2O@SiO2 com-
pared to the PLGA. This indicates that the appropriate surface modification and functionalization of
gadolinium-containing micro/nanomaterials can promote interaction with cells and encourage bone
regeneration by regulating biomacromolecules and can be used in the field of biomedical materials.

Keywords: surface modification; rare earth; biological evaluation; osteoblast differentiation; bone
tissue engineering; MRI

1. Introduction

Biomaterials incorporating rare-earth micro/nanoparticles hold promise for multi-
functional applications due to their excellent optical, electrical and magnetic properties,
especially when used for drug delivery, bioimaging and targeted therapies [1–4]. Rare earth
gadolinium-containing micro/nano materials not only have luminescent properties, but
also magnetic resonance tracking properties, making them easy to form multifunctional
materials [5–7]. In particular, in the field of bone tissue engineering, due to their unique
biocompatibility, antimicrobial, antioxidant and anti-inflammatory properties, a range of
smart nanobiotics with improvements has been developed for current investigations to
address the challenges and problems faced in the field of bone tissue engineering and
implantology [8].

In addition to calcium phosphates (CaPs), which bring good bone mineralization
activity to bone replacement materials [9], nanoparticles containing gadolinium, europium,
SiO2, etc., will form a protein corona [10], a key mediator of nanoparticle–cell interactions, as
they can still interact with cells, will facilitate osteogenesis and angiogenesis by modulating
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inflammatory responses [11–13], or promote bone regeneration by targeting key signaling
pathways [14–19], using material composites or surface modifications that play a great
role in bone repair [20]. However, due to the strong coordination of rare earth ions on
exposed surfaces, these micro/nanoparticles are easily aggregated in polymer systems
when used in degradable polymer bone implants. Therefore, research on the surface
modification of gadolinium-containing micro/nano materials to ensure their properties
such as luminescence and MRI tracing and to enhance their biocompatibility and bioactivity
after functionalization is imminent.

Surface modification is used as an effective method to ensure high dispersion and stabil-
ity in heterogeneous systems and to avoid agglomeration of inorganic micro/nanoparticles. In
addition, the use of a suitable surface modification to make inorganic micro/nanoparticles
biocompatible and bioactive and to exploit the multifunctionality of rare earth micro/
nanomaterials is a current research hotspot [21,22]. Among the different strategies, am-
phiphilic polymers, lipids, silica shells, ligand exchange, ligand oxidation, biopolymer poly-
dopamine coating, etc., surface alkylation is a more classical approach for the surface mod-
ification of micro/nanoparticles [23–26]. Prior to this, TEOS (ethylene orthosilicate) was
chosen to cover the surface of the micro/nanoparticles to form an amorphous silica cladding
layer if there were fewer hydroxyl groups on the surface of the micro/nanoparticles. With
this type of covering, a higher water solubility and a better photostability and biocompati-
bility can be obtained, and more importantly, conditions can be created for increasing the
amino or carboxyl groups on the surface of the rare earth micro/nanoparticles, making
them suitable for a wider range of biological applications [24]. Furthermore, as silane cou-
pling agents are flexible and can carry groups such as carboxyl, amino and amide groups,
more research has been carried out using silane coupling agents to modify the surface of the
particles. For example, γ-aminopropyltriethoxysilane (APS)-modified nanoparticles have
the advantage of water solubility and a high density of amino groups (-NH2) [27], which
gives the modified magnetite and cerium oxide nanoparticles good dispersion and stability
in water [28]. Moreover, it is certain that the PBLG-modified nanoparticles have a positive
effect on bone differentiation and proliferation [29]. Nevertheless, comparative studies
of the physicochemical and biological properties of the functionalized intermediates and
products synthesized in each step of the reaction, such as hydroxylation, silylation and
ammonification, exist but are not adequate and detailed.

Therefore, in this paper, GdPO4·H2O@SiO2, GdPO4·H2O@SiO2–APS and PBLG-
g-GdPO4·H2O were designed and synthesized using surface-modified functionalized
GdPO4·H2O nanobunches, with the aim of experimentally screening biofunctionalized
gadolinium-containing nanomaterials with good dispersion and stability, a certain degree
of paramagnetic MR imaging ability and facilitating osteogenic/chondrogenic differentia-
tion. The structure-to-function conformational relationships were investigated by adjusting
the ratios of GdPO4·H2O to TEOS and GdPO4·H2O@SiO2–APS to NCA monomers. The
encapsulated morphology and elemental composition were observed by SEM, TEM and
EDS, the changes in crystal structure were characterized by XRD, the chemical structure of
the samples was studied by FT-IR and the grafting rate of the products was calculated by
TG. The stability and dispersion of the samples in chloroform and PLGA were investigated
by sedimentation experiments as well as AFM characterization, and the T1-weighted MRI
signals of the different modifications were compared using a 1.5 T MRI system. Cytotoxicity
and biocompatibility were also evaluated by in vitro cellular assays such as cytotoxicity,
cell adhesion and cell proliferation, and the osteogenic/chondrogenic activity and mineral-
ization capacity of the different modifications were investigated by alkaline phosphatase
activity assay, type I and type II collagen gene expression and calcium mineralization
deposition experiment The possible mechanisms of the effect of functional modifiers of
gadolinium phosphate nanobunches on osteogenic/chondrogenic activity were further in-
vestigated. The present study demonstrates different modification processes for successive
GdPO4·H2O nanobunches. As the modification process proceeds, the functional variability
of each modifier begins to manifest, laying the foundation for the functionalization of
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gadolinium-containing micro/nanomaterials in the field of bone tissue engineering and
biomedical materials.

2. Results and Discussion

In previous work, good progress was made in investigating the effect of different
gadolinium phosphate doping concentrations on the in vitro/in vivo tracer properties of
bone implant composites and their in vitro/in vivo biological effects [18]. To further reg-
ulate the osteogenesis/cartilage induction activity, improve the dispersion of rare earth
micro/nanoparticles in the matrix of bone implants, and investigate the changes in MRI
tracing properties, GdPO4·H2O@SiO2, GdPO4·H2O@SiO2–APS and PBLG-g-GdPO4·H2O
were obtained from different modification processes by a silica coating on GdPO4·H2O,
silane coupling agent premodification and polyglutamic acid modification, as is shown
in Scheme 1. The surface modification and functionalization processes were based on a
published method [30]. Firstly, we characterized the physicochemical properties of the
synthesized intermediates and modification products (SEM, TEM, XRD, FT-IR, TG, sedimen-
tation experiments, AFM analysis) in order to determine the optimal surface modification
conditions. Secondly, we investigated the MRI tracer properties of each modifier to explore
the effects of different degrees of surface modification and different grafting rate products
on MRI T1 imaging. Finally, we performed biocompatibility and bioactivity evaluations
such as cytotoxicity, cell adhesion, cell proliferation, ALP activity, gene expression of COL I
and COL II and calcium mineralization deposition assays to ascertain the effect of the degree
of functionalization of surface modifications on osteogenic/chondrogenic induction activity.
The whole process is not only a further exploration of inorganic gadolinium-containing
micro/nanomaterials for applications in bone tissue engineering, but also a solution to the
current clinical problems faced by biodegradable orthopedic implant devices.
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Scheme 1. Surface modification and functional process of GdPO4·H2O nanobunches.

2.1. Design and Synthesis of PBLG-g-GdPO4·H2O
2.1.1. Sufficient Suitable Encapsulation of SiO2 onto the Surface of GdPO4·H2O Nanobunches

To investigate the effect of the feeding ratio on the materials, GdPO4·H2O@SiO2
core-shell nanobunches were designed and synthesized in the ratios of mGdPO4·H2O:VTEOS
(mg/mL) = 1:8, 4:5, 1:1, 5:4, 5:3 and 5:2. Figure 1 shows the morphology of GdPO4·H2O@SiO2.
According to previous reports in the literature, uncoated gadolinium phosphates are bun-
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dles with smooth surfaces [18]. However, there are many small nanoparticles around the
bundles in Figure 1A, indicating that a ratio of 1:8 resulted in an excess of TEOS and the
formation of too many silica nanoparticles around gadolinium phosphate. When the feed
ratio of GdPO4·H2O and TEOS was greater than or equal to 4:5, the excess silica particles
around the nanobunches in Figure 1B–F were significantly reduced or even absent. At
the same time, the surface of the coated sample was rough compared to the previously
synthesized pure GdPO4·H2O. To further determine the core–shell structure, TEM analysis
was performed on the samples without excess SiO2 nanoparticles. A distinct core–shell
structure can be observed by TEM in Figure 2, and with a gradual increase in the feed
ratio, the SiO2 coating became progressively thinner, gradually decreasing from 9.94 nm to
5.16 nm, which further confirms the successful encapsulation of SiO2 onto the surface of
the GdPO4·H2O nanobunches.
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Figure 2. TEM of GdPO4·H2O@SiO2 synthesized with ratios of mGdPO4·H2O:VTEOS (mg/mL) = 4:5
(A), 1:1 (B), 5:4 (C), 5:3 (D) and 5:2 (E).

To ensure that the surface of gadolinium phosphate was completely covered by SiO2,
zeta potential analysis was carried out on GdPO4·H2O@SiO2 synthesized without excess
SiO2 particles. As shown in Table 1, when the feed ratios of GdPO4·H2O to TEOS were 4:5,
1:1, 5:4, 5:3 and 5:2, the zeta potentials of the resulting GdPO4·H2O@SiO2 were −26.52 mV,
−30.69 mV, −16.98 mV, −16.96 mV and −12.71 mV, respectively. It shows that as the
amount of TEOS decreased, the negative charge on the surface of GdPO4·H2O showed a
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trend of first increasing and then decreasing. At the ratio of 4:5, the surface of GdPO4·H2O
was covered with more SiO2, and the SiO2 in the outer layer covered the SiO2 in the
inner layer of the shell, so that part of the Si-OH was blocked, thus reducing the negative
charge (−26.52 mV). The surface of GdPO4·H2O was just completely encapsulated by SiO2
when the feed ratio was 1:1, and all Si-OH was exposed on the surface, so the surface
had the most negative charge and the lowest zeta potential value (−30.69 mV). With the
ratios of 5:4–5:2, the surface of GdPO4·H2O was coated with less SiO2, and the Si-OH
was reduced; hence, the negative charge gradually diminished, and the zeta potential
gradually rose (−16.98 mV–−12.71 mV). The lowest zeta potential value (−30.69 mV) was
achieved when the feed ratio of GdPO4·H2O to TEOS was 1:1 (mg/mL), indicating that the
optimum amount of TEOS could be achieved at this ratio. At this point, neither too many
SiO2 nanoparticles were produced nor too little SiO2 made the GdPO4·H2O nanobunches
incompletely encapsulated. More importantly, sufficiently suitable encapsulation was
conducive to producing the lowest surface charge and more silicon hydroxyl groups on the
surface of GdPO4·H2O, which was beneficial for the next modification step.

Table 1. Zeta potential of GdPO4·H2O@SiO2.

No. 1 2 3 4 5

mGdPO4·H2O:VTEOS (mg:vL) 4:5 1:1 5:4 5:3 5:2
Zeta Potential (mV) −26.52 −30.69 −16.98 −16.96 −12.71

Based on the above discussion, EDS analysis and elemental distribution scans were
performed for GdPO4·H2O@SiO2 prepared with mGdPO4·H2O:VTEOS (mg/mL) = 1:1.
Figure 3A shows the corresponding scanned site. As shown in Figure 3B, the present
of the elements Gd, Si, P and O in the GdPO4·H2O@SiO2 sample was demonstrated due to
the matching of the detected peaks (blue area) and the elemental identification positions
(red line). The detection of C element may be the result of a small amount of adsorption of
carbonaceous compounds from the air by the sample. Furthermore, according to the elemen-
tal distribution scans in Figure 3C, the elements Gd (green and blue) and P (yellow) were
mainly concentrated in the interior, while the element Si (orange) was mainly concentrated
in the exterior of the core–shell structure. Since both GdPO4·H2O and SiO2 contain oxygen,
the O element (red) was present throughout the structure. All this confirms the successful
synthesis of the GdPO4·H2O@SiO2 core–shell structure with more Si-OH groups.
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2.1.2. Further Surface Modification of GdPO4·H2O@SiO2 with Polymer APS and PBLG

GdPO4·H2O@SiO2–APS and PBLG-g-GdPO4·H2O@SiO2–APS (PBLG-g-GdPO4·H2O)
were synthesized by successive silylation with APS on the surface of GdPO4·H2O@SiO2,
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followed by glutamylation with PBLG. The successful synthesis of GdPO4·H2O@SiO2
provided sufficient hydroxyl groups on the surface of GdPO4·H2O. Fixed synthesis ratios
GdPO4·H2O@SiO2:APS = 1:0.22 were used to obtain GdPO4·H2O@SiO2–APS by grafting
the silane coupling agent APS. Glutamate-modified PBLG-g-GdPO4·H2O nanoparticles
were obtained at different ratios of GdPO4·H2O-APS and NCA polyglutamate monomer.
The specific reaction ratios are shown in Table 2.

Table 2. The grafting rate of GdPO4·H2O-PBLG synthesized under different conditions.

GdPO4·H2O@SiO2:APS 1:0.22

GdPO4·H2O/APS:NCA 1:0.125 1:0.25 1:0.5 1:1

Graft rate of GdPO4·H2O/PBLG (%) 4.14% 5.93% 13.72% 15.93%

XRD analysis of GdPO4·H2O@SiO2 and PBLG-g-GdPO4·H2O obtained with different
feed ratios of GdPO4·H2O@SiO2–APS:NCA = 1:0.125, 1:0.25, 1:0.5 and 1:1 is shown in
Figure 4. The XRD patterns of GdPO4·H2O@SiO2 and all PBLG-g-GdPO4·H2O products had
diffraction peaks at 20.4◦, 25.7◦, 29.8◦, 32.0◦, 42.2◦ and 49.5◦ corresponding to the (101), (110),
(200), (102), (211) and (212) crystal planes, in agreement with the standard card GdPO4·H2O
(JCPDS 39-0232), indicating that modification with TEOS and PBLG did not alter the core
phase of GdPO4·H2O [18,31]. By increasing the NCA monomer synthesized in Stage 2 of
Scheme 1 (L-glutamic acid γ-benzyl ester-N-carbonyl-lactam anhydride), the diffraction
peaks of PBLG-g-GdPO4·H2O weakened as a result of the increasing grafting of PBLG by
decreasing the crystallinity. Although there was no change in the above XRD peak shifts,
the amorphous broad peaks appeared at the ratios of GdPO4·H2O@SiO2–APS:NCA = 1:0.5
(D) and 1:1 (E). There was no significant difference in XRD for GdPO4·H2O@SiO2 (A)
and PBLG-g-GdPO4·H2O with the ratios of GdPO4·H2O@SiO2–APS:NCA = 1:0.125 (B),
1:0.25 (C). This was mainly due to the fact that with the amorphous structure and thinner
shell layer SiO2 encapsulation, no characteristic peak of the silicon shell was observed [32].
Moreover, the fewer NCA involved in the grafting reaction the less PBLG will be grafted
to the surface of GdPO4·H2O@SiO2, producing a thinner surface modification layer and
therefore have no affect on the XRD. In contrast, when GdPO4·H2O@SiO2–APS:NCA = 1:0.5
(D) and 1:1 (E), the silane coupling agent modification and the involvement of more NCA
monomers in the polymerization reaction led to more polyglutamic acid grafting onto
the GdPO4·H2O@SiO2 surface, resulting in a thicker modified layer and ultimately an
amorphous broad peak of the polymer in XRD. No new crystalline peaks appeared in XRD,
no significant changes in peak positions, and only new PBLG amorphous peaks appeared
as the concentration of polyglutamic acid monomer (NCA) increased. These results indicate
that the polymerization reaction occurred only on the surface of the gadolinium phosphate
nanocrystals, without changing the crystal phase of GdPO4·H2O [30,33].

In order to further confirm the successful modification onto the surface of GdPO4·H2O,
the FTIR spectra were investigated, as shown in Figure 5. The two bands at 3478 cm−1 and
1618 cm−1 in Figure 5A are attributed to the OH absorption peaks. The absorption peaks
near 1075 cm−1, 800 cm−1 and 464 cm−1 are the Si-O-Si asymmetric stretching, symmetric
stretching and bending vibration peaks, respectively [34]. The absorption peaks at 622 cm−1

and 545 cm−1 were caused by the O-P-O bending vibration and represent the characteristic
absorption of PO4

3−. Thus, the amorphous SiO2 shell coating on the surface of GdPO4·H2O
nanobunches was confirmed in terms of chemical composition [32]. With silane coupling
agent (APS) pre-modification and further polyglutamic acid grafting, the absorption peaks
at 1549 cm−1, 1654 cm−1 and 1737 cm−1 in Figure 5B–E were progressively enhanced with
increasing ratios of GdPO4·H2O@SiO2–APS:NCA = 1:0.125 (B), 1:0.25 (C), 1:0.5 (D) and 1:1
(E) as they are attributed to the stretching vibrational absorption peak of amide N-H, amide
C=O and carboxy C=O, respectively, demonstrating the presence of PBLG chains on the
surface of GdPO4·H2O [33]. These results further confirm the successful preparation from
GdPO4·H2O, GdPO4·H2O@SiO2 and GdPO4·H2O@SiO2–APS to PBLG-g-GdPO4·H2O.
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Figure 5. FT-IR spectra of GdPO4·H2O@SiO2 (A) and the modified products synthesized with
different proportions of GdPO4·H2O@SiO2–APS:NCA = 1:0.125 (B), 1:0.25 (C), 1:0.5 (D) and 1:1 (E).

On the basis of the TG curves in Figure 6, the grafting rates of PBLG were cal-
culated [30], and the detailed results are shown in Table 2. By adjusting the ratios of
GdPO4·H2O@SiO2–APS:NCA = 1:0.125, 1:0.25, 1:0.5 and 1:1, the grafting rates were 4.14%,
5.93%, 13.72% and 15.93%, respectively. The grafting rate gradually rose with the increase in
NCA monomer, leading to more PBLG grafting onto the surface of GdPO4·H2O@SiO2–APS,
thereby preparing PBLG-g-GdPO4·H2O with different grafting rates.
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Figure 6. TG curves of GdPO4·H2O@SiO2 (A) and the modified products synthesized with different
proportions of GdPO4·H2O@SiO2–APS:NCA = 1:0.125 (B), 1:0.25 (C), 1:0.5 (D) and 1:1 (E).

2.2. Dispersion and Stability

To observe the dispersion and stability of the different modifiers in the solvent, the
synthesized samples were dispersed in chloroform solution [29]. After ultrasonic dispersion,
the samples were monitored with a conventional camera to observe the sedimentation, as
shown in Figure 7. GdPO4·H2O@SiO2 without PBLG grafting precipitated immediately,
and PBLG-g-GdPO4·H2O with 13.72%; (D) and 15.93% (E) grafting precipitated after 10 s.
When resting for 5 min, a small amount of precipitation occurred for PBLG-g-GdPO4·H2O
with a grafting rate of 4.141%; (B), and 5.926% (C) exhibited excellent colloidal stability for
a longer period of time (15 min). Without grafting or at lower grafting rates (0% and 4.14%),
the PBLG chains were less able to maintain the stability of the gadolinium phosphate
nanoparticles in chloroform solution and were more prone to settling. Despite the relatively
high grafting rate of PBLG-g-GdPO4·H2O (13.72% and 15.93%), more NCA monomers
formed longer PBLG polymer chains attached to the surface of GdPO4·H2O@SiO2, causing
surface modification supersaturation, low colloidal stability and short settling times in
chloroform. This was further confirmed by the previous XRD (Figure 4) and FT-IR (Figure 5)
analyses. Thus, PBLG-g-GdPO4·H2O with a grafting rate of 5.926% maintained good
stability of the micro/nanoparticles in chloroform solution.
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grafting rates of 4.14% (B), 5.93% (C), 13.72% (D) 15.93% (E) at different times in chloroform.
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To further confirm that the grafting products could be uniformly dispersed in the
degradable polymer PLGA, the surface of the PBLG-g-GdPO4·H2O/PLGA film was ob-
served by atomic force microscopy (AFM), as shown in Figure 8. PBLG-g-GdPO4·H2O with
different grafting rates all had good dispersion and could be uniformly dispersed in the
degradable polymer material PLGA.
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Figure 8. AFM images of PBLG-g-GdPO4·H2O/PLGA with grafting rates of 4.14% (A), 5.93% (B),
13.72% (C) and 15.93% (D).

2.3. T1-Weighted MR Imaging of Modifiers in Biomedical Polymer Material of PLGA

Scaffold samples of PLGA (A), GdPO4·H2O/PLGA (B), GdPO4·H2O@SiO2/PLGA
(C), GdPO4·H2O@SiO2–APS/PLGA (D) and PBLG-g-GdPO4·H2O/PLGA (E-G) of the
control, modification intermediates, and various grafting rate products were placed into
a 1.5 T MRI instrument for monitoring. From the T1-weighted imaging (left) and T1-
parametric map (right) images in Figure 9, it was found that GdPO4·H2O/PLGA had the
strongest MRI signal as the surface modification and functionalization process proceeded,
followed by GdPO4·H2O@SiO2/PLGA. GdPO4·H2O@SiO2–APS/PLGA (D) and PBLG-g-
GdPO4·H2O/PLGA (E-H) had significantly weaker MRI signal intensities. The higher the
grafting rate was, the weaker the T1-weighted MRI signal of PBLG-g-GdPO4·H2O/PLGA.
In the preparation of inorganic-organic bone implants, the solvent NMP was replaced
by water, while water molecular channels were formed in the degradable polymer of
PLGA. Gadolinium can chirp near hydrogen protons during MRI monitoring, but af-
ter functional modification, the thick coating on GdPO4·H2O inhibits the interaction of
gadolinium with surrounding hydrogen protons and produces the shielding effect on
H+, resulting in a weaker MRI T1-weighted imaging signal. While many studies have
been conducted on the surface modification and functionalization of inorganic rare earth
micro/nanoparticles [35,36], it is relatively rare for this paper to investigate the effects of
different modification process products on the MRI T1-weighted imaging signal of inor-
ganic gadolinium-containing micro/nanoparticles, which also provides a reference for later
researchers to make reasonable use of the surface modification process to prepare MRI
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tracing-related functionalized materials. As a paramagnetic contrast agent for MRI of bone
tissue, a more suitable method for enhancing the development of gadolinium phosphate
needs to be found in the future.
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investigate the biocompatibility and bioactivity of the modification intermediates and 
modification products. The cytotoxicity experiments are shown in Figure 10. For 
GdPO4·H2O/PLGA, GdPO4‧H2O@SiO2–APS/PLGA and PBLG-g-GdPO4·H2O/PLGA, the 
cell viability of the material leachate increased progressively with increasing dilution, 
suggesting a possible “low-promoting, high-inhibiting” hormesis effect [37], with no 
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Figure 9. T1-weighted imaging (left) and T1-parametric mapping (right) images of PLGA (A),
GdPO4·H2O/PLGA (B), GdPO4·H2O@SiO2/PLGA (C), GdPO4·H2O@SiO2–APS/PLGA (D) and
PBLG-g-GdPO4·H2O/PLGA with grafting rates of 4.14% (E), 5.93% (F), 13.72% (G) and 15.93% (H).

2.4. Cellular Response
2.4.1. Cytotoxicity and Biocompatibility

A systematic in vitro experimental evaluation of the materials was carried out to inves-
tigate the biocompatibility and bioactivity of the modification intermediates and modifica-
tion products. The cytotoxicity experiments are shown in Figure 10. For GdPO4·H2O/PLGA,
GdPO4·H2O@SiO2–APS/PLGA and PBLG-g-GdPO4·H2O/PLGA, the cell viability of the
material leachate increased progressively with increasing dilution, suggesting a possible
“low-promoting, high-inhibiting” hormesis effect [37], with no significant cytotoxic ef-
fect on MC3T3-E1 cells at the appropriate concentration. However, the survival rate of
GdPO4·H2O@SiO2/PLGA decreased step by step, indicating that the SiO2 coating had
a positive effect on promoting cell survival with increasing concentrations in this range.
Notably, only the GdPO4·H2O@SiO2–APS/PLGA leachate showed a cell survival rate of
73.4% without dilution, which was lower than 75%, indicating a slight and low toxic effect
due to the presence of a relatively high amount of silane coupling agent APS [38–40]. Other
groups and cell experiments with dilutions of the extract showed no significant cytotoxicity
to MC3T3-E1 cells. The above results predict good biocompatibility of all surface modifiers.

Moreover, the adhesion behavior of MC3T3-E1 cells was observed by FITC staining,
as displayed in Figure 11. The microscopic images show that at 6 h of cell culture, a small
number of cells began to adhere to the surface of the material, and the cells were mostly
round or spindle shaped. At 12 h of incubation, the cells began to stretch and change to a
polygonal shape. At 24 h of incubation, the number of cells began to increase, and the cell
bodies were fully expanded and grew in colonies. There were no significant differences
in cell numbers and cell morphology between MC3T3-E1 cells cultured for 6 h, 12 h and
24 h, suggesting that each modifier had no significant effect on cell adhesion of MC3T3-E1
in PLGA.
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and when this phenotypic shift occurs, the level of proliferation will begin to plateau. To
further confirm the biocompatibility of the material, the cell proliferation assay was carried
out, as shown in Figure 12. There was no significant difference in the absorbance (OD) values
of the cells cultured on the surface of each material when MC3T3-E1 cells were cultured
for 1 day. As the culture time was extended to 3 days, the OD values detected in each
group increased, indicating an increase in cell numbers. At this time, the OD values of the
GdPO4·H2O/PLGA, GdPO4·H2O@SiO2/PLGA, GdPO4·H2O@SiO2–APS/PLGA and PBLG-
g-GdPO4·H2O/PLGA groups were all higher than those of PLGA, especially the OD values
of PBLG-g-GdPO4·H2O/PLGA cultured cells, which were the highest, with significant
differences (p < 0.05). This indicates that the modifiers had good biocompatibility, which
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may have been the consequence of the positive biocompatibility and biological effects of
GdPO4·H2O, SiO2, APS and polyglutamic acid in PBLG [32,41–44]. At 7 days of incuba-
tion, the OD values of the groups were similar, with only the GdPO4·H2O@SiO2/PLGA
and PBLG-g-GdPO4·H2O/PLGA groups having slightly higher OD values than the glass,
GdPO4·H2O/PLGA and GdPO4·H2O@SiO2–APS/PLGA groups, but there was no signif-
icant difference (p > 0.05). In the above cell experiments, it was demonstrated that the
surface modification of GdPO4·H2O resulted in low toxicity of the modifiers to MC3T3-E1
cells in the experimental concentration range and in PLGA, with no significant inhibition
of cell adhesion behavior and cell proliferation, but rather a pro-cell proliferation effect
at 3 days of culture (notably PBLG-g-GdPO4·H2O), indicating that the modifiers were
all biocompatible. This may have been due to the interaction of PBLG with adhesion
proteins in the extracellular matrix, and integrins on the cell surface contributing to good
cell proliferation [44].
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(f) PBLG-g-GdPO4·H2O/PLGA for 1, 3 and 7 days. * p < 0.05.

2.4.2. Osteogenic/Chondrogenic Induction Activity

Alkaline phosphatase (ALP), the metalloenzyme that catalyzes the nucleation of inor-
ganic phosphates, is essential for the mineralization of hard tissues and is an early marker
of the development of cells towards the differentiation pathway [45,46]. The ALP activities
of MC3T3-E1 cells cultured on different materials for 7 and 14 days are shown in Figure 13.
At 7 days of culture, the ALP activity of the GdPO4·H2O@SiO2/PLGA group was similar
to that of the glass and higher than that of the GdPO4·H2O/PLGA, GdPO4·H2O@SiO2–
APS/PLGA and PBLG-g-GdPO4·H2O/PLGA groups, with a significant difference (p < 0.05),
indicating that SiO2-coated GdPO4·H2O facilitated ALP secretion by MC3T3-E1 cells. At
14 days of culture, the ALP activity of the gadolinium-containing group was higher than that
of both the glass and PLGA groups, especially in the GdPO4·H2O@SiO2–APS/PLGA and
PBLG-g-GdPO4·H2O/PLGA groups, with a significant difference (p < 0.05), indicating that
the surface-modified functionalized intermediate GdPO4·H2O@SiO2–APS and the product
PBLG-g-GdPO4·H2O promoted ALP secretion at 14 days of cell culture. The peptide PBLG
itself stimulates cell adhesion and the APS also has a strong interaction with cells, which in
turn facilitates further cellular processes such as proliferation and differentiation [44].
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Collagen type I (COL I) is the most abundant component of the organic matrix in bone
tissue with a length of 300 nm and a width of 1.1–1.5 nm [45]. Collagen type II (COL II) is a car-
tilaginous ECM molecule found mainly in cartilage and developing bone and is an important
regulator of osteogenesis in BMSCs, with research showing that COL II is more effective in
promoting osteogenesis in BMSCs [47]. To assess the effect of functionalized materials on the
COL I and COL II of osteoblasts, the gene expression levels of MC3T3-E1 cells were analyzed
by qRT-PCR during growth and differentiation. The results are shown in Figure 14. At 7 and
14 days of culture, the COL I expression levels of MC3T3-E1 cells in GdPO4·H2O/PLGA,
GdPO4·H2O@SiO2/PLGA, GdPO4·H2O@SiO2–APS/PLGA and PBLG-g-GdPO4·H2O/PLGA
were higher than those of the glass and PLGA groups. The highest COL I expression was found
in the GdPO4·H2O@SiO2/PLGA group and the expression level was up to 11.6 and 4.8 times
higher than that of the PLGA group at 7 and 14 days, respectively. This indicates that due to
the presence of SiO2, the GdPO4·H2O@SiO2/PLGA composite promoted the high expression
of COL I during the proliferation and differentiation phase of the cells. For COL II expression,
the expression level of GdPO4·H2O@SiO2/PLGA and GdPO4·H2O@SiO2–APS/PLGA was
higher than that of the other material groups at 7 days, and there was a higher expression of
GdPO4·H2O@SiO2/PLGA, GdPO4·H2O@SiO2–APS/PLGA and PBLG-g-GdPO4·H2O/PLGA
at 14 days of culture. It is pretty obvious that the GdPO4·H2O@SiO2/PLGA group likewise
showed the highest expression level with significant difference than the other composites.
The COL II expression levels in the GdPO4·H2O@SiO2/PLGA group were up to 11.8 and
3.1 times higher than that in the PLGA group at 7 and 14 days, respectively. The above
indicates that the modification of the SiO2 layer significantly promoted the expression of
COL I and COL II molecules involved in bone reconstruction. Owing to the encapsulation
of SiO2 on the GdPO4·H2O surface, the GdPO4·H2O@SiO2 will expose several negative
charges or Si-OH and gradually release Si ions during the cell proliferation and differentia-
tion phase. Simultaneously, SiO2/Si is known as a “biological cross-linker” and plays a
particularly important role in linking proteoglycans and collagen, which is essential for
biomineralization and collagen synthesis [48–50]. As early as 1970, Si was identified as
a key element involved in tissue mineralization [51]. Si ions are strongly involved in the
initial stages of biomineralization and a reduced intake of Si leads to marked defects in the
growth of bone and cartilage [52]. Therefore, in this study, SiO2 and GdPO4·H2O may have
acted synergistically to promote the high expression of COL I and COL II, thus contributing
to the promotion of osteogenic/chondrogenic activity of the bone implant material. Of
course, due to the activity of the substrate and the functionalization of the active modifiers,
the up-regulation of the COL I and COL II genes by them or by their combined action at
different incubation times should also be acknowledged.
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After osteogenic differentiation, the cells begin to secrete a mineral matrix, known as
the mineralization phase. The qualitative and quantitative assessments of mineral deposits
were determined, as shown in Figures 15 and 16. Calcium mineralization deposition of
the cells was assessed when MC3T3-E1 cells were cultured on PLGA, GdPO4·H2O/PLGA,
GdPO4·H2O@SiO2/PLGA, GdPO4·H2O@SiO2–APS/PLGA and PBLG-g-GdPO4·H2O/PLGA
for 3 weeks. Upon alizarin red (ARS) staining, red calcium nodules appeared on the
substrate of each material group, indicating that MC3T3-E1 cells secreted calcium ions
and produced mineralized deposits when cultured for 3 weeks. After quantitative anal-
ysis, as shown in Figure 16, the PLGA, GdPO4·H2O/PLGA, GdPO4·H2O@SiO2/PLGA
and PBLG-g-GdPO4·H2O/PLGA groups had the higher calcium content, with signifi-
cant differences compared to GdPO4·H2O@SiO2–APS/PLGA group (p < 0.05). Of all
modifiers, GdPO4·H2O@SiO2/PLGA had the highest calcium content, followed by group
GdPO4·H2O/PLGA, possibly related to the previous finding of high expression of the COL
I and COL II in GdPO4·H2O@SiO2. Studies have shown that COL I/COL II can promote
calcium mineralization deposition through the unique role of integrin a2b1-FAK-JNK sig-
naling in regulating osteogenic differentiation of BMSC [47]. Gd promotes the expression
levels of ALP, COL-1 and Runx2 in conjunction with mesoporous SiO2 in chitosan scaffolds
and subsequent osteogenic mineralization, upregulates p-GSK3β and β-catenin, important
marker proteins of the Wnt/β-catenin signaling pathway [14]. Although the mineralization
results in this experiment were not as pronounced, especially in the PBLG-g-GdPO4·H2O
group, the results did not follow the same trend as the data already reported [44], presum-
ably due to the lower level of introduced modifiers in the scaffold (0.4%, Gd/PLGA, w/w).
Perhaps the advantages of mineralization would be better demonstrated by increasing the
amount of PBLG-g-GdPO4·H2O.
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2.5. Possible Molecular Mechanism

Osteogenesis is a complex physiological process that takes 4–6 months to complete
skeletal modelling or remodeling. During ossification, multiple biomolecular signaling pro-
teins (e.g., BMP, PDGF, FGF, TGF-β, Wnt, Hedgehog, etc.) are involved in regulating bone
resorption and mineralization. In simulating natural bone and promoting osteogenesis
in bone implants, the organic (matrix phase) and inorganic (reinforcing phase) phases, as
smart and multifunctional materials, each have their own role to play and ‘look after’ each
other to promote the osteogenic differentiation and mineralization process and neither is
dispensable [45]. In this work, a variety of modifications were obtained by a silica coating,
APS grafting and polymer PBLG covalent modification, with gadolinium phosphate as
the centerpiece. Improved dispersion and stability of inorganic micro/nanoparticles in
the scaffold while maintaining better MRI tracer properties promoted osteogenic differ-
entiation. The main reasons for analyzing the mechanism of the effect of various modi-
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fiers on the osteogenic/chondrogenic induction activity of MC3T3-E1 cells are due to the
following reasons.

The first is the effect of particle composition and concentration. At suitable concentra-
tions, it has been demonstrated that gadolinium phosphate promotes OCN expression and
promotes new bone regeneration via the Smad/Runx2 pathway [18,19,53]. SiO2 promotes
collagen expression [49,50,52], APS has better biocompatibility [41] and PBLG promotes os-
teogenic mineralization [30,33,44]. Different components also cause different ions/groups
to be released, further affecting cellular pathways and functions.

Secondly, the different surface groups, charges and pH values of the materials are
the ‘first impression’ of the nanoparticles (NPs) to the cell or biomolecule. When solid
NPs are introduced into the liquid phase, a different range of repulsive or attractive
forces develop between the NPs and other molecules in the environment, and due to the
small size and concentrated surface charge, the NPs become highly reactive, facilitating
interactions between the NPs and the molecules, which in a physiological environment
forms a protein corona that further regulates osteogenic niche capacity by triggering or
moderating inflammation [10].

Finally, the introduction of the surface topography of smart materials is also the first
clue to cell-aware scaffolds, which control the early biological responses of cells, includ-
ing adhesion, spreading and migration, and then alter their phenotype, thus controlling
the bone regeneration process [54]. The morphology/size/pore structure of nanomate-
rials such as nanogrooves, nanofibers, nanodots, nanotubes and complex shaped pat-
terns which are nanostructured surfaces have a significant impact on the induction of
osteogenic differentiation.

Above all, it is hypothesized that particle composition/concentration, surface groups/
charge/pH may have been the main influence on osteogenic differentiation in this research
work. The main influences on different research systems are different and therefore the
same theory cannot be used to explain different work.

3. Materials and Methods
3.1. Materials

TEOS (ethyl orthosilicate), isopropanol, ammonia, ethanol, tetrahydrofuran (THF), diox-
ane and acetone were purchased from Beijing Chemical Works. 3-Aminopropyltriethoxysilane
(APS) was purchased from Tokyo Chemical Industry (Tokyo, Japan). g-Benzyl-L-glutamic
acid was purchased from Sinopharm Chemical Reagent Co., Technology Co., Ltd. (Shang-
hai, China). All solvents and chemicals were analytically pure and used directly. Deionized
water was used for all aqueous solutions.

3.2. Preparation of GdPO4·H2O@SiO2

GdPO4·H2O nanobunches were prepared according to the previous literature [18].
Then, GdPO4·H2O was added to a mixed solution (isopropanol:water = 10:1). The mixture
was placed in an ultrasonic water bath at 25 ◦C for 10 min, and 3.5 mL of ammonia was
added and stirred for 15 min. TEOS was added dropwise to the above solution in the
ratio mGdPO4·H2O:VTEOS (mg/mL) = 1:8, 4:5, 1:1, 5:4, 5:3 and 5:2. After stirring for 12 h, the
mixture was separated by centrifugation, washed 4 times with deionized water and then
dried in an oven at 60 ◦C for 12 h to obtain SiO2-coated GdPO4·H2O (GdPO4·H2O@SiO2).

3.3. Synthesis of GdPO4·H2O@SiO2–APS and BLG-NCA

The APS-modified intermediate (GdPO4·H2O@SiO2–APS) was synthesized based on
a published method [30]. 3-Aminopropyltriethoxysilane (APS) was dissolved in 100 mL
of ethanol–water mixture (ethanol:water = 9:1) and stirred for 30 min. GdPO4·H2O@SiO2
was then added to the solution in the ratio of GdPO4·H2O@SiO2:APS = 1:0.22 via the
sonicating process for 20 min. The mixed solution was adjusted to pH = 10, stirred at
room temperature for 6 h, centrifuged three times with absolute ethanol, and dried at
room temperature. The APS-modified GdPO4·H2O@SiO2 (GdPO4·H2O@SiO2–APS) was
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collected after curing for 2 h in a drying oven at 130 ◦C to strengthen the polysiloxane
network structure.

BLG-NCA (L-glutamic acid γ-benzyl ester-N-carbonyl-lactam anhydride), the NCA
monomer, was synthesized by the reaction of benzyl glutamic acid with triphosgene in
anhydrous tetrahydrofuran (THF) at 50–60 ◦C.

3.4. Synthesis of PBLG-g-GdPO4·H2O

GdPO4·H2O@SiO2–APS and NCA monomer (GdPO4·H2O@SiO2–APS:NCA = 1:0.125,
1:0.25, 1:0.5 and 1:1) were put into a flame-dried 100 mL round-bottom flask, sealed and
then injected with 60 mL of dried dioxane. PBLG-g-GdPO4·H2O was synthesized after
stirring at room temperature for 32 h, centrifugation with dioxane and acetone 5 and 2 times,
respectively, and drying at room temperature.

3.5. Preparation of Nanocomposites for MR Imaging and Cell Experiments

GdPO4·H2O, GdPO4·H2O@SiO2, GdPO4·H2O@SiO2–APS and PBLG-g-GdPO4·H2O
were added to N-methylpyrrolidone (NMP) or chloroform solutions with a Gd concen-
tration of 0.4% (w/w, Gd/PLGA) for MR imaging and cellular experiments, respectively.
PLGA was dissolved in the above solutions, dispersed by ultrasound for 10 min and then
stirred overnight. For MR imaging, a homogeneous mixture with NMP as the solvent
was transferred to a 2 mL syringe and placed in a cryogenic refrigerator for at least 4 h.
After replacing the solvent with deionized water to cure for 3 days, the composites were
dried at room temperature. In cell experiments, a homogeneous mixture with chloroform
as the solvent was dropped onto silica slides and uniformly coated. The composite films
of GdPO4·H2O/PLGA, GdPO4·H2O@SiO2/PLGA, GdPO4·H2O@SiO2–APS/PLGA, and
PBLG-g-GdPO4·H2O/PLGA were dried under vacuum for 48 h. All composites were
disinfected by UV light for 2 h prior to cell culture. PLGA was used as a control group.

3.6. Characterization of Physical and Chemical Properties

The crystal phase was analyzed by powder X-ray diffraction (XRD; Bruker Co., Bre-
men, Germany) on a D8 Advance diffractometer using Cu Kα radiation (λ = 0.154 Å). The
morphology, structure and size of the samples were determined by field-emission scanning
electron microscopy (FESEM; Philips XL30 ESEM FEG, Japan) and transmission electron
microscopy (TEM; FEI Tecnai G2 S-Twin, München, Germany). The elemental composi-
tions were analyzed by energy-dispersive X-ray energy spectrometry (EDX; Philips, XL-30
W/TMP, Konan, Japan). Fourier transform infrared spectrometry (FT-IR, Bio-Rad Win-IR
Spectrometer, Watford, UK) was recorded in the range of 400–4000 cm−1 using the attenu-
ated total reflection (ATR) mode and the KBr slice method. Atom force microscopy (AFM)
images were acquired by Bruker’s Dimension Icon and Multimode-V AFM. The amounts of
GdPO4·H2O, GdPO4·H2O@SiO2, GdPO4·H2O@SiO2–APS, and PBLG-g-GdPO4·H2O were
determined by thermogravimetric analysis (TGA, TA Instruments TGA500, New Castle,
DE, USA) in air at a heating rate of 10 ◦C/min from 25 ◦C to 800 ◦C.

3.7. Magnetic Resonance Imaging In Vitro

MR imaging of GdPO4·H2O/PLGA, GdPO4·H2O@SiO2/PLGA, GdPO4·H2O@SiO2–
APS/PLGA, and PBLG-g-GdPO4·H2O/PLGA nanocomposites was performed using a
1.5-T scanner (Siemens Magnetom Avanto, Erlangen, Germany). The in vitro imaging
parameters were as follows: repeat time TR = 530 ms, echo time TE = 12 ms, field of
view = 330 mm × 330 mm, and layer thickness = 2.0 mm.

3.8. In Vitro Cell Culture

MC3T3-E1 cells were purchased from the Shanghai Institute of Cell Biology, Chinese
Academy of Sciences (CAC) and cultured in regular culture medium containing Dulbecco’s
modified Eagle’s medium (DMEM) and 10% v/v fetal bovine serum (FBS) from Gibco
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(New York, NY, USA) at 37 ◦C in a humidified atmosphere of 5% CO2. The culture medium
was refreshed every three days.

Cytotoxicity and proliferation were assessed by the CCK-8 assay. Cytotoxicity was evalu-
ated by using the extracts from the samples. Briefly, GdPO4·H2O/PLGA, GdPO4·H2O@SiO2/
PLGA, GdPO4·H2O@SiO2–APS/PLGA and PBLG-g-GdPO4·H2O/PLGA films (6 cm2/mL)
containing 0.4% Gd (w/w, Gd/PLGA) were immersed in the culture medium for 24 h.
MC3T3-E1 cells were cultured at 1 × 104 cells/well for 24 h in 96-well plates. The original
medium was then replaced with a fresh 100 µL gradient dilution of the extract, and the
cells were incubated under the same conditions for 22 h. The medium was replaced with
fresh medium again, 10 µL of CCK-8 was added and incubated for 2 h and the absorbance
was measured at 450 nm on a multifunctional microplate scanner (Tecan Infinite M200,
Tecan, Männedorf, Switzerland).

For cell adhesion/proliferation experiments, coverslips containing composites were
washed three times with PBS and placed in 24-well plates with 4 × 104 MC3T3-E1 cells per
well, and cell adhesion was assayed at 6, 12 and 24 h. A total of 1.5 × 104 cells per well
were grown for cell proliferation and tested at 1, 3, 7 and 14 days. Cell adhesion and cell
morphology were observed by fluorescent isothiocyanate (FITC, Sigma, MO, USA) staining
under an inverted microscope (TE2000U, Nikon, Tokyo, Japan). Each subsequent group
was prepared in triplicate.

The expression of osteogenic/chondrogenic-related genes was quantitatively assessed
by real-time PCR. MC3T3-E1 cells were cultured in 24-well plates containing composite
material at 6 × 104 cells per well for 7 and 14 days. The exact procedure can be found in
the relevant reference [30].

Calcium-rich deposits of MC3T3-E1 cells were assessed using alizarin red staining
in 6-well plates cultured at 3 × 104 cells per well for 3 weeks, following a previously
published protocol.

3.9. Data Analysis

Quantitative data are expressed as the mean ± standard error. Significance was
accepted at * p < 0.05.

4. Conclusions

In summary, GdPO4·H2O@SiO2, GdPO4·H2O@SiO2–APS and PBLG-g-GdPO4·H2O
were successfully designed and synthesized by controlling the ratio of reactants when
GdPO4·H2O:VTEOS (mg/mL) = 1:1, GdPO4·H2O@SiO2:APS = 1:0.22 and GdPO4·H2O@SiO2–
APS:NCA = 4:1, leading to a grafting ratio of 5.93% for PBLG-g-GdPO4·H2O, which
showed good stability and dispersion in chloroform and the degradable polymer PLGA.
After functionalization of the surface modification, only the T1-weighted MRI signal
of GdPO4·H2O@SiO2 was stronger, and the MRI imaging signals of GdPO4·H2O@SiO2,
GdPO4·H2O@SiO2–APS and PBLG-g-GdPO4·H2O were sequentially weakened. All mod-
ification intermediates and the modification product had good biocompatibility, such as
an elevated ALP activity to some extent and promoted the expression of COL I and COL
II, especially GdPO4·H2O@SiO2 which had significant up-regulation ability on the gene
expression of biomacromolecules COL I and COL II, with expression levels at least 4.8 and
3.1 times higher than those of the PLGA group, respectively. The design and synthesis
of intelligent and biofunctionalized gadolinium phosphate nanobunches through surface
modification will make an outstanding contribution in the field of biomedical materials
and bone tissue engineering.
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