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Abstract: For centuries, various species from the genus Cirsium have been utilized in traditional
medicine worldwide. A number of ethnopharmacological reports have pointed out that Cirsium plants
can be applied to diminish digestive problems. Among them, Cirsium palustre (L.) Scop. (Asteraceae)
stands out as a promising herbal drug candidate because its constituents exhibit antimicrobial and
antioxidant potential, as evidenced by ethnopharmacological reports. As a result, the species is
particularly intriguing as an adjunctive therapy for functional gastrointestinal and motility disorders.
Our research goal was to verify how the extracts, fractions, and main flavonoids of C. palustre affect
colon contractility under ex vivo conditions. An alternative model with porcine-isolated colon
specimens was used to identify the effects of C. palustre preparations and their primary flavonoids.
LC-ESI-MS was utilized to evaluate the impacts of methanol (CP1), methanolic 50% (CP2), and
aqueous (CP3) extracts as well as diethyl ether (CP4), ethyl acetate (CP5), and n-butanol (CP6)
fractions. Additionally, the impacts of four flavonoids, apigenin (API), luteolin (LUT), apigenin 7-O-
glucuronide (A7GLC), and chrysoeriol (CHRY), on spontaneous and acetylcholine-induced motility
were assessed under isometric conditions. The results showed that C. palustre extracts, fractions, and
their flavonoids exhibit potent motility-regulating effects on colonic smooth muscle. The motility-
regulating effect was observed on spontaneous and acetylcholine-induced contractility. All extracts
and fractions exhibited an enhancement of the spontaneous contractility of colonic smooth muscle.
For acetylcholine-induced activity, CP1, CP2, and CP4 caused a spasmolytic effect, and CP5 and CP6
had a spasmodic effect. LUT and CHRY showed a spasmolytic effect in the case of spontaneous and
acetylcholine-induced activity. In contrast, API and A7GLC showed a contractile effect in the case
of spontaneous and pharmacologically induced activity. Considering the results obtained from the
study, C. palustre could potentially provide benefits in the treatment of functional gastrointestinal
disorders characterized by hypomotility and hypermotility.

Keywords: Cirsium palustre; flavonoids; colon motility

1. Introduction

Disorders involving gut–brain interaction (DGBIs), formerly called functional gas-
trointestinal disorders (FGIDs), are a modern global threat to human health and are the
most common diagnoses in gastroenterology [1,2]. Studies have shown that approximately
one-third of patients referred to gastroenterology clinics have been diagnosed with DG-
BIs [3]. Among them, the most common are irritable bowel syndrome (IBS) and functional
dyspepsia (FD). Currently, DGBIs are diagnosed and classified using criteria standardised
by the Rome Foundation. The pathophysiology of DGBIs is complex and has not been
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completely studied. According to the biopsychosocial model created by Engel and adapted
by Drossman, pathophysiology is related to a combination of motility disturbance, visceral
hypersensitivity, altered mucosal and immune function, altered gut microbiota, and altered
central nervous system processing [1,4]. The following are some of the mechanisms in-
volved: the dysregulation of the immune system, inflammation, and compromised barrier
function. There is now a broad consensus that individuals with a genetic predisposition
are at risk of developing inflammatory bowel disease (IBD) because of a compromised
intestinal epithelial barrier, which exhibits heightened permeability in tight junctions. In
such instances, these individuals experience an amplified immune response in the gut, di-
rected towards the gut microbiota. This immune response is not easily regulated, ultimately
resulting in the initiation of chronic intestinal inflammation [5]. In the course of the inflam-
matory response, various mediators are released by immune cells, including cytokines,
chemokines, and eicosanoids [6]. Research has shown that the intestinal microbiota and
metabolites that they generate are significant in regulating colonic motility, secretion, and
absorption; therefore, they play a role in modulating critical pathophysiological pathways
in DGBIs [2,4,7]. A recent study has also revealed that microorganisms can influence
visceral hypersensitivity and pain reception [8]. In addition to the gut microbiota, mast
cells also contribute to the development of visceral hypersensitivity. Mast cells can induce
alterations in gastrointestinal tract function, and an elevated mast cell count impacts the
permeability of the intestinal mucosal barrier, thereby contributing to the emergence of
visceral hypersensitivity [9]. Additionally, mast cells exhibit various functions, such as
regulating secretion and peristalsis, making them a potential target for pharmacological
intervention in the treatment of IBS [10].

Disorders involving gut–brain interactions cause bothersome symptoms that can sig-
nificantly reduce the quality of a patient’s life, both physically and mentally [11]. Due to
the complex aetiology of the problem, the available treatment methods do not completely
cure the disease and thus are not entirely satisfactory, and new treatment alternatives are
intensively sought [12]. With the increased popularity of herbal medicines and dietary supple-
ments in modern society, plant extracts or their phytoconstituents offer a promising option for
symptomatic therapies in patients suffering from disorders of gut–brain interactions.

Cirsium palustre (L.) Scop., also known as Marsh plume thistle or European marsh
thistle, is an herbaceous plant belonging to the Asteraceae family. The species is native to
Europe and western and eastern Siberia and was also introduced to the northern United
States and Canada [13,14]. Numerous studies have been carried out on the antioxidant
and antimicrobial activities of C. palustre [15–19]. The dominant antioxidants determined
in C. palustre leaves were the following flavonoids: eriodictyol 7-O-glucoside, luteolin 7-O-
glucoside, and 6-hydroxyluteolin 7-O-glucoside, as well as chlorogenic acid [20]. In another
study, Nazaruk et al. investigated the antiproliferative effects of C. palustre essential oil
obtained from underground parts against breast adenocarcinoma cells (MCF-7 and MDA-
MBA-231). It was revealed that the essential oil exhibits moderate antiproliferative activity
against adenocarcinoma. Moreover, these concentrations were below the level capable of
inhibiting the proliferation of healthy cells, such as normal skin fibroblasts [21].

Traditionally, Cirsium plants were used to cure gastrointestinal ailments, especially diar-
rhoea and dysentery [22,23]. Within the Slavic ethnic groups, plants belonging to the genus
Cirsium were employed for the management of colic or other gastrointestinal problems [24,25].
C. palustre is an interesting candidate for new phytomedicine due to its multiple biological
activities identified thus far; however, more data are needed to clarify its possible uses in
various health conditions. Although very few studies have been conducted thus far, some
C. palustre extracts and fractions affect the motility of the swine colon [26,27], making them
very promising candidates for the symptomatic treatment of disorders of gut–brain interac-
tions. Therefore, the goal of the study was to find out if C. palustre flavonoids and selected
preparations affected intestinal contractility patterns ex vivo.



Int. J. Mol. Sci. 2023, 24, 17283 3 of 15

2. Results
2.1. Phytochemical Screening of Selected C. palustre Extracts/Fractions

To characterise the composition of secondary metabolites, crude extracts and fractions of C.
palustre flower heads were analysed by LC-PDA-HRMS. Thirty-seven compounds were found,
including quinic acid derivatives esterified with caffeic, ferulic, and p-coumaric acids as well as
flavones that are specific to the Asteraceae family (Table 1). The diether fraction (CP4) is largely
dominated by dicaffeoylquinic acid derivatives (19–22) and aglycones, such as luteolin (33, LUT),
apigenin (34, API), kaempferol (35), and chrysoeriol (36, CHRY). Apigenin 7-O-glucuronide
(25, A7GLC) was the main component of the acetate fraction (CP5). In the n-butanol fraction
(CP6), as in the crude methanolic (CP1) and hydro-methanolic (CP2) extracts, the predominant
compounds were chlorogenic acid (6) and apigenin 7-O-glucuronide (25, A7GLC). Furthermore,
rare isokaempferide derivatives, such as isokaempferide 7-O-glucoside (27) and isokaempferide
7-O-glucuronide (28), were found using standard substances from a previous study [28]. The
results of phytochemical screening by LC-PDA-HRMS are presented in Figure 1.
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Table 1. Principal constituents found by LC-HRMS in extracts/fractions of C. palustre flower heads.

No. Rt (min) UV Spectra (λmax nm) Observed A ∆ (ppm) B Formula Fragmentation C Compounds Presence in Extracts/Fraction
CP1 CP2 CP3 CP4 CP5 CP6

1 2.29 248, 270, 345 191.01957 −0.65 C6H8O7 191 organic acid derivatives F x x x x
2 7.23 260, 295 153.02000 3,66 C7H6O4 153 phenolic acid derivatives x x
3 8.13 280 315.10854 1.22 C14H20O8 203, 315 phenolic acid derivatives x
4 10.5 245 sh, 295 sh, 325 353.08918 3.85 C16H18O9 353, 134 3-O-caffeoylquinic acid R x x
5 12.39 270 443.19227 0.66 C21H32O10 215, 443 phenolic acid derivatives x
6 14.32 245 sh, 295 sh, 325 353.08833 1.5 C16H18O9 353, 191 5-O-caffeoylquinic acid S x x x x x x
7 15.32 245 sh, 295 sh, 325 353.08930 4.14 C16H18O9 353, 179 4-O-caffeoylquinic acid S,R x x x x x x
8 17.04 290, 312 337.09462 3.33 C16H18O8 337, 191 5-O-p-coumaroylquinic acid R x x x
9 17.66 265, 345 623.12809 4.21 C27H28O17 284, 447, 623 flavone derivative F x x x
10 19.72 264, 343 607.13046 3.76 C27H28O16 607 unknown x x x
11 20.57 245 sh, 295 sh, 327 367.10349 4.62 C17H19O9 367, 179, 135 4-O-feruloylquinic acid R x
12 21.55 255, 282, 344 463.08820 3.62 C21H20O12 300, 463 flavone O-hex F x x x x
13 22.74 283, 335 449.11088 4.64 C21H22O11 287, 449 eriodictyol O-hex isomer F x x x x
14 22.82 283, 335 449.10894 4.32 C21H22O11 287, 449 eriodictyol 7-O-glucoside S x x x x
15 22.63 255, 267 sh, 348 447.09329 4.57 C21H22O11 283, 447 luteolin 7-O-glucoside S x x x
16 23.67 255, 267 sh, 348 447.09329 4.57 C21H22O11 283, 447 luteolin O-hex isomer F x x x x
17 24.39 255, 267 sh, 342 461.07255 6.55 C21H18O12 285, 461 flavone O-uronide derivatives F x x x x x
18 26.49 264, 347 491.08311 5.73 C22H20O13 315, 447 cirsimaritin 4’-O-glucoside F x x
19 26.58 246, 296, 327 515.12266 5.05 C25H24O12 191, 353, 515 3,4-O-dicaffeoylquinic acid F x x x
20 26.67 246, 296, 327 515.12240 6.03 C25H24O12 191, 353, 515 3,5-O-dicaffeoylquinic acid S,F x
21 26.72 246, 296, 327 515.11950 5.09 C25H24O12 191, 353, 515 dicaffeoylquinic acid isomer F x x x
22 26.92 246, 296, 327 515.12212 5.31 C25H24O12 191, 353, 515 dicaffeoylquinic acid isomer F x x x x x
23 27.18 266, 336 431.10043 4.79 C21H20O10 268, 431 flavone O-hex isomer F x x x x
24 27.68 250, 295 sh, 327 631.13046 3.25 C29H28O16 191, 353, 631 quinic acid derivatives x
25 29.14 266, 336 445.07763 3.98 C21H18O11 269, 445 apigenin 7-O-glc (A7GLC) S x x x x x x
26 29.79 245 sh, 295 sh, 325 515.11950 4.63 C25H24O12 515 dicaffeoylquinic acid isomer F x x
27 30.82 266, 350 461.10894 3.86 C22H22O11 283, 461 isokaempferide 7-O-glu S x x x
28 31.12 274, 334 475.08907 2.34 C22H20O12 283, 299, 475 isokaempferide 7-O-glc F x x x x x
29 31.25 264, 340 431.10021 4.52 C21H20O10 284, 431 flavone derivatives x x x
30 33.67 274, 334 475.08820 1.84 C22H20O12 255, 299, 475 flavone O-hex derivatives F x x x x x
31 37.36 268, 325 593.13006 4.62 C30H26O13 593 unknown x x
32 38.4 268, 336 459.09329 4.8 C22H20O11 269, 459 apigenin 7-O-(6”-O-methyl)-glc S x
33 38.48 268, 345 285.04046 3.48 C15H10O6 285 luteolin (LUT) S x
34 44.24 268, 290 sh, 338 269.04609 2.03 C15H10O5 269 apigenin (API) S x x x x
35 44.67 266, 29 sh, 358 285.04178 4.39 C15H10O6 285 Kaempferol S x x x
36 45.69 266, 293 sh, 350 299.05697 2.89 C16H12O6 299 chrysoeriol (CHRY) S x x x x
37 46.56 295, 308 785.35848 −1.41 C38H58O17 545, 665, 785 unknown x x x x

A—Exact mass of [M-H]- ion; B—mass error; C—fragmentation in negative ion mode; sh—peak shoulder; bold—most abundant; glu—glucose; glc—glucuronide; hex—hexoside;
F—predicted by UV-Vis and MS spectra; S—reference substance; R—according to Cliffort et al. 2003 [29].
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2.2. Effect of Flavonoids and C. palustre Extracts and Fractions on the Spontaneous Contractility of
Swine Colonic Smooth Muscle

All flavonoids used in the experiment exhibited a dose-dependent effect on the spon-
taneous contractility of the longitudinal smooth muscle of the swine colon. While LUT
and CHRY showed a spasmolytic effect, API and A7GLC enhanced the magnitude of
the spontaneous motor activity. When comparing the myocontractile potency of API and
A7GLC, that of the former was slightly higher. For LUT and CHRY, the latter showed a
noticeably stronger spasmolytic effect (Figure 2). API clearly enhanced the magnitude of
spontaneous motor activity in a dose-dependent manner. The lowest dose that induced a
significant myocontractile effect was 0.01 µM, and the reaction amounted to 116.27 ± 3.63%
of the control reaction. The highest magnitude of contractile response was noted when
apigenin was administered at a dose of 100 µM (171.43 ± 4.0% of the reaction to DMSO).
A7GLC used in a concentration range of 0.01 to 100 µM caused a clear dose-dependent
enhancement of spontaneous muscle activity (Figure 2). The administration of a dose of
0.01 µM resulted in an even stronger contraction response than that observed with API
at the same dose, and the response rate of the control reaction was up to 121.52 ± 6.74%.
The highest magnitude of contractile response was noted when a dose of 100 µM was
used and reached 171.43 ± 4.0% of the reaction produced by DMSO (0.5%). LUT exhib-
ited a significant spasmolytic effect on the longitudinal smooth muscle of the colon in
a dose range of 0.1–100 µM. The effect was dose-dependent and increased with higher
substrate concentrations. The response ranged from 87.81 ± 1.65 to 72.44 ± 4.4% of the
reaction to DMSO (0.5%) for LUT applied at concentrations of 0.1 and 100 µM, respectively
(Figure 2). CHRY, similar to LUT, exerted a relaxing effect on colonic longitudinal smooth
muscle, but in this case, the effect was significantly stronger. Additionally, the effect was
dose-dependent, and the minimum dose to achieve a significant change in spontaneous
contractility was 0.01 µM. The reaction ranged from 88.08 ± 9.15% to 59.91 ± 3.31% of the
smooth muscle reaction to DMSO (0.5%) when CHRY was applied at concentrations of 0.1
and 100 µM, respectively (Figure 2).
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Figure 2. The effect of apigenin (API), apigenin 7-O-glucuronide (A7GLC), luteolin (LUT), and
chrysoeriol (CHRY) on the spontaneous activity of swine isolated colonic longitudinal smooth muscle.
The results are expressed as % of the response to DMSO (0.5%). The results are expressed as mean of
5 independent experiments (±SD); p ≤ 0.05 vs. DMSO (0.5%); * p ≤ 0.05 vs. DMSO (0.5%).

All extracts and fractions enhanced the spontaneous contractility of the longitudinal
smooth muscle of the swine colon in a dose-dependent manner (Figure 3). Among the ex-
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tracts, the aqueous extract (CP3) exhibited the strongest myocontractile effect (Figure 3). For
the fractions, it is impossible to clearly indicate the one that exhibited the strongest myocon-
tractile effect. The magnitude of the reaction differed between fractions and concentrations
(Figure 3). CP1 exhibited a significant myocontractile effect on the longitudinal smooth
muscle of the colon in a dose range of 0.00005–0.1 mg/mL. The response ranged from
114.42 ± 5.08 to 161.62 ± 6.21% of the reaction to DMSO (0.5%) for 0.00005 and 0.1 mg/mL
CP1, respectively. CP2 also caused a clear dose-dependent enhancement of spontaneous
muscle activity, although the effective dose range was slightly narrower, starting at a dose
of 0.0001 mg/mL. The highest magnitude of contractile response was noted when a dose of
0.1 mg/mL was used and reached 159.67 ± 7.93% of the control reaction. Utilising CP3
caused the strongest contraction of the smooth muscle of the colon among all the extracts.
The reaction ranged from 116.95 (5.38%) to 175.39 (5.38%) of the smooth muscle reaction to
DMSO (0.5%) when the extract was applied at concentrations of 0.00005 and 0.1 mg/mL,
respectively (Figure 3). CP4 produced a dose-dependent myocontractile effect on the colon
specimens if administered in a concentration range of 0.0001–0.1 mg/mL. The reaction
ranged from 121.68 (2.77%) to 178.37 (8.29%) of the control reaction. CP5 also enhanced the
magnitude of the spontaneous motor activity, and the minimum dose to achieve a signifi-
cant change in spontaneous contractility was 0.00005 mg/mL. The reaction ranged from
113.97 (6.09%) to 168.69 (11.90%) of the smooth muscle reaction to the vehicle at 0.00005 and
0.1 mg/mL, respectively. For CP6, the lowest dose inducing a significant myocontractile
effect was 0.0001 mg/mL, and the reaction amounted to 122.57 ± 4.14% of the control reac-
tion. The highest magnitude of contractile response was noted when CP6 was administered
at a dose of 0.1 mg/mL (153.58 ± 5.62% of the reaction to DMSO, 0.5%).
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Figure 3. The effect of methanolic extract (CP1), 50% methanolic extract (CP2), aqueous extract
(CP3), ether residue (CP4), acetate residue (CP5), and n-butanol residue (CP6) of C. palustre on the
spontaneous activity of swine isolated colonic longitudinal smooth muscle. The results are expressed
as % of the response to DMSO (0.5%). The results are expressed as mean of 5 independent experiments
(±SD); p ≤ 0.05 vs. DMSO (0.5%); * p ≤ 0.05 vs. DMSO (0.5%).

2.3. Effect of Flavonoids and C. palustre Extracts/Fractions on ACh-Provoked Contractility of
Swine Colonic Smooth Muscle

The spasmolytic effects of luteolin (LUT) and chrysoeriol (CHRY) on ACh-induced
contractions were undoubtedly more profound than the effects on the spontaneous motor
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activity of the colonic preparations. In contrast, apigenin and apigenin glucuronide exerted
a spasmodic effect, and moreover, the range of effective doses of glucuronide was much
narrower (Figure 4). The administration of API caused a myocontractile effect in a dose-
dependent manner in a range of 0.001–10 µM. The response ranged from 117.32 ± 10.85 to
146.44 ± 5.24% of the reaction to ACh for API administered at concentrations of 0.001 and
10 µM, respectively (Figure 4). API at a dose of 100 µM also increased muscle contraction,
but the effect was weaker (like the 0.1 µM dose) and amounted to 132.62 ± 12.12% of the
reaction produced by ACh. Interestingly, A7GLC markedly increased the acetylcholine-
induced response only at doses of 10 and 100 µM. The response reached 139.48 ± 24% and
145.50 ± 24.34%, respectively (Figure 4). LUT clearly weakened ACh-produced contrac-
tions of the colonic smooth muscle. As with spontaneous contractility, the myorelaxant
effect occurred in a dose range of 0.1–100 µM and increased as the concentrations of LUT
increased. Moreover, the effect was stronger than in the case of spontaneous motor activity
and ranged from 78.92 ± 8.39% (LUT 0.1 µM) to 64.73 ± 12.78% (LUT 100 µM) of the
control ACh-induced reaction. CHRY produced a dose-dependent spasmolytic effect on the
colonic specimens exposed to acetylcholine in a dose range of 0.001–100 µM. The reaction
ranged from 82.51 ± 1.43% to 52.53 ± 12.92% of the smooth muscle reaction to ACh for
CHRY used at concentrations of 0.001 and 100 µM, respectively (Figure 4).
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chrysoeriol (CHRY) on the ACh-induced activity of swine isolated colonic longitudinal smooth
muscle. The results are expressed as % of ACh-induced contraction. The results are expressed as
mean of 5 independent experiments (±SD); p ≤ 0.05 vs. DMSO (0.5%); * p ≤ 0.05 vs. ACh (10 µM).

Interestingly, the effect of C. palustre extracts on the ACh-induced colonic smooth
muscle activity was opposite to that on the spontaneous activity; CP1 and CP2 exerted a
spasmolytic effect (Figure 5). The same applied for the ether fraction (CP4), which also
caused a spasmolytic effect. In addition, the CP5 and CP6 fractions produced a dose-
dependent myocontractile effect on colon specimens exposed to acetylcholine (Figure 5).
The evoked effect was not clear in character or magnitude only for CP3, ranging around
those of the control reaction produced by ACh (Figure 5). The range of doses in which
CP1 produced a spasmolytic effect was the widest among all the extracts and ranged from
0.0005 to 0.1 mg/mL. The response was dose-dependent and ranged from 88.32 ± 5.88 to
60.39 ± 4.04% of the reaction to ACh exposed to DMSO (0.5%) for 0.0005 and 0.1, respec-
tively. CP2 clearly weakened the ACh-produced contraction of the colonic smooth muscle in
a dose range of 0.01–0.1 mg/mL, and the response reached 74.92± 14.59% to 58.93 ± 7.05%.
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CP4 produced a spasmolytic effect on colon specimens exposed to acetylcholine in a dose
range of 0.001–0.1 mg/mL. The reaction ranged from 86.45 ± 6.85% to 72.03 ± 6.97% of the
smooth muscle reaction to ACh for CP4 used at concentrations of 0.001 and 0.1 mg/mL,
respectively. The administration of CP5 caused a myocontractile effect in a dose-dependent
manner in the range of 0.0001–0.1 mg/mL. The response ranged from 126.06 ± 7.80 to
154.55± 13.53% of the reaction to ACh for the lowest and the highest concentrations, respec-
tively. CP6 clearly enhanced the ACh-produced contraction of the colonic smooth muscle in
a dose-dependent manner in a wide dose range (0.00005–0.1 mg/mL). The reaction ranged
from 121.32 ± 9.37% to 155.80 ± 7.15% of the smooth muscle reaction to ACh for CP6 used
at concentrations of 0.00005 and 0.1 mg/mL, respectively.
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3. Discussion

Although the pathogenesis of DGBIs is not fully understood, they are certainly associ-
ated with motor disorders [1]. Clinical signs include symptoms related to the reduction
or increase in gastrointestinal motility; therefore, gastrointestinal motility modifiers are
used in FGID pharmacotherapy [30,31]. Considering the morphological and functional
similarities between the human and porcine gastrointestinal tracts [32,33], a pig experi-
mental model was chosen to conduct these studies. Previous research has shown that
in vivo experiments can be successfully replaced by ex vivo techniques that rely on isolated
intestinal strips [34]. Intestinal fragments can exhibit spontaneous and induced contractility
when maintained under conditions that mimic in vivo conditions [35]. When designing our
experiment, the current standards of society and the prevailing tendency for researchers to
use alternative models rather than live animals were also considered.

In today’s society, plant-derived products, such as cosmetics, medicines, and sup-
plements, are gaining in popularity. An increasing number of patients use alternative
medicines in therapy, including those suffering from DGBIs. As indicated in the literature,
herbal preparations are the most frequently used alternative treatment methods by patients
with IBS [36]. Herbal medicines are also effectively used in relieving the symptoms of
functional dyspepsia, functional diarrhoea, or functional constipation [37]. Bearing in mind
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the growing popularity of herbal medicines and supplements, we decided to investigate
the usefulness of C. palustre in an ex vivo gut contractility model. Using an LC-DAD-MS
analysis, it was possible to characterise the phytochemical profile of CP1–CP3 extracts and
CP4–CP6 fractions obtained from C. palustre. As a result of the analysis, 15 polyphenols
were found, including four dominating flavonoid compounds, such as apigenin (API),
luteolin (LUT), apigenin 7-O-glucuronide (A7GLC), and chrysoeriol (CHRY).

The results indicate that C. palustre extracts and fractions together with their flavonoid
constituents are potent modifiers of colon contractility. Modifying effects were observed on
spontaneous and ACh-induced activity. The use of different extraction methods enabled us
to identify various effects which were dependent on the composition of each preparation.
A detailed comparison of the effects induced by the extracts (CP1–CP3) revealed that the
highest potency of contractile activity is attributed to CP3. All our three extracts (CP1–CP3)
are rich in API and A7GLC, which supports the hypothesis that these phytoconstituents
are responsible for or contribute significantly to the total effect of the extracts. On the other
hand, the presence of CHRY, which was the most myorelaxant flavonoid, was confirmed
mainly in CP1. Most likely, the relaxant character of CHRY and LUT was covered by the
more significant prokinetic effects of API and A7GLC. In contrast, the dominant role of API
and A7GLC on CP1–CP3 activity is contradicted by the results obtained from trials with
pharmacologically induced contractility. As mentioned earlier, all tested extracts (CP1–CP3)
showed a spasmolytic effect in the case of ACh-induced activity. CP1 and CP2 are rich
in CHRY, which exhibited the strongest spasmolytic effect of all the tested flavonoids. In
contrast, CP3 contained significantly less CHRY than the other two extracts. This may
suggest the dominant role of CHRY in producing the spasmolytic effect of extracts in the
case of ACh-induced contractility. The LC-DAD-MS analysis also showed that all the tested
extracts and fractions, except for CP4, also contained a significant amount of chlorogenic
acid. At the same time, the research conducted by our team demonstrated the spasmodic
effect (both spontaneous and ACh-induced) of chlorogenic acid on swine colon specimens
consisting of longitudinal smooth muscle. The obtained results may also indicate the role of
chlorogenic acid in the prokinetic activity of CP1–CP3, CP5, and CP6 towards spontaneous
colon activity. The absence of chlorogenic acid in CP4 may also explain the opposite, i.e.,
the myorelaxant effect of this fraction towards ACh-induced contractility. In the case of the
fractions (CP4–CP6), there was no clear difference in the force of the myocontractile effect
produced on the spontaneous and induced motor activity of the colon because their potency
was similar. The only significant difference was that CP4 caused a myorelaxant effect in the
case of ACh-induced contractility, although it increased the spontaneous contractility of the
colon. The comparison of the flavonoid content in specific fractions revealed that A7GLC
was not detected in CP4. Bearing in mind its potent myocontractile effect on spontaneous
and induced motoric activity, the absence of A7GLC (and chlorogenic acid) may at least
partially explain the myorelaxant character of CP4. However, the absence of chlorogenic
acid in CP4 may refute the hypothesis regarding its inhibition of the contractility of porcine
colonic smooth muscle. The hypothesis of the dominant role of A7GLC is confirmed by the
results obtained for CP5 and CP6, which, similar to this flavonoid, markedly enhanced the
magnitude of spontaneous and ACh-induced contractility.

The single flavonoids API and A7GLC exhibited a stimulatory effect on spontaneous
and induced motor activity, while LUT and CHRY weakened the colonic smooth muscle
contractility (both spontaneous and ACh-induced). When comparing API and A7GLC,
the former seems to be the ingredient with greater potential, as it functions more strongly
and in a wider range of doses. CHRY, on the other hand, was more potent and over a
wider dose range than LUT. The mechanism behind the spasmolytic effect of LUT on the
smooth muscle of the colon has been thoroughly described. It is based on the inhibition
of L-type calcium channels [38]. Several studies conducted on guinea pig ileum have also
confirmed the antispasmodic effect of luteolin [39,40]. The antispasmodic effect of LUT was
confirmed by Sandraei et al. [41] who showed the impact of the flavonoid on GI smooth
muscle by the inhibition of protein kinase C activity based on the reduction in Ach- and
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KCl-induced contractions [41]. In addition, luteolin is a nonselective competitive inhibitor
of phosphodiesterases which could also play a role in its antispasmodic activity [42].
However, studies conducted on porcine jejunum and bovine stomach have demonstrated
the spasmodic effects of luteolin [34,43]. In studies performed on the jejunum of rabbits
and rats, the spasmolytic effect of CHRY has been demonstrated. CHRY was found
to exhibit its antispasmodic effects through K+ channel activation [39] and by blocking
calcium influx through voltage-dependent calcium channels [44]. Contrary to our results,
other authors describe the effect of API as spasmolytic [40,45,46]. Generated data reveal
the involvement of L-type voltage-dependent Ca2+ channels in apigenin-induced gastric
relaxation [47]. However, these studies were performed in the guinea pig jejunum [40,48]
and in a mouse model [45,47]. Our study presents the initial documentation of how A7GLC
affects gastrointestinal contractility.

Furthermore, prior research on flavonoids has suggested that, apart from their impact
on peristalsis, these compounds possess other properties that render the plants containing
them as promising candidates for the treatment of DGBIs. It has been demonstrated that
flavonoids can effectively suppress the production of inflammatory mediators. Luteolin is
proven to inhibit the production of interleukins (IL-1β, IL-2, IL-6, IL-8, IL-12, and IL-17),
tumour necrosis factor α (TNF-α), interferon (IFN-β), and granulocyte-macrophage colony-
stimulating factor, along with some chemokines, including eicosanoids (prostaglandin
and leukotriene) [49]. Luteolin, one of the polyphenolic compounds extracted from Per-
illa frutescens, was found to inhibit the production of TNF-α and interleukins (IL-1, IL-6,
and IL-17A,) while apigenin reduced IL-17A secretion and boosted the anti-inflammatory
cytokine IL-10 [50]. Research conducted on a luteolin-rich extract of Serpylli herba has
revealed its ability to inhibit the release of β-Hexosaminidase and consequently its ability
to modulate mast cell degradation [10]. In their study, Docsa and co-workers conducted
a comprehensive review of the influence of inflammatory mediators on the emergence
of gastrointestinal motility disorders. They reached the conclusion that, even though the
precise mechanisms through which inflammation impacts peristalsis remain not fully eluci-
dated, cytokines indeed exert an influence on gastrointestinal motility, with the potential to
either accelerate or decelerate it [51]. With this fact in mind, it is reasonable to consider that
extracts from C. palustre, known for their abundance of flavonoids that inhibit the activity of
inflammatory mediators, could emerge as a promising candidate for managing peristalsis
disorders associated with this underlying condition. Moreover, it has been demonstrated
that supplementation with flavonoids, such as luteolin and apigenin, assists in reshaping
and enriching the gut microbiota, a significant factor in preserving the optimal functioning
of the gut and gut–brain axis [52–54]. It is proven that gut microbiota play a significant role
in modulating GI motility [55,56]; therefore, apigenin- and luteolin-rich extracts from C.
palustre show promise as options for addressing DGBIs.

4. Materials and Methods
4.1. Chemical Solvents, Reagents, and Standards

The reference substances used in the experiments were acetylcholine chloride (ACh),
isoproterenol (Isop), and dimethyl sulfoxide (DMSO) (Sigma–Aldrich, St. Louis, MO,
USA), which were utilized as the vehicle for water-insoluble preparations. CaCl2 (Merck,
Darmstadt, Germany), NaH2PO4 (Fluka Chemie, AG, Buchs, Switzerland), NaCl, KCl,
MgSO4, NaHCO3, and glucose (Avantor Performance Materials, Gliwice, Poland) were
used to prepare the incubation media. API, A7GLC, LUT, CHRY, and all extracts and
fractions of C. palustre except for the aqueous extract were dissolved in 0.5% DMSO. The
aqueous extract (CP3) was dissolved in the incubation medium. Modified Krebs–Henseleit
solution (M K–HS) containing NaCl (123.76 mM), NaHCO3 (14.5 mM), glucose (12.5 mM),
KCl (5 mM), KH2PO4 (2.75 mM), CaCl2 (2.5 mM), and MgSO4 (1.156 mM) was freshly
prepared on the day of the experiment and used as a transportation and incubation medium.
pH stability within 7.35–7.45 was ensured by maintaining a constant temperature of 37 ◦C
and continuous bubbling with carbogen (95% O2 and 5% CO2). A POLWATER DL3-100 unit
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(Labopol, Kraków, Poland) was used to obtain ultrapure water (UPW). Acetonitrile Optima
(LC/MS grade) was purchased from Fisher Scientific (Loughborough, UK). Formic acid
(FA) was purchased from Avantor (Gliwice, Poland). Chrysoeriol (3′-O-methyl-luteolin)
(CHRY) was purchased from Sigma–Aldrich (St. Louis, MO, USA). The standards 4-O-
caffeoylquinic acid and 3,5-O-dicaffeoylquinic acid used for the LC–MS analysis were
purchased from BIOKOM (Janki, Poland). Apigenin (API), apigenin 7-O-glucuronide
(A7GLC) and luteolin (LUT), isokaempferide 7-O-glucoside, apigenin 7-O-(6”-O-methyl)-
glucuronide, apigenin 7-O-glucuronide, luteolin 7-O-glucoside, kaempferol, eriodictyol
7-O-glucoside, and 5-O-caffeoylquinic acid (purity > 96%) were isolated previously. Final
purification of A7GLC was carried out using a Waters HPLC system (components 2707,
2998, 1525, 1525µ) and Empower 3 build 3471 software with a Waters WFC III fraction
collector (Milford, MA, USA) [28,57,58].

4.2. Plant Material

The specimens used in the study were flower heads of C. palustre (Podlaskie, Poland;
GPS: 53◦15′19.4” N 23◦27′57.3” E) consisting of dark purple tubular flowers with purple-
tipped bracts. The blossoms were collected when beginning to flower and did not have
developed seeds at this stage. Plant material identity was evaluated morphologically in
comparison to reference data [59]. The Herbarium of the Department of Pharmacognosy at
the Medical University of Bialystok, Poland held a voucher specimen (No. CP 06014). The
plant material was dried immediately after harvesting, in a shaded, well-ventilated room.

4.3. Extraction Procedure for Preparation of Crude CP1-CP3 Extracts and CP4-CP6 Fractions

Initially, purified plant material (120 g) was exhaustively etched with MeOH and 50%
MeOH under reflux. The obtained extracts were combined, and the organics were removed
under vacuum and lyophilized. The freeze-dried combined extracts were prepared by frac-
tionation by liquid–liquid extraction with Et2O (100 × 100 mL), EtOAc (100 × 250 mL), and
n-BuOH (110 × 250 mL). The combined organic layers were evaporated to dry to yield 0.79 g
of Et2O (CP4), 1.8 g of EtOAc (CP5), and 4.41 g of n-BuOH (CP6) fractions. Ultrasound-assisted
extraction (30 g, 40 ◦C, five times, 30 min) was applied to prepare the following overall extracts:
methanol (CP1), 50% methanolic (CP2), and aqueous (CP3). Finally, these preparations were
lyophilized to yield 3.92 g of CP1, 5.9 g of CP2, and 6 g of CP3.

4.4. Phytochemical Characterization of Extracts and Fractions by LC-PDA-HRMS

The separation of metabolites was guided by conditions previously described with
modifications [60]. The mobile phase was as follows: H2O (A) and MeCN (B) both with
0.1% HCOOH using the following gradients: 0–1.5 min, 5% B; 20 min, 20% B; 30 min,
22% B; 60 min, 55% B; and 75% B at 70 min of gradient, then 10 min of equilibration.
The flow rate was 0.2 mL/min, and the thermostat temperature was 25 ◦C. The values of
absorption for constituents were matched with the values (280, 340, and 360 nm) of the
UV-Vis chromatograms. Additionally, by comparing retention times (Rt) and spectra (UV,
MS) with those of reference compounds and published data, the presence of identified
constituents in extracts was confirmed.

4.5. Tissue Collection and Preparation

Pharmacological analyses were carried out with an alternative study model of swine
colon specimens that was presented previously by Mendel et al. [34]. In brief, colon samples
collected from healthy adult pigs enabled us to acquire full-thickness strips of 5 × 15 mm,
which further were cut out parallel to the longitudinal muscle fibres.

4.6. Assessment of Smooth Muscle Activity

After preparation, each muscle preparation was suspended in an individual organ
bath chamber (Organ Schuler Bath, Hugo Sachs Elektronik, March, Germany) filled with
5 mL of modified Krebs–Henseleit solution (38.5 ◦C, continuous bubbling with carbogen
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95% O2 and 5% CO2) to mimic in vivo conditions of intestinal smooth muscle. The strips
were attached to metal hooks on one side and to an isometric force transducer (F30, type 372,
Hugo Sachs Elektronik, March, Germany) on the other. The experiments were performed
under isometric conditions under a load of 0.01 N. An analogue-to-digital registration set
(PowerLab, ADInstruments, Bella Vista, NSW, Australia), a bridge amplifier (DBA, type
660, Hugo Sachs Elektronik, March, Germany), and Chart v 7.0 program were utilised to
register motor activity records of colon specimens (Figure 6).
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Figure 6. Sample recordings of porcine colon specimens’ response to aqueous extract of C. palustre
(CP3)—significant increase in the spontaneous contractility. ACh—acetylcholine, Flush—flushed
with fresh modified Krebs–Henseleit Solution. The blue line indicates the motoric activity of colon
smooth muscle. The elements framed in red indicate remarkable increase of the spontaneous activity
induced by C. palustre (CP3) application.

4.7. Experimental Sequence

Each experiment started with approximately 65 min of preincubation to stabilise
the samples. During the first 45 min of this phase, the tissues were suspended in a no-
tension manner. Every 15 min, the chambers were washed with fresh M K–H solution.
After that period, a tension of 0.005 N was applied and then increased to 0.01 N after
another 15 min. When the spontaneous work of the muscles stabilised, acetylcholine at
a concentration of 10 µM was administered to each chamber. Approx. 3 min after each
ACh administration, the chambers were washed with fresh M K–H solution. Only the
strips that adequately responded to the double administration of the reference contractile
substance (ACh) and displayed clear spontaneous contractility were qualified for further
experimentation. After spontaneous activity was stabilised, each strip was treated with
DMSO (0.5%), and then ACh (10 µM) was added again after 3 min. The reactions to DMSO
and ACh + DMSO were then used as a control response to analyse the effects of flavonoids
and the extracts/fractions on spontaneous and ACh-induced activity in the colonic smooth
muscles, respectively. Once the motility stabilised, flavonoids (API, A7GLC, LUT, and
CHRY) and the extracts/fractions (CP1-CP6) were administered in a noncumulative manner
in a concentration range of 0.001–100 µM and 0.00001–0.1 mg/mL, respectively. After 5 min
of preincubation in the presence of a flavonoid or extract/fraction, ACh (10 µM) was
administered. Thorough rinsing with fresh M K–H solution was performed before the next
concentration of the tested substance was added. At the end of the experiment, reference
substances (ACh, 10 µM and Isop, 1 µM) were applied to validate the reactivity of the
preparations (Figure 7). Each flavonoid and extract/fraction of C. palustre was tested on a
minimum of five colon segments from at least five different animals.
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5. Conclusions

Our study suggests that selected preparations and flavonoids from C. palustre have a
pronounced motility-regulating effect. However, the exact mechanism of these interactions
remains undiscovered and requires further investigation. To understand the background
of the effect of C. palustre and its main phytoconstituents on colon contractility, as well as to
address the lack of satisfactory methods for treating DGBIs, future trials should aim for
the verification of its utility in DGBIs. Bearing in mind its demonstrated antioxidant and
antibacterial effects, C. palustre and its utility in DGBI patients should be further studied.
Further investigations are required to examine the observed effects of these substances on
gastrointestinal movements in vivo.
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