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Abstract: A unique method for synthesizing a surface modifier for metallic hydrogen permeable
membranes based on non-classic bimetallic pentagonally structured Pd-Pt nanoparticles was de-
veloped. It was found that nanoparticles had unique hollow structures. This significantly reduced
the cost of their production due to the economical use of metal. According to the results of electro-
chemical studies, a synthesized bimetallic Pd-Pt/Pd-Ag modifier showed excellent catalytic activity
(up to 60.72 mA cm−2), long-term stability, and resistance to COads poisoning in the alkaline oxida-
tion reaction of methanol. The membrane with the pentagonally structured Pd-Pt/Pd-Ag modifier
showed the highest hydrogen permeation flux density, up to 27.3 mmol s−1 m−2. The obtained
hydrogen flux density was two times higher than that for membranes with a classic Pdblack/Pd-Ag
modifier and an order of magnitude higher than that for an unmodified membrane. Since the rate
of transcrystalline hydrogen transfer through a membrane increased, while the speed of transfer
through defects remained unchanged, a one and a half times rise in selectivity of the developed
Pd-Pt/Pd-Ag membranes was recorded, and it amounted to 3514. The achieved results were due to
both the synergistic effect of the combination of Pd and Pt metals in the modifier composition and the
large number of available catalytically active centers, which were present as a result of non-classic
morphology with high-index facets. The specific faceting, defect structure, and unusual properties
provide great opportunities for the application of nanoparticles in the areas of membrane reactors,
electrocatalysis, and the petrochemical and hydrogen industries.

Keywords: hydrogen permeability; Pd membranes; nanostars; hollow nanoparticles; modified
surface; water gas shift reaction; membrane reactors

1. Introduction

The rapid development of the global economy is creating high demand for energy in
almost all areas of industry [1–4]. However, the main source of energy today is still fossil
fuels, the reserves of which are very limited [5–8]. A promising next-generation alternative
energy source is hydrogen [9–12]. The key step between the production and application
of hydrogen is its separation and purification [13]. The membrane separation method is
widely used in many areas, including hydrogen energy, due to its simplicity, low cost, high
energy efficiency, and environmental friendliness [14–17]. The need to design and produce
membrane filters with increased hydrogen permeability and durability has formed an
interest in exploring different materials with the best performance and hydrogen resistance.

Palladium-based membranes are the most demanded due to their unique hydro-
gen selectivity [18–21]. Nevertheless, the use of pure palladium in reactions involv-
ing hydrogen leads to poisoning and rapid mechanical destruction as a result of its
embrittlement [22,23]. The solution would be to alloy palladium with other metals such
as Ag, Cu, Ru, or Au [24–26]. The addition of silver to the alloy improves the mechanical
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resistance of palladium-based membranes and provides optimal hydrogen permeability. In
their work [27], A. Suzuki et al. analyzed the inverse temperature dependence of hydrogen
permeability through membranes made of pure Pd and its alloys. It was found that the
addition of Ag to Pd increased hydrogen solubility at a high temperature and suppressed
the α→α′ phase transition. This provided a moderate increase in the PCT factor at a higher
temperature and resulted in a continuous hydrogen permeability peak at a higher peak
temperature. Q. Zhou et al. [28] studied the selectivity and permeability of membranes
for hydrogen on the basis of binary Pd-Au and ternary Pd-Au-Ag alloys. According to
their results, both an improvement in the selectivity and a significant increase in the hydro-
gen permeability up to 2.09 × 10−1 mol s−1 m−2 Pa−1 at 300 K are achieved when Ag is
introduced in comparison with the Pd-Au alloy membrane.

Nevertheless, the problem of low and unstable permeability of palladium-containing
membranes at low-temperature operation modes, where hydrogen transport is limited by
surface processes, remains unsolved [29,30]. This is caused by an impure or an inactive
metal membrane surface. Consequently, there is a kinetic inhibition of reaching a balance
between molecular hydrogen in the gas phase and atomic absorbed hydrogen in the
palladium phase at the metal–hydrogen system border [31]. This condition can be partially
overcome by surface activation. Thus, N. Vicinanza et al. [32] studied the effect of three-
stage heat treatment of Pd77%Ag23% membranes in air on their hydrogen permeability. It
was found that hydrogen permeability of membranes increased after each stage, as the use
of the air heat treatment technique directly affected the increase in the effective surface area
of the membrane. Another way to activate the membrane surface is its modification with
powdered catalytically active particles [33–36]. The most promising way is the application
of nanoparticles, which have become widespread in many areas of science and industry due
to the unusual physical and chemical properties of nanoparticles [37–42]. The application
of a nanoparticle-based modifying layer significantly increases the working surface area
of a membrane, thereby promoting a chemisorption center increase [43]. Platinum group
metals can be such hydrogen chemisorbing powders.

Palladium and platinum are universal catalysts for many reactions and processes
in hydrogen energy [44–47]. However, most reactions show structural sensitivity, i.e.,
activity and selectivity depend on controlling metal nanoparticles’ shape and size and
the arrangement of atoms on a surface [48–51]. Thus, the addition of high-index facets to
palladium-based nanoparticles enhances their catalytic activity toward reactions involving
hydrogen [52,53]. Therefore, pentagonally structured nanoparticles with a big number
of high-energy facets are of major interest. The application of a modifier based on such
nanoparticles to the surface of a palladium-containing membrane can significantly increase
the catalytic activity of the material and the hydrogen permeability in low-temperature
operation mode [54]. That is, the key factors contributing to the high activity of the material
in reactions are the adjustment of the morphology and structure of particles (presence of
high index facets, defects, and undercoordinated atoms) and the addition of a secondary
metal [55–59]. In the first case, the given morphology is able to increase significantly
the working surface of the membrane with an increased number of chemisorption cen-
ters [60]. In the second case, the addition of a secondary metal can greatly enhance the
reactivity and stability of the material [61–64]. Consequently, the aim of this work was to
study the effect of the morphology and structure of bimetallic nanoparticles as a part of
palladium-silver membrane modifiers on low-temperature membrane processes of deep
hydrogen purification.

2. Results and Discussion
2.1. Morphology, Structure Features, and Preparation of Nanoparticles on Pd Basis

Classic monometallic palladium nanoparticles were also obtained in the study. Mi-
crophotographs of the synthesized particles as a part of the modifier are presented in
Figure 1a. The obtained particles had a classic energetically favorable spherical shape. The
average size for 75% of the particles was about 80–110 nm. This classic particle type was
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deliberately obtained for further comparison with developed pentatwinned nanoparticles
in catalytic and membrane applications. The results of the EDS analysis presented in
Figure 1b showed 99.98% palladium content and few impurities in the synthesized classic
palladium nanoparticles.
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Figure 1. (a,b) SEM images of classic palladium nanoparticles at different magnifications. (c) EDS
spectrum of the elemental composition of classic palladium nanoparticles.

Non-classic bimetallic Pd-Pt nanoparticles as a part of the modifier with a fifth-order
symmetry axis, which is unattainable in volumetric single crystals, were obtained in this
study. The research concentrated on particle shaping and the combination of metals in
their composition. The interest stemmed from the fact that catalytic reactions can occur
more selectively on certain facets or due to the introduction of a secondary metal that alters
reactivity. Palladium and platinum are relatively similar in many basic characteristics. Both
metals have face-centered cubic lattices with negligible differences in the lattice parameter
(Pd = 3890 Å, Pt = 3920 Å) and close standard reduction potentials. According to the
density functional theory, platinum atoms occupy central positions, while palladium atoms
concentrate on a surface during particle formation [65]. This can be explained by the higher
surface energy and cohesion energy of platinum atoms.

Nevertheless, in the synthesis of nanoparticles, their deliberate design considering
the faceted structure, homogeneity, and compositional control remains a challenge, espe-
cially for nanoparticles that are composed of catalytically favorable metal pairs. Therefore,
a number of synthesis methods, which allow controlling the shape and composition of
nanoparticles, have been developed in recent years [66]. The simplest and the most efficient
method used in this work was the electrolytic deposition method. This method is unique
because it provides additional control tools (voltage and current) along with classic tools
for adjusting the shape and structure of particles (composition of the working solution and
synthesis time). The developed method for the synthesis of non-classic pentatwinned parti-
cles combined several main distinctive features in comparison with the classic technique,
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which allowed the achievement of similar particle morphologies. First, a two-step current
variation was applied in the deposition process. At the beginning, a sufficiently small
current of 0.003 mA cm−2 was applied for a short period of time to promote the nucleation
process. Such a step is important in the synthesis process as it is the nucleation shape,
which underlies the nanoparticle, that can dictate self-assembly into larger architectures
with new properties. Further, the current was significantly increased and maintained until
the end of the synthesis. This allowed the directed growth of specific facets of the particle
surface and giving them a certain shape. Second, the surfactant and halide ions were
used as tools for adjusting and controlling the morphology. Properly selected surfactant
concentration prevented particles from rounding during growth, preserving the inoculum
geometry. Chloride in the working solution promoted oxidative etching, while bromide
was responsible for selective passivation, stimulating the growth of facets with high Miller
indexes. High-index facets exhibited much higher reactivity than low-index ones because
they had a higher density of undercoordinated atoms located on steps and bends. These
atoms had high reactivity, which was required for high catalytic activity. The choice of the
electrolytic deposition method for particle synthesis was due to a number of advantages
compared with colloidal methods. Additional simplified tools for customizing nanoparticle
morphology and the simplicity of the method itself can be highlighted among these advan-
tages. They made it possible to synthesize particles in a uniform thin layer immediately on
the modified surface.

Bimetallic Pd-Pt nanoparticles, synthesized in this work, had fifth-order rotational
symmetry. Such symmetry can be observed in the flowers of many plants; however, it
is not typical for objects of a non-living nature. Microphotographs of the surfaces of the
obtained nanoparticles are shown in Figure 2. The particles had a five-pointed star shape
with high-energy facets with a big number of undercoordinated atoms. The average size
for 60% of the particles was in the range of 90–125 nm.
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Figure 2. (a,b,d) SEM images of bimetallic Pd-Pt nanoparticles. The inset in (b) is the histogram of
the Pd-Pt nanoparticle size distribution. (c,e) Photos of flowers that have fifth-fold symmetry. They
are similar in shape to Pd-Pt nanoparticles.

The obtained samples of films modified with pentagonally structured particles were
characterized using EDS and XRD techniques. According to the EDS analysis (Figure 3a),
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the resulting bimetallic modifier contained 94.8% of palladium and 5.2% of platinum.
Figure 3b shows the X-ray of the studied Pd-Pt alloy. The reflexes at 40.09, 46.56, 68.06, and
81.98 matched the (111), (200), (220), and (311) planes, respectively. Such an arrangement of
peaks corresponded to the face-centered cubic lattice of the Pd-Pt alloy (JCPDS No. 03-065-
6418). It should be noted that in the X-ray, reflections of the studied Pt-Pd alloy were located
between single reflections of Pt (JCPDS-04-0802) [67] and Pd (JCPDS-46-1043) [68], which in-
dicated the formation of a bimetallic Pt-Pd alloy with a face-centered cubic structure [69,70].
Figure 3c,d show SEM images of the surface and the section of the Pd-23%Ag membrane
modified with pentagonally structured bimetallic Pd-Pt nanoparticles.
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(b) X-ray diffraction spectrum of the synthesized modifier sample based on Pd-Pt nanoparticles. SEM
images of the surface (c) and the section (d) of the membrane modified with pentagonally structured
bimetallic Pd-Pt nanoparticles.

Moreover, it was found that pentagonal particles within the modifier were hollow. The
obtained samples were weighed after the modifier was synthesized. However, according
to the weighing results, the mass of the samples increased insignificantly. This raised a
number of questions about the structure of the nanoparticles in the modifier composition.
Chemical etching was used to determine structural features of the particle as the mechanical
influence on particles of such a small size was a non-trivial task. The aim of the pentagonally
structured particle etching experiment was the mechanical destruction of the outer shell of
the particles; this should provide an understanding of the internal state of the structure,
i.e., if the particles were solid or hollow inside This interest was motivated by the need to
reduce costs and therefore reduce the amount of precious metal used in the production
of such catalytic systems. During the etching process, the particle shell thinned, and
multiple explosion-like ruptures appeared. It was confirmed with electron microscopy
(Figure 4). Etching was performed with hydrochloric acid according to the mechanism that
was described in another paper [71] for decahedral and icosahedral particles. This made
it possible to speak about a similar destruction mechanism. The centers of destruction of
pentagonal particles were the points of intersection of twin boundaries and disclinations
on a particle surface. In other words, these were the points of the maximum concentration
of internal elastic stresses. Consequently, it can be assumed that the disclination content in
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electrolytically synthesized particles can lead to the formation of internal voids in them.
This particle structure certainly has an economic benefit in terms of precious metal reduced
consumption.
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centrated HCl (35%): (a) initial state of particles with disclination lines marked with dots, (b) formation
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images of hollow Pd-Pt nanoparticles.

2.2. Catalytic Characteristics of the Bimetallic Pd-Pt Modifier on Pentatwinned
Nanoparticles Basis

Electrochemical measurements of the obtained bimetallic pentagonally structured
Pd-Pt/Pd-Ag modifier were carried out with cyclic voltammetry in alkaline methanol
solution to assess the catalytic properties. They were also compared with the measure-
ments for the classic Pdblack/Pd-Ag modifier and the unmodified electrode. Scanning was
performed at potentials from −0.9 V to 0.5 V toward Ag/AgCl (saturated KCl) at a scan
speed of 50 mV s−1 at room temperature. Measurements for each sample were made for
one hundred cycles. The 30th cycles, which were the highest ones, are shown in Figure 5a.
All the studied samples showed similar trends, namely, a high current density peak around
−0.1 V at anodic sweep (If), which was caused by the oxidation of methanol. In addition,
another peak around −0.4 V at cathodic sweep (Ib) was observed for all samples, related to
the accumulation of residual carbonaceous particles, which were produced during anodic
sweep. However, the forward peak current density and reverse peak current density for the
electrode with the bimetallic pentagonally structured Pd-Pt/Pd-Ag modifier were the high-
est and were approximately 60.72 mA cm−2 and 5.89 mA cm−2, respectively. The achieved
values were three times higher than those for the electrode with the classic Pdblack/Pd-Ag
modifier, 19.28 mA cm−2 and 3.37 mA cm−2, respectively, and more than two orders of
magnitude higher in comparison with the unmodified electrode. The observed improve-
ment in the characteristics of the pentagonally structured Pd-Pt/Pd-Ag modifier in the
methanol oxidation reaction can be explained with a bifunctional mechanism [72–74].
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The process of methanol electrooxidation with electrodes modified with Pd-Pt particles
can be described with the following stages [75]:

PdPt + CH3OH→ PdPt-COads + 4H+ + 4e− (1)

PdPt + H2O→ PdPt-OHads + H+ + e− (2)

PdPt-COads + PdPt-OHads → CO2 + 2PdPt + H+ + e− (3)

According to (1), intermediate carbon monoxide forms (CO) were produced during the
methanol oxidation reaction and then further adsorbed on the surface of the Pd-Pt modifier
(PdPt-COads). The emerged COads blocked the surface of the Pd-Pt modifier, thereby
inhibiting the continuous oxidation process of methanol. PdPt-COads can be oxidized by
hydroxyl group (OH) with carbon dioxide (CO2) formation.

In the synthesized bimetallic modifier, platinum was responsible for the chemisorption
of methanol, and palladium was responsible for oxidation of water particles. Platinum
adsorbed carbon intermediate compounds such as COads, and palladium adsorbed its
counter intermediate compounds such as OHads, i.e., it catalyzed the dehydrogenation of
water molecules. In the bimetallic PdPt modifier, the d-zone centers of platinum shifted
downward, and the Pt-COads bond became weaker. At the same time, Pd-OHads reacted
with it and eventually led to the formation of CO2. The reaction between Pt-COads and
Pd-OHads led to the removal of strongly adsorbed COads particles on active centers. The
strong bonding between Pd-Pt atoms can also reduce the coordination between the Pt
and –COads bonds, thereby destroying the Pt-COads. These synergistic effects significantly
improved the overall characteristics of the Pd-Pt/Pd-Ag modifier. The enhanced electrocat-
alytic performance of the pentagonally structured Pd-Pt/Pd-Ag modifier in the methanol
oxidation reaction can also be explained with the high density of atomic steps, protrusions,
and fractures on high-index facets.

The resistance of catalytic coatings to COads poisoning is usually assessed via the ratio
of forward (If) to reverse (Ib) current density peaks [76]. In comparison with the classic
Pdblack/Pd-Ag modifier (5.7), the pentagonally structured Pd-Pt/Pd-Ag modifier showed
higher values of the If/Ib ratio—10.3. This indicated that poisoning particles were removed
from the catalyst surface more efficiently and that the mutual contribution of palladium
and platinum can significantly reduce CO poisoning during the reaction. The high value
of the If/Ib ratio implied that most of the intermediate carbonaceous particles COads were
oxidized to CO2 in the direct scan due to the presence of OHads.
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Chronoamperometric tests of the pentagonally structured Pd-Pt/Pd-Ag modifier, the
classic Pdblack/Pd-Ag modifier, and the unmodified electrode were carried out to study
the electrocatalytic stability, durability, and resistance to methanol oxidation at a fixed
temperature. At the initial stage, the modified electrodes had high current values, which
can be explained by a big number of active centers on the surface. Typically, methanol
is continuously oxidized on the surface of the modifier at a fixed potential, and many
intermediate adsorbed COads particles also begin to accumulate on the surface during
the methanol oxidation reaction. As can be seen from Figure 5b, the initial current of
the pentagonally structured Pd-Pt/Pd-Ag modifier was significantly higher than that of
the classic Pdblack/Pd-Ag modifier and unmodified electrode. This was an indicator of a
higher charging of the double layer [77]. However, a rapid drop of current up to 500 s was
observed due to the formation of CO-like intermediates, which were adsorbed on the active
centers of the catalysts. This prevented further oxidation of methanol [78]. It was recorded
that the pentagonally structured Pd-Pt/Pd-Ag modifier demonstrated significantly higher
current than that of the classic Pdblack/Pd-Ag modifier and unmodified electrode over the
entire time period, even though a current drop was observed. The final current density of
the pentagonally structured Pd-Pt/Pd-Ag modifier was about 2.39 mA cm−2, which was
higher than that of the classic Pdblack/Pd-Ag modifier (1.25 mA cm−2) and the unmodified
electrode (0.01 mA cm−2). In addition, the pentagonally structured Pd-Pt/Pd-Ag mod-
ifier had the lowest calculated current density reduction (41%) in comparison with the
classic Pdblack/Pd-Ag modifier (62%). This indicated better resistance of Pd-Pt/Pd-Ag to
poisoning in the methanol oxidation reaction. The gradual decrease in the current over
time was an indicator of the good anti-poisoning ability of the modifier [77]. The slower
current decline, which was observed for the electrode with the pentagonally structured
Pd-Pt/Pd-Ag modifier, indicated less accumulation of adsorbed COads particles on the
modifier surface. Therefore, it meant that the pentagonally structured Pd-Pt/Pd-Pd-Ag
modifier showed superior electrocatalytic performance and better stability than the classic
Pdblack/Pd-Ag modifier and unmodified electrode toward the alkaline oxidation reaction
of methanol. The activity level in the chronoamperometric measurements corresponded
directly to the activity level in the cyclic voltammetry measurements. The obtained results
can be due to the synergistic effect of the palladium-platinum alloy, which had superior
poisoning resistance in comparison with monometallic palladium.

Thus, the bimetallic pentagonally structured Pd-Pt/Pd-Ag modifier, synthesized in
this work, demonstrated excellent catalytic activity, long-term stability, and resistance to
COads poisoning in the alkaline oxidation reaction of methanol. The achieved results can be
due to both the synergistic effect of the combination of palladium and platinum metals and
the large number of available catalytically active centers, which are results of the non-classic
morphology with high-index facets.

2.3. Diffusion and Selective Characteristics of Bimetallic Pd-Pt Modifier on Pentatwinned
Nanoparticles Basis

The developed bimetallic pentagonally structured Pd-Pt/Pd-Ag modifier was studied
in hydrogen transport processes to assess gas transport characteristics. The resulting
characteristics were compared with those of the classic Pdblack/Pd-Ag modifier and the
unmodified membrane. In the first series of experiments, the diffusion characteristics of
the obtained membranes were assessed in terms of hydrogen permeate flux density as a
function of temperature in the range from 25 to 100 ◦C and a pressure of 0.4 MPa. The
choice of this temperature range was based on the role and properties of the modifier to
achieve permeability for palladium-based membranes even at room temperature. Figure 6a
shows the temperature dependence of hydrogen flux density for membranes with the
pentagonally structured modifier and the classic one. Data for the smooth unmodified
Pd-Ag membrane are shown for comparison. It was evident that the flux of hydrogen
permeating through the membranes increased with the rise of the permeation temperature.
However, it should be noted that the permeation flux was not recorded up to a temperature
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of 50 ◦C for the unmodified membrane, while the modified membranes showed a hydrogen
permeation flux density up to 14.7 mmol s−1 m−2 for Pd-Pt/Pd-Ag and 10.1 mmol s−1 m−2

for Pdblack/Pd-Ag already at a temperature of 25 ◦C. The highest values of hydrogen
permeation flux density at 100 ◦C were demonstrated by the membrane with a pentagonally
structured Pd-Pt/Pd-Ag modifier, up to 27.3 mmol s−1 m−2. The obtained hydrogen flux
density was two times higher than that for membranes with the classic Pdblack/Pd-Ag
modifier, up to 13 mmol s−1 m−2, and an order of magnitude higher than that for the
unmodified membrane. To confirm the hypothesis of the influence of surface processes
on permeability in the selected low-temperature range, the activation energy (EA) was
calculated using the Arrhenius equation [79]:

PH2 = P0exp
(
−EA
RT

)
(4)

where PH2 is the hydrogen permeability, P0 is the pre-exponential multiplier, R is the
universal gas constant, and T is the temperature. It is known from the literature [80]
that EA values below 30 kJ mol−1 indicate a significant contribution of diffusion to the
hydrogen transfer process, while surface phenomena require much higher activation energy
up to 146 kJ mol−1. The EA for the developed membranes was estimated to be about
75 kJ mol−1 for the unmodified membrane and about 49 kJ mol−1 for the membrane with
the pentagonally structured Pd-Pt/Pd-Ag modifier. Such results can be caused not only by
the activation of the membrane surface, which accelerates surface limiting processes in the
range of low temperatures (up to 100 ◦C), but also by the special morphology and structure
of nanoparticles in the composition of the pentagonally structured modifier. Pentagonally
structured particles, in contrast to classic spherical particles, had a large number of available
catalytically active centers due to the presence of high-index high-energy facets. The
synergetic effect of the favorable combination of palladium and platinum metals in the
modifier also made a significant contribution. These conclusions were confirmed by
electrochemical studies presented earlier, the results of which correlate closely with those
of the gas transportation studies.
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membranes modified with developed monometallic and bimetallic nanoparticles. (b) Hydrogen
flux density dependence on overpressure at 25 ◦C through membranes modified with developed
monometallic and bimetallic nanoparticles.

The second series of experiments was carried out to support the obtained data on the
effect of the developed modifiers on the hydrogen permeability of palladium-containing
membranes. During these experiments, the dependence of the permeate flux density as
a function of overpressure in the range from 0.05 to 0.4 MPa and a temperature of 25 ◦C
was studied. Figure 6b shows the pressure dependence of the hydrogen flux density for
membranes with the pentagonally structured modifier and the classic one. A smooth
unmodified Pd-Ag membrane is shown for comparison. In the conducted experiment,
a similar dependence of the penetration flux density to that in the previous series of
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experiments was observed. Higher feed pressure determined higher driving force for
hydrogen permeation, causing an increase in the density of flux permeated through the
membrane. The membrane with the pentagonally structured Pd-Pt/Pd-Ag modifier had
the highest hydrogen permeation flux density at 0.4 MPa, up to 14.7 mmol s−1 m−2. The
achieved hydrogen flux density was 1.5 times higher than that for membranes with the
classic Pdblack/Pd-Ag modifier, up to 10.1 mmol s−1 m−2, and two order of magnitude
higher than that for the unmodified membrane. However, the main point of this series
of experiments was to identify the limiting stage of hydrogen transport for developed
membrane materials. The hydrogen flux permeating through the membrane is expressed
as follows [81]:

JH2 =
PH2

δ
(pn

1 − pn
2 ) (5)

where JH2 is the penetrating hydrogen flux, PH2 is the hydrogen permeability, δ is the
membrane thickness, pn

1 and pn
2 are the partial pressure on the inlet and outlet sides of

the membrane, respectively, and n is the pressure exponent. The exponent n can be from
0.5 to 1. At the boundary value n = 0.5, Equation (5) turns into the Sieverts–Fick law and
points to a limitation of the transfer process by the diffusion of atomic hydrogen in the
volume. In contrast, at the boundary value of n = 1, Equation (5) indicates that the transport
process is limited by surface reactions, i.e., hydrogen dissociation/recombination takes a
longer time and consequently consumes more energy than diffusion. According to the data
presented in Figure 6b, the obtained permeate flux density for the unmodified membrane
was easily approximated by a first-order line. The n value was 0.98, which meant that
the transport process was completely limited by surface stages. This was confirmed by
the activation energy, which was calculated above. For membranes with the pentago-
nally structured modifier, the exponent n was about 0.76, which indicated the control of
hydrogen permeation flux by a combination of several mechanisms, namely, volumetric
diffusion and surface processes. Moreover, it was confirmed by the evidently decreased
activation energy in comparison with the unmodified membrane. The conducted series
of experiments confirmed the acceleration of dissociative adsorption and recombinative
desorption processes, which were limiting in the low-temperature range. Such acceleration
was achieved by the activation of the membrane surface with the bimetallic pentagonally
structured modifier with an increased number of reactive active centers toward hydrogen.

In the third series of experiments, hydrogen permeation and nitrogen leakage tests
of the developed membranes with the bimetallic pentagonally structured Pd-Pt/Pd-Ag
modifier were performed at 25 ◦C and a transmembrane pressure range from 0.1 to 0.4 MPa
to assess selectivity. The results were compared with those for the classic Pdblack/Pd-Ag
modifier and the unmodified membrane. Figure 7 shows long-term permeability data
for the membranes with the pentagonally structured modifier and the classic one for
300 h. A smooth unmodified Pd-Ag membrane is shown for comparison. According to
the results, the developed membranes showed high selectivity over a long period of time.
The membrane with the pentagonally structured Pd-Pt/Pd-Ag modifier demonstrated the
highest H2/N2 selectivity at a pressure of 0.4 MPa, up to 3514. The achieved selectivity
was 1.2 times higher than that for the membranes with the classic Pdblack/Pd-Ag modifier,
up to 3019, and was 1.5 times higher than that for the unmodified membrane. It can be
seen from the data that the hydrogen permeation flux was increasing with each pressure
rise and stabilized over time. During the whole penetration test, there was a slight drop in
selectivity in the selected pressure range (0.1–0.4 MPa), but in numerical equivalent it could
be considered as insignificant. It should be noted that the hydrogen flow was stabilized at a
fixed pressure each time, and the nitrogen leakage did not increase either. This proved that
the developed membranes demonstrated stability and resistance to pressure drops over a
long period of time, as well as the absence of significant mechanical defects such as holes
and seals.
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developed monometallic and bimetallic nanoparticles.

3. Materials and Methods
3.1. Creation of a Membrane Basis, Methods of Its Modification, and Study of Its Surface
Morphology

The membrane basis was thin palladium-silver foils, which were obtained by alloying
palladium and silver components in an electric arc furnace. These metals in the form of
ingots were immersed in a crucible and then alloyed in a chamber under a pressure of
0.05 MPa at a varying inverter current from 12 to 120 A. The resulting Pd-23%Ag alloy
ingot was rolled on DRM–130 rollers (Durston, High Wycombe, UK) with intermediate
annealings to a foil thickness of 20 µm.

The modification of the obtained Pd-23%Ag foils was carried out by electrolytic
deposition in galvanostatic mode on a potentiostat-galvanostat P-40X (Electrochemical
Instruments, Chernogolovka, Russia) in two ways (Figure 8). In the first classic method
for the synthesis of monometallic palladium particles, the Pd-23%Ag foil was cleaned
by washing in ethanol (96%) and degreasing in the 6 M NaOH solution. Afterward, the
prepared foil was fixed in a working electrolytic cell and polarized first anodically in 0.1 M
HCl, then cathodically in 0.05 M H2SO4. Polarization was carried out at a current density
of 10–20 mA cm−2. After that, the cell was filled with the working solution of H2PdCl4
(2%) for further modification. Synthesis was carried out for 1.5–5 min at a current density
of 5–6 mA cm−2. After deposition, the modified foil was washed with bidistillate.
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In the second method for the synthesis of bimetallic pentatwinned Pd-Pt nanoparticles,
the Pd-23%Ag foil was also cleaned according to the procedure, which was described in the
first synthesis method. Subsequently, the prepared foil was moved to a working electrolytic
cell, where it was anodically and cathodically polarized in 0.1 M HCl and 0.05 M H2SO4,
respectively. Polarization was performed at a current density of 10–20 mA cm−2. Afterward,
the cell was filled with the working solution, which contained C16H36BrN surfactant along
with H2PdCl4 (2%). The palladium-platinum foil was used as an anode. During the
synthesis process, a low current density of up to 0.003 mA cm−2 was set for a short period
of time, 30–60 s. This stage was necessary for the nucleation process. Subsequently, the
current density was increased to 0.25–0.3 mA cm−2, and particles were grown further for
3.5–10 min. After deposition, the modified foil was washed with bidistillate. All reagents
were supplied by Sigma-Aldrich (St. Louis, MO, USA).

The morphology of the Pd-23%Ag modified foils was studied with electron microscopy
on a JSM–7500F scanning electron microscope (JEOL, Tokyo, Japan). The elemental compo-
sition was monitored using an INCA (Oxford Instruments, Abingdon, UK) semiconductor
energy dispersive attachment, which was a part of the JSM–7500F scanning electron micro-
scope (JEOL, Tokyo, Japan).

3.2. Membrane Research in Catalytic and Gas Transportation Processes

The catalytic activity of the developed membrane materials was studied with cyclic
voltammetry in the reaction of alkaline oxidation of methanol on the potentiostat-galvanostat
P-40X (Electrochemical Instruments, Chernogolovka, Russia). The working solution con-
sisted of 0.5 M methanol and 1 M NaOH. Measurements were performed at room tem-
perature in the potential range from −0.9 V to + 0.5 V at a scan speed of 50 mV s−1. A
three-electrode cell was used for the experiments. It consisted of a working electrode,
which was made of developed membrane samples, a platinum counter electrode, and a
glass Ag/AgCl reference electrode

The long-term stability of the developed membrane materials was examined with
chronoamperometry in the reaction of the alkaline oxidation of methanol on the potentiostat-
galvanostat P-40X (Electrochemical Instruments, Chernogolovka, Russia). The working
solution consisted of 0.5 M methanol and 1 M NaOH. Measurements were performed at
room temperature at a constant potential of −0.3 V for 2400 s.

The gas diffusion characteristics and selectivity of the developed membrane materials
were tested on a hydrogen permeability measurement unit according to the methodology,
which was described extensively in another paper [82]. The examined membranes were
hermetically sealed with copper gaskets and mounted in the chamber. Penetration tests
were performed sequentially in hydrogen at various pressures up to 0.4 MPa and tempera-
tures from 25 to 100 ◦C. The hydrogen penetration rate was measured with a mass flow
meter. Prior to each hydrogen penetration test, the membranes were first confirmed to
be with no obvious defects via helium leakage tests. The selectivity was analyzed via the
H2/N2 flux ratio.

4. Conclusions

A unique method for synthesizing a modifier based on non-classic bimetallic pentago-
nally structured Pd-Pt nanoparticles was developed. This method combined classic and
additional tools for adjusting the shape and structure of particles, namely, voltage and cur-
rent. The obtained particles in the modifier composition had high-energy high-index facets.
The modifier had a high density of undercoordinated atoms with high reactivity. It was
also found that nanoparticles had unique hollow structures. This can significantly reduce
the cost due to the economical use of metal. According to the results of the electrochemical
studies, the synthesized bimetallic pentagonally structured Pd-Pt/Pd-Ag modifier showed
excellent catalytic activity (up to 60.72 mA cm−2), long-term stability, and resistance to
COads poisoning in the alkaline oxidation reaction of methanol. The achieved results can be
caused by both the synergistic effect of the combination of Pd and Pt metals in the modifier
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composition and the large number of available catalytically active centers, which were
present due to the non-classic morphology with high-index facets. Very high hydrogen
permeability values were recorded while analyzing the results of the membrane perfor-
mance of the developed materials. This became possible due to the significant facilitation
of surface processes, namely, dissociative adsorption and recombinative desorption for
modified membranes. The membrane with the pentagonally structured Pd-Pt/Pd-Ag
modifier showed the highest hydrogen permeation flux density up to 27.3 mmol s−1 m−2.
The obtained hydrogen flux density was two times higher than that for the membranes
with the classic Pdblack/Pd-Ag modifier and an order of magnitude higher than that for the
unmodified membrane. This result can be explained by the presence of nanoparticles in
the Pd-Pt/Pd-Ag composition, which were active toward reactions involving hydrogen,
due to their high-energy facets with a high index. The specified morphology with an
increased number of chemisorption centers made it possible to significantly increase the
working surface of the membrane. A significant increase in the selectivity of the developed
Pd-Pt/Pd-Ag membranes was recorded, 3514, because the rate of transcrystalline hydro-
gen transfer through the membrane increased while the rate of transfer through defects
remained unchanged. According to the obtained results, no hysteresis dependence was
recorded. The membranes demonstrated stability under pressure gradient conditions, and
they maintained fairly high permeability and selectivity values over a long period of time.
The results, which were obtained in research, were confirmed by the close correlation of
diffusion-selective properties in membrane hydrogen mass transfer processes with catalytic
properties in processes of alkaline electrooxidation of methanol. The high performance
and unique features of the developed modified membrane materials open up prospects for
their further research and extension to a wide range of metal and alloy systems.
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