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Abstract: Flooding stress, including waterlogging and submergence, is one of the major abiotic
stresses that seriously affects the growth and development of plants. In the present study, physi-
ological, epigenetic, and transcriptomic analyses were performed in wheat seedling leaves under
waterlogging (WL), half submergence (HS), and full submergence (FS) treatments. The results
demonstrate that FS increased the leaves’ hydrogen peroxide (H2O2) and malondialdehyde (MDA)
contents and reduced their chlorophyll contents (SPAD), photosynthetic efficiency (Fv/Fm), and shoot
dry weight more than HS and WL. In addition, FS increased catalase (CAT) and peroxidase (POD)
activities more than HS and WL. However, there were no significant differences in the contents of
H2O2, MDA, SPAD, and Fv/Fm, and the activities of superoxide dismutase (SOD) and POD between
the HS and WL treatments. The changes in DNA methylation were related to stress types, increasing
under the WL and HS treatments and decreasing under the FS treatment. Additionally, a total of
9996, 10,619, and 24,949 genes were differentially expressed under the WL, HS, and FS treatments,
respectively, among which the ‘photosynthesis’, ‘phenylpropanoid biosynthesis’, and ‘plant hormone
signal transduction’ pathways were extensively enriched under the three flooding treatments. The
genes involved in these pathways showed flooding-type-specific expression. Moreover, flooding-
type-specific responses were observed in the three conditions, including the enrichment of specific
TFs and response pathways. These results will contribute to a better understanding of the molecu-
lar mechanisms underlying the responses of wheat seedling leaves to flooding stress and provide
valuable genetic and epigenetic information for breeding flood-tolerant varieties of wheat.

Keywords: Triticum aestivum L.; DNA methylation; transcriptional analysis; water depth;
flooding stress

1. Introduction

Flooding stress is a major ecological threat that restricts crop growth and yield in
high-rainfall zones across the globe [1]. Based on the depth of the water table, flooding
can be classified as waterlogging, when it is superficial and covers only the roots, or
as submergence, when water completely covers the aerial plant tissues [2]. Flooding
can cause the accumulation of reactive oxygen species (ROS), such as superoxide (O2

•−)
and hydrogen peroxide (H2O2), increasing lipid peroxidation and resulting in plant cell
damage [3,4]. Flooding also results in a reduction in stomatal conductance, the CO2
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assimilation rate, photosynthesis rate, and nutritional imbalance [5]. With the onset of
climate change, the average and extreme precipitation intensities and the frequency of
extremely heavy precipitation have significantly increased [6]. Therefore, understanding the
response mechanisms of plants to flooding stress has important implications for developing
flood-tolerant varieties and promoting their effective adaptation to climate change.

In recent decades, the physiological and molecular mechanisms of adaptation to
flooding stress have been reported [7–12]. For example, increases in the contents of su-
peroxide dismutase (SOD), peroxidase (POD), catalase (CAT), and other antioxidant en-
zymes, have been suggested as a key strategy through which plants can effectively resist
waterlogging stress [8]. For example, γ-aminobutyric acid was found to enhance water-
logging tolerance in maize by increasing the activities of several antioxidant enzymes
(SOD, POD, CAT, etc.) [13]. A transcriptomic analysis showed that Chinese wingnut plants
enhanced their waterlogging tolerance by increasing their synthesis of alpha-linolenic
acids and flavonoids and activating plant hormone signaling pathways [8]. In cucumber,
waterlogging-induced differentially expressed genes were especially related to enhanced
glycolysis, adventitious root development, and amino acid metabolism [11]. In Phalaris arun-
dinacea, waterlogging-stress-induced differentially expressed genes were mainly involved
in carbohydrate metabolism, hormone signaling regulation, and the scavenging of reactive
oxygen species [12]. Moreover, TFs, including MYB, bHLH, NAC, WRKY, ERF, and bZIP,
are also reported to be the major regulators involved in waterlogging tolerance [12]. For
instance, the ERFs of group VII are well known for facilitating ethylene signal transduction
and enhancing waterlogging tolerance in maize [14] and wheat [15].

Epigenetic alterations have been found to be associated with abiotic stresses in crop
species [16–19]. DNA methylation is one of the critical epigenetic mechanisms for the regu-
lation of gene expression under abiotic stresses [17,18,20,21]. In wheat, DNA demethylation
significantly increases waterlogging-related gene expression in tolerant genotypes under
hypoxic stress, such as the expression of ERF1, ACC1, and CKX2.3 [18]. In rice, DNA methy-
lation in response to drought stress regulates the expression of unique genes responsible for
drought stress tolerance [16,19]. Furthermore, the response of DNA methylation to stress
is also related to the type of stress. For example, total DNA methylation increases under
drought stress in sesame but decreases under waterlogging stress [17]. These studies show
that epigenetic regulation is important in the abiotic stress responses in plants. However,
the potential mechanisms underlying epigenetic regulation under flooding stress remain
largely unclear.

In recent years, water depth has been recognized as one of the important factors
limiting the growth and development of flooded plants [22–24]. For example, the leaves of
mulberry seedlings under shallow submergence were healthy, while the leaves of mulberry
seedlings treated with half submergence and full submergence showed waterlogging
symptoms, to varying degrees, in their middle [22]. Partially submerged Paspalum dilatatum
plants showed a reduction in the starch concentration in their leaves, but their biomass was
unaffected, whereas completely submerged plants did not survive [23]. All Melilotus siculus
accessions were able to reorient petioles towards the vertical axis under both partial and
full submergence [24]. However, petiole extension rates were maintained under the partial
submergence treatment and decreased under the full submergence treatment. Moreover,
the sugar contents of Melilotus siculus leaflets rose during partial submergence but were
depleted during full submergence [24]. These studies implied that different performance
and response mechanisms exist for the response to flooding stresses at different water
depths, but the underlying adaptation mechanisms remain largely unknown.

Wheat (Triticum aestivum L.) is an important food crop, and major source of calories,
that is grown worldwide [25]. In the case of wheat, the seedling stage is one of the impor-
tant stages at which waterlogging is most detrimental to wheat yields, after germination [9].
Approximately 15–20% of the total wheat cropping area is under threat of flooding, which
could reduce the global grain yield by up to 43% [26,27]. Thus far, physiological, transcrip-
tional, and epigenetic regulatory responses to waterlogging/hypoxic stress in wheat have
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been investigated [9,15,18]. However, whether different flooding depths affect the physiol-
ogy, transcription, and epigenetics of wheat is a question that is yet to be fully answered,
and one that is related to the screening and evaluation of plant flooding tolerance and
the breeding of resistant varieties. Thus, in this study, to gain insights into the molecular
responses of wheat to flooding, three types of flooding stress treatments, based on water
depth, were designed: soil surface submergence (the water was superficial and covered
only the roots and soil surface), half submergence (the water covered half of the plant),
and full submergence (the water completely covered the plant tissues). We systematically
investigated the changes in the physiology, epigenetic regulation (DNA methylation), and
genomic transcription of wheat seedling leaves under controlled conditions and three types
of flooding conditions. This study aims to provide a comprehensive research framework for
understanding the physiological changes, epigenetic regulation, and global transcription
in wheat under flooding stress, which is of great significance for the genetic improvement
and resistance evaluation of flood-resistant wheat varieties.

2. Results
2.1. The Distinct Effects of FS and HS/WL on Biomass and Photosynthesis

After a 7-day treatment, the Efumai 1 plants under FS treatment showed wilting and
yellowing, whereas the plants under the WL and HS treatments had slightly wilted leaves
(Figure 1A). The shoot dry weight significantly decreased by 58.26% under the FS treatment
compared to the control plants, followed by the HS (40.10%) and WL (38.70%) treatments
(Figure 1B). Their SPAD values significantly decreased by 26.33%, 33.41%, and 64.41%,
and their Fv/Fm values significantly decreased by 20.46%, 23.85%, and 34.87%, under the
WL, HS, and FS treatments, respectively (Figure 1C,D). Interestingly, no differences were
observed between WL and HS.
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Figure 1. Biomass and photosynthesis analysis of Efumai 1 seedlings in the control and three flooding
treatments. (A) Images of Efumai 1 plants after a 7-day treatment under CK, WL, HS, and FS
conditions; (B) shoot dry weight; (C) SPAD value; and (D) Fv/Fm value. Significant differences
were assessed using ANOVA with p < 0.05; The different letters above the bars indicated significant
differences (p < 0.05). Three independent biological replicates for each treatment were performed and
six pots were established for each replicate.

2.2. Physiochemical Changes under the Three Flooding Conditions

The H2O2 content of each sample was measured, and the results show that the FS
treatment resulted in a significant increase in H2O2 content (by 44.85%), followed by the
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WL (19.72%) and HS (19.60%) treatments, compared with the control (CK) (Figure 2A).
Similarly, the MDA content significantly increased under the three flooding conditions, and
the highest MDA content was found in the FS treatment (344.62% increase), followed by
the HS (159.07%) and WL (90.10%) treatments (Figure 2B). Compared with CK, the highest
CAT (72.18% increase) and POD (303.13%) activities were also found in the FS treatment
(Figure 2D,E), while the highest SOD activity was identified in the WL (55.44%) and HS
(62.21%) treatments (Figure 2C). Notably, except for CAT, the H2O2 and MDA contents and
SOD activities did not differ between the HS and WL treatments (Figure 2).
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Figure 2. Physiological responses of wheat seedlings under the control and three flooding treatments.
(A) H2O2 content; (B) MDA content; (C) SOD activity; (D) CAT activity; and (E) POD activity. Values
are expressed as mean ± SD. The different letters above the bars indicated significant differences
using ANOVA with p < 0.05.

2.3. Global Changes in DNA Methylation under the CK, WL, HS, and FS Conditions

A total of 453 clear and reproducible bands were successfully obtained under the
CK, WL, HS, and FS conditions (Figure S1). Most of the CCGG sites were shown to be
largely methylated, with values ranging between 86.75% and 93.38% (Table 1), and there
was a greater number of fully methylated bands (average 65.45%) (types III and IV) than
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hemi-methylated bands (type II) (average 23.95%). Compared with the CK (88.30%), the
total DNA methylation level was slightly increased to 89.18% and 93.38% under the WL and
HS conditions, respectively. This ratio decreased to 86.75% under the FS treatment (Table 1).

Table 1. MSAP-based cytosine methylation levels in wheat leaves under CK, WL, HS, and FS
treatments.

MSAP Band Types
Patterns a

CK WL HS FS
HpaII MspI

I 1 1 53 49 30 60
II 1 0 136 123 41 134
III 0 1 181 151 158 156
IV 0 0 83 130 224 103

Total amplified bands 453 453 453 453
Hemi-methylated ratio (%) b 30.02% 27.15% 9.05% 29.58%
Full methylated ratio (%) c 58.28% 62.03% 84.33% 57.17%

Total methylated ratio (%) d 88.30% 89.18% 93.38% 86.75%
a The numbers ‘1’ or ‘0’ represent the presence or absence of bands, respectively. Type I (HpaII/MspI, 1/1)
indicates unmethylation, type II (HpaII/MspI, 1/0) indicates hemi-methylation, and type III (HpaII/MspI, 0/1)
and type IV indicate full methylation. b Hemi-methylated ratio (%) = [(II/(I + II + III + IV)] × 100. c Fully
methylated ratio (%) = [(III + IV)/(I + II + III + IV)] × 100. d Total methylated ratio (%) = [(II + III + IV)/(I + II +
III + IV)] × 100.

To further investigate the difference in wheat DNA methylation in response to the
WL, HS, and FS treatments, a total of 16 alternative band patterns between the CK and
the flooding stress treatments were identified, which could be classified into three groups:
no change, hypomethylation, and hypermethylation (Table 2). Compared with the CK,
69.50% of the detected loci showed an altered DNA methylation status under the HS
conditions, followed by 51.11% under FS, and 43.79% under WL. The percentages of bands
hypermethylated were 27.09% and 52.52% under the WL and HS treatments, respectively,
higher than that under FS (25.33%). More hypomethylation events were detected in the
FS (25.78%) than in the WL (16.70%) and HS conditions (16.97%). These results suggest
the divergent reprogramming of the methylation pattern under the different types of
flooding stresses.

Table 2. Alternations in DNA methylation patterns induced by the WL, HS, and FS treatments.

Description of Groups
CK Flooding-Treated

WL HS FS
HpaII MspI HpaII MspI

No change

1 1 1 1 30 16 29
0 0 0 0 100 72 102
1 0 1 0 29 22 10
0 1 0 1 90 23 79

Total 249 (56.21%) 133 (30.50%) 220 (48.89%)

Hypomethylation

1 0 1 1 12 7 16
0 1 1 1 3 3 9
0 0 1 1 4 4 6
0 1 1 0 5 3 18
0 0 1 0 16 11 24
0 0 0 1 34 46 43

Total 74 (16.70%) 74 (16.97%) 116 (25.78%)

Hypermethylation

0 1 0 0 73 103 52
1 0 0 0 24 89 38
1 1 0 0 4 10 3
1 1 0 1 7 23 8
1 1 1 0 12 4 13

Total 120 (27.09%) 229 (52.52%) 114 (25.33%)
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2.4. Analysis of DEGs in Wheat in Response to the Three Types of Flooding Stress

After filtering, an average of 81.90 million clean reads were obtained from each
sample. The average GC value was 57.00%. The Q30 percentage of the 12 libraries varied
from 93.38% to 93.75%. More than 84% of the clean reads were uniquely mapped to the
wheat reference genome sequence (Table S1). A principal component analysis (PCA) of all
the genes in the 12 libraries revealed a clear separation between the control and flooding
treatments. However, the WL- and HS-treated samples were closest to each other, indicating
the highest degree of similarity in their transcription patterns (Figure S2A). Furthermore, a
Pearson correlation analysis showed a high correlation among the biological replicates (the
Pearson correlation coefficient ranged from 0.97 to 0.99) (Figure S2B). These results indicate
the good reproducibility and quality of the RNA-seq data.

Differential expression analysis between the flooding-treated and control samples
revealed a total of 9996, 10,619, and 24,949 DEGs in the WL, HS, and FS conditions, re-
spectively (Figure 3A and Table S2). A Venn diagram showed that a total of 32,708 DEGs
(17,252 upregulated and 15,456 downregulated) were identified across the three flooding
conditions (Figure 3B,C). A cross-comparison between the different gene sets showed that
the highest proportion of DEGs (52.66%) was unique to the FS treatment, while the WL
(9.88%) and HS (7.82%) treatments exhibited fewer uniquely expressed genes. Furthermore,
2342 upregulated and 821 downregulated DEGs were detected under all three flooding
conditions, which suggested that these genes might play an important role in the function-
ing of wheat under flooding stress. To validate the reliability of the expression profiles
obtained using RNA-Seq, sixty DEGs were randomly selected to perform qRT–PCR on.
Pearson’s correlation coefficients showed that the qRT–PCR and RNA sequencing data for
these genes were highly correlated (r = 0.91) (Figure 3D).

2.5. KEGG Enrichment Analysis of the WL-, HS- and FS-Induced DEGs

KEGG enrichment analysis showed that a total of 36, 37, and 66 pathways were
significantly enriched (p value < 0.05) under the WL, HS, and FS conditions, respectively
(Tables S3–S5). The top 25 significantly enriched KEGG pathways are presented in
Figure 4E–G, in which 24 of the enriched pathways—including the ‘biosynthesis of sec-
ondary metabolites’, ‘metabolic pathways’, ‘phenylpropanoid biosynthesis’, ‘plant hor-
mone signal transduction’, ‘starch and sucrose metabolism’, ‘flavonoid biosynthesis’, and
‘photosynthesis’—were common to all three flooding treatments. Moreover, a number of
DEGs were enriched in four pathways unique to the WL treatment—‘brassinosteroid
biosynthesis’, ‘biotin metabolism’, ‘ether lipid metabolism’, and ‘glycosaminoglycan
degradation’ (Figure 4E and Table S3)—whereas three pathways were specific to the HS
treatment—‘taurine and hypotaurine metabolism’, ‘circadian rhythm-plant’, and ‘seleno-
compound metabolism’ (Figure 4F and Table S4). Moreover, 32 specific pathways were
significantly enriched in response to the FS treatment, including ‘carbon metabolism’,
‘glyoxylate and dicarboxylate metabolism’, ‘carbon fixation in photosynthetic organisms’,
‘porphyrin and chlorophyll metabolism’, and ‘peroxisome’ (Figure 4G and Table S5).
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Figure 3. Overview of the effects of flooding treatments on gene expression. (A) Number of DEGs in
the three comparisons. (B) Overlapping upregulated DEGs in the three comparisons. (C) Overlapping
downregulated DEGs in the three comparisons. (D) Correlation analysis of differentially expressed
genes between RT-PCR analysis (2−∆∆Ct value) and RNA-seq experiment (Log2 fold change value).
The top 25 significantly enriched KEGG pathways of DEGs induced by WL (E), HS (F), and FS
(G) treatments, from the outside to the inside. The first circle represents the top 25 enrichment
pathways, and the number outside the circle is the coordinate ruler of the number of genes. The
second circle represents the number and −log10 (p value) of background genes in this pathway. The
third circle represents the number of upregulated and downregulated DEGs in this pathway. The
fourth circle represents the value of the Rich Factor in each pathway.
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Figure 4. DEGs related to the photosynthesis pathways. The KEGG pathway map of ‘photosynthesis’
(A) and ‘photosynthesis-antenna protein’ (B). The DEG expression pattern was used to annotate and
generate a corresponding map. The green box with gene symbols denotes downregulated expression
in the chlorosis group, while the red box denotes upregulated expression. The genes that were not
significantly altered are displayed with a white box. (C–G) Expression profiles (Log2 fold change)
of genes related to ‘photosynthesis’ pathway. (H,I) Expression profiles (Log2 fold change) of genes
related to ‘photosynthesis-antenna proteins’ pathway.

Among the WL-induced DEGs, a total of 7184 upregulated genes were identified
and significantly enriched in 36 KEGG pathways, including the ‘biosynthesis of sec-
ondary metabolites’, ‘metabolic pathways’, ‘phenylpropanoid biosynthesis’, ‘glutathione
metabolism’, and ‘fatty acid elongation’ (Table S6). Eighteen KEGG pathways were sig-
nificantly enriched in the 2812 downregulated genes, including ‘Plant hormone signal
transduction’, ‘MAPK signaling pathway-plant’, ‘Cutin, suberine and wax biosynthesis’,
and ‘Photosynthesis’ (Table S7). Under the HS condition, 7260 upregulated and 3359 down-
regulated genes were identified (Figure 3A). KEGG pathway analysis showed that these
upregulated DEGs were significantly enriched in 33 pathways, including the ‘biosynthe-
sis of secondary metabolites’, ’glutathione metabolism’, ‘phenylpropanoid biosynthesis’,
and ‘plant hormone signal transduction’ (Table S8). A total of 19 KEGG pathways were
significantly enriched in the 3359 downregulated genes, including the ‘Biosynthesis of
secondary metabolites’, ‘Metabolic pathways’, ‘Photosynthesis-antenna proteins’, and
‘Photosynthesis’ (Table S9). Under the FS condition, a total of 11,691 up- and 13,258 down-
regulated genes were identified and significantly enriched in 50 and 39 KEGG pathways,
respectively. Among these pathways, the genes involved in the ‘biosynthesis of secondary
metabolites’, ‘phenylpropanoid biosynthesis’, and ‘plant hormone signal transduction’
were mainly upregulated (Table S10), and the genes involved in ‘photosynthesis-antenna
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proteins’, ‘photosynthesis’, and the ‘carbon fixation in photosynthetic organisms’ were
mainly downregulated (Table S11).

2.6. GO Enrichment Analysis of the WL-, HS- and FS-Induced DEGs

GO classification analysis showed that there were similar processes enriched in the
wheat leaves exposed to SS, HS, and FS, including metabolic process and cellular process
in the biological process category, binding and catalytic activity in the molecular function
category, and membrane and membrane parts in the cellular component category. However,
the genes enriched in these GO terms were mainly upregulated under SS and HS, while
they were mainly downregulated under FS (Figure S3). Furthermore, GO enrichment
analysis showed that 116 and 64 GO terms were significantly enriched in the upregulated
and downregulated genes under WL conditions, respectively (Tables S12 and S13). Of
these, ‘catalytic activity’, ‘extracellular region’, ‘cell wall’, ‘external encapsulating structure’,
and ‘hydrolase activity, acting on glycosyl bonds’ were the top five significantly enriched
GO terms for the genes upregulated under WL conditions (Table S12), and ‘glucosidase
activity’, ‘sucrose alpha-glucosidase activity’, ‘pyruvate kinase activity’, ‘potassium ion
binding’, and ‘alkali metal ion binding’ were the top five significantly enriched GO terms
for the genes downregulated under WL conditions (Table S13). A total 83 and 143 GO terms
were significantly enriched in the HS-induced upregulated and downregulated genes, re-
spectively (Tables S14 and S15). Of these, ‘transferase activity, transferring hexosyl groups’,
‘solute:cation symporter activity’, ‘solute: proton symporter activity’, ‘symporter activity’,
and ‘transferase activity, transferring glycosyl groups’ were the top five significantly en-
riched GO terms in the upregulated genes (Table S14). Meanwhile the ‘lipid biosynthetic
process’, ‘catalytic activity’, ‘transferase activity, transferring acyl groups other than amino-
acyl groups’, ‘transferase activity, transferring acyl groups’, and ‘fatty acid biosynthetic
process’ were the top five significantly enriched GO terms for the downregulated genes
(Table S15). Under the FS condition, a total of 153 and 194 GO terms were significantly
enriched in the upregulated and downregulated genes, respectively (Tables S16 and S17).
Of these, ‘protein kinase activity’, ‘catalytic activity’, ‘kinase activity’, ‘phosphotransferase
activity, alcohol group as acceptor’, and ‘transferase activity’ were the top five significantly
enriched GO terms for the upregulated genes (Table S16), and ‘photosynthesis’, ‘thylakoid
plastid’, ‘plastid part’, and ‘thylakoid membrane’ were the top five significantly enriched
GO terms for the upregulated genes (Table S17).

2.7. Analysis of the DEGs Related to the Photosynthesis Pathway in Response to WL, HS, and
FS Stresses

Two photosynthesis pathways, ‘photosynthesis-antenna proteins’ and ‘photosynthesis’,
were significantly enriched in all flooding conditions in the KEGG analysis (Tables S3–S5),
while ‘photosynthesis-antenna proteins’ were only significantly enriched under HS and
FS (Tables S3–S5). In total, 155 DEGs were related to KEGG photosynthesis pathways
(Figure 4A and Table S6), including 35 genes related to photosystem I (PSI) (Figure 4C),
68 genes related to photosystem II (PSII) (Figure 4D), 8 genes related to cytochrome b6/f
complex (Figure 4E), 31 genes related to photosynthetic electron transport (Figure 4F),
and 13 genes related to F-type ATPase (Figure 4G). A total of 76 DEGs were involved
in the ‘photosynthesis-antenna proteins’ pathway (Figure 4B and Table S7), including
17 genes related to light-harvesting chlorophyll protein complex I (LHCI) (Figure 4H)
and 59 genes related to LHCII (Figure 4I). Most of the DEGs involved in the both the
‘photosynthesis-antenna proteins’ and ‘photosynthesis’ pathways were significantly down-
regulated, especially under the FS treatment (Figure 4).

2.8. Analysis of the DEGs Related to Phenylpropanoid Biosynthesis and Antioxidant Pathways in
Response to WL, HS, and FS Stresses

Since the phenylpropanoid biosynthesis pathway was significantly enriched under
the three types of flooding stresses, the expression patterns of the genes involved in this
pathway were further compared across the three flooding stress treatments (Figure 5A).
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A total of 162 DEGs related to phenylpropanoid biosynthesis were detected under the
three flooding conditions (Figure 5B and Table S18): 74 peroxidases, 25 phenylalanine
ammonia-lyases, 15 cinnamyl-alcohol dehydrogenases, 9 4-coumarate-CoA ligases, 9 serine
carboxypeptidase-like 19 genes, 8 caffeoyl shikimate esterases, and 5 coniferyl-aldehyde
dehydrogenases (Figure 5B and Table S18). Of the phenylpropanoid-related genes, 21 genes
were co-upregulated by WL, HS, and FS: 11 peroxidases, 4 phenylalanine ammonia-lyases,
3 cinnamyl-alcohol dehydrogenases, 2 coniferyl-aldehyde dehydrogenases, and 1 ser-
ine carboxypeptidase-like 19 (Figure 5B). Interestingly, TraesCS2B02G398000, encoding a
phenylalanine ammonia-lyase, was upregulated under the WL and HS treatments, while it
was downregulated under the FS treatment (Figure 5B). Furthermore, 16 DEGs, including
12 peroxidases, 2 caffeoyl shikimate esterases, 1 4-coumarate-CoA ligase, and 1 cinnamyl-
alcohol dehydrogenase, were uniquely upregulated under the WL treatment, while 4 genes,
including 2 peroxidases and 2 cinnamyl-alcohol dehydrogenases, were exclusively ex-
pressed under the HS treatment. In addition, 66 DEGs—28 peroxidases, 10 phenylalanine
ammonia-lyases, 4 serine carboxypeptidase-like 19 proteins, 4 cinnamyl-alcohol dehydro-
genases, 3 caffeoylshikimate esterases, 3 shikimate O-hydroxycinnamoyltransferases, and
3 5-O-(4-coumaroyl)-D-quinate 3′-monooxygenases—were only differentially expressed
under the FS treatment (Figure 5B and Table S18).
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The genes encoding the enzymes involved in reactive oxygen species (ROS) metabolism,
mainly glutathione S-transferase (GST, 181), glutathione peroxidase (GPX, 4), ascorbate
peroxidase (APX, 7), SOD (8), and CAT (7), were also differentially expressed (Table S19). A
total of 181 GSTs were differentially expressed, and over half of these were upregulated, ac-
counting for 95.46% (63 of 69), 92.39% (85 of 92), and 62.84% (93 of 148) of the GSTs induced
by the WL, HS, and FS treatments, respectively. Thirty-one GSTs were co-upregulated un-
der all treatments. Moreover, 10 (8 upregulated and 2 downregulated), 15 (12 upregulated
and 3 downregulated), and 68 (33 upregulated and 35 downregulated) specific GSTs were
regulated by WL, HS, and FS, respectively. Seven genes encoding CATs were identified
and upregulated under all the conditions, but the majority of them were induced by
the FS treatment. On the other hand, a total of seven APXs, four GPXs and eight SODs
were identified and mainly downregulated under the three flooding treatments. Two
SODs and two GPXs were co-upregulated and co-downregulated under the three stress
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conditions, respectively. Five SODs, five APXs, and two GPXs were exclusively regulated
by FS (Table S19).

2.9. Expression of the Plant Hormone Signal Transduction Pathway and Transcription Factor
Genes in Response to Different Flooding Stresses

In addition to the phenylpropanoid biosynthesis pathway, KEGG enrichment results
also showed that genes related to the plant hormone signal transduction pathway were
significantly enriched in all the flooding treatments. A total of 173 DEGs were identified
to be involved in eight plant hormone signal transduction pathways, including those
for auxin (IAA), cytokinin (CTK), gibberellin (GA), abscisic acid (ABA), ethylene (ETH),
brassinosteroid (BR), jasmonic acid (JA), and salicylic acid (SA) (Figure 6A and Table S20).
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For the IAA signal, a total of 61 DEGs were identified, including 28 SAUR families
(SAUR), 13 auxin-responsive IAA (AUX/IAA), 13 auxin-responsive GH3 gene families
(GH3), 7 auxin influx carriers (AUX1 LAX family) (AUX1), 2 auxin response factors (ARF),
and 1 transport inhibitor response 1 (TIR1) protein (Figure 6B and Table S4). Among these
IAA-related genes, seven genes, including four SAURs, one AUX1, one AUX/IAA, and
one GH3, were coregulated via the WL, HS and FS treatments. Moreover, two AUX/IAAs
and three SAURs were exclusively regulated by the WL treatment, and one AUX/IAA and
one SAUR were uniquely regulated by HS (Figure 6B and Table S20). However, 26 DEGs,
including 11 SAURs, 6 AUX/IAAs, 5 GH3s, 2 ARFs, 1 AUX1, and 1 TIR1, were only
differentially expressed under the FS condition (Figure 6B and Table S20).

A total of 12, 2, 16, and 6 DEGs were identified in the CK, GA, ETH, and JA signaling
pathways, respectively, and most of these were only differentially expressed under FS
treatment (Figure 6B and Table S20). Most of the genes in the CTK, GA, and JA signaling
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pathways were downregulated, while the 16 ETH-related DEGs were upregulated under
the FS treatment.

For ABA signaling, 38 genes, including 15 abscisic acid receptor PYR/PYL family
genes (PYR/PYLs), 12 protein phosphatase 2Cs (PP2Cs), 6 serine/threonine-protein kinase
SRK2s (SnRK2s), and 5 ABA responsive element binding factors (ABFs), were identified.
Of these, two PYR/PYLs, three PP2Cs, and three ABFs were coregulated under the three
flooding conditions (Figure 6B and Table S20). On the other hand, three genes, encoding a
PP2C, an SnRK2, and an ABF, were only downregulated under WL conditions, while nine
DEGs, including seven PYR/PYLs and two SnRK2s, were exclusively upregulated under
the FS condition (Figure 6B and Table S20).

For the BR signal, four genes, encoding one BR-signaling kinase (BSK) and
three xyloglucan–xyloglucosyl transferase TCH4 proteins (TCH4s), were detected
(Figure 6B and Table S20). Two TCH4s (TraesCS7A02G427600 and TraesCS7B02G327700)
were co-upregulated under all the flooding conditions. TraesCS1B02G192300, encoding a
BSK, was only downregulated under the FS treatment (Figure 6B and Table S20).

For the SA signal, 34 DEGs, including 6 regulatory NPR1 proteins (NPR1s), 11 TGA
transcription factors, and 17 pathogenesis-related protein 1s (PR-1s), were detected in this
study (Figure 6B and Table S20). Most of these genes were upregulated under one or more
flooding conditions. Five genes, including one NPR1 and four PR-1s, were co-upregulated
in all flooding conditions, while two NPR1s were only differentially expressed under the
WL condition. Nine TGAs and twelve PR-1s were only downregulated or upregulated
under the FS treatment. Furthermore, three NPR1s, one TGA, and two PR-1s were co-
upregulated under both the HS and FS conditions (Figure 6B and Table S20).

A total of 1754 differentially expressed TFs were identified under the WL (618), HS
(696), and FS (1447) treatments, and these TFs were classified into 31, 32, and 35 families,
respectively (Figure 6C and Table S21). Overall, the bHLH TF family was the most abun-
dant, followed by the NAC, MYB, WRKY, and AP2/ERF families, under the three flooding
conditions (Figure 6C). To gain insights into the regulation of TFs for different types of
flooding stress, a cross-comparison was performed and showed that 271 TFs were com-
monly regulated under the three flooding treatments, including the bHLH (48), AP2/ERF
(29), WRKY (26), NAC (25), MYB_related (23), and MYB (23) TFs (Figure 6C and Table
S21). Under the WL treatment, 94 unique TFs belonging to 23 TF families were identified,
including the bHLH (17), NAC (15), MYB (12), and WRKY (7) TFs. Furthermore, 113 TFs,
involving 23 families, were uniquely induced via the HS treatment, including 15 bHLHs,
12 C2H2s, 10 WRKYs, and 8 AP2/ERFs. Additionally, 811 TFs were specifically induced via
the FS treatment and classified into 33 families, including 101 bHLHs, 87 NACs, 844 MYBs,
79 WRKYs, and 65 AP2/ERFs. Moreover, two TF families, ARR-B and YAABY, were only
identified under the FS treatment (Figure 6C and Table S21).

3. Discussion
3.1. The Submergence of Functional Leaves Was the Key Factor Determining Photosynthetic
Efficiency after Submergence

Flooding usually reduces the rate of photosynthesis in plants [7]. Chlorophyll fluores-
cence is suggested to be a sensitive indicator of the stress-induced damage to photosystem
II, and a reduction in Fv/Fm is a good indicator of the photosynthetic impairment resulting
from waterlogging stress [4]. Previous studies have found that waterlogging stress sig-
nificantly reduces SPAD and Fv/Fm values [4,10]. Moreover, waterlogging stress damages
the PSII reaction center of mulberry seedlings (Fo, Fm, and Fv/Fo), reducing their ability to
accept electrons, and the degree of damage is proportional to the submergence depth [22].
Similar results were also observed in the present study, in which FS induced a greater
reduction in the SPAD and Fv/Fm values of wheat leaves and led to a higher loss of biomass
than HS and WL (Figure 1), which is consistent with the results of the transcriptome analy-
sis, where the DEGs involved in ‘photosynthesis-antenna proteins’ and ‘photosynthesis’
pathways were significantly downregulated, especially under the FS treatment (Figure 4).
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Furthermore, more DEGs involved in the photosystem II process were downregulated
than in other sub-pathways of the ’photosystem’ pathway (Figure 4D). Meanwhile, no
significant difference in these parameters was detected between the WL and HS treatments
(Figure 1C,D), which is consistent with a previous study showing that the biomass (shoot
and root) of Paspalum dilatatum plants did not change after 30 days of waterlogging and
partial submergence treatments, whereas completely submerged plants did not survive [23].
Additionally, a significant difference in plant weight between partial and full submergence
conditions was also detected in Melilotus siculus plants, and the plant weight showed a
greater reduction under the FS condition than under the partial submergence condition [24].
These results may indicate that the effect of flooding on phenotypic changes may be the
same when functional leaves are not submerged.

3.2. The Role of Antioxidant Mechanisms in Response to the Three Types of Flooding Conditions

Flooding conditions lead to hypoxic and anoxic conditions for plants and induce the
production of ROS in plant cells, and ROS can directly attack membrane lipids, leading to the
accumulation of MDA [4,7,13]. MDA is commonly used as a marker of lipid peroxidation,
reflecting the degree of cell membrane damage incurred in response to different environmental
stresses [28]. For instance, waterlogging stress significantly increased the contents of O2

•−,
•OH, and H2O2 in maize leaves, leading to an accumulation of MDA [13]. Wang et al. (2020)
found that, compared to salt stress, saline–alkali stress more significantly upregulated MDA
levels in Triarrhena sacchariflora leaves, indicating that saline–alkali stress caused greater harm
to yellow horn seedlings [29]. In the present study, a significant increase in H2O2 content was
observed under the FS treatment, leading to a higher content of MDA in wheat leaves, which
clearly indicated the existence of oxidative stress and greater damage in response to FS stress
than when plants were exposed to WL and HS stresses (Figures 1 and 2).

Antioxidant enzymes, including SOD, POD, CAT, APX, and GPX, play vital roles in
eliminating ROS [4,7,30]. The high activities of these enzymes under stress can improve
stress tolerance in plants [4,13,30,31]. SOD catalyzes the conversion of peroxide anions to
H2O2 and O2, whereas POD, CAT, and APX catalyze the conversion of H2O2 to oxygen and
water [29]. In this study, SOD, POD, and CAT activities significantly increased under all the
flooding stresses compared to the control. The result was similar to those of previous reports
on soybean [32], peach [4], maize [13], Triarrhena sacchariflora [7], and wheat [30] under
waterlogging stress. Thus, the expression of these antioxidant enzymes may be induced
by flooding stress, and these enzymes may be critical for the survival of wheat leaves
under flooding conditions [7]. Interestingly, a discrepancy between the gene expression
levels and the corresponding enzyme activities was observed. For example, the activity of
SOD increases only slightly, but the corresponding gene expression dramatically increases
(Figure 2C and Table S19). These results may be due to the fact that the translation of
expressed mRNA into active proteins is a complicated process that may be affected by
multiple factors, such as post-transcriptional modifications, the stoichiometric balance of
protein biosynthesis, and protein degradation [33]. The expressed mRNA is not necessarily
translated into a similar amount of detected enzyme activity [34]. The activities of CAT
and POD under FS were significantly higher than those under HS and WL. Furthermore, in
terms of the H2O2 and MDA contents and SOD and POD activities, there was no significant
difference between the WL and HS treatments. Similar results were also observed for the
expression of ROS-scavenging-related genes (Tables S18 and S19). These results suggest
that the ROS regulation mechanisms induced by WL/HS and FS are different.

3.3. Genes Related to Phenylpropanoid Biosynthesis Were Differentially Regulated in Response to
Different Flood Stresses in the Wheat Seedling Stage

In plants, the phenylpropanoid biosynthesis pathway is suggested to be vital for
adaptation to environmental stresses [35]. The accumulation of phenolic compounds
through the activation of this pathway plays an important role in neutralizing harmful ROS
and protecting the plant from oxidative damage caused by ROS [19]. Under waterlogging
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stress, the phenylpropanoid biosynthesis pathway was frequently enriched in different
species, such as Triarrhena sacchariflora [7], alfalfa [10], wheat [9], cucumber [11], and Phalaris
arundinacea [12]. Consistent with these studies, the phenylpropanoid biosynthesis pathway
was significantly enriched under the three flooding conditions in this study (Figure 5), and
21 genes were co-upregulated by WL, HS, and FS, suggesting that the activation of the
phenylpropanoid pathway may be an important mechanism underlying plant responses to
flooding stress.

Three preliminary steps of the phenylpropanoid biosynthesis pathway, catalyzed by
phenylalanine ammonia-lyase, 4-coumarate CoA ligase, and trans-cinnamate 4-monooxyge-
nase, are essential for subsequent branching and regulating the production of antioxidant
phenolic compounds such as flavonoids, lignins, and tannins. A previous study demon-
strated that waterlogging induced the high expression of isochorismate synthase- and
phenylalanine ammonia lyase-related genes in wheat and enhanced the SA content in the
roots, which promoted the formation of axile roots and surface adventitious roots [36].
Consistent with this, a total of 7, 13, and 23 phenylalanine ammonia-lyase genes were
upregulated by WL, HS, and FS, and 9 of these were uniquely regulated by FS (Figure 5B).
Additionally, two and three 4-coumarate CoA ligase genes were uniquely upregulated
and downregulated under the WL and FS treatments, respectively. Three genes encod-
ing trans-cinnamate 4-monooxygenase were only downregulated under the FS condition
(Figure 5B). Lignin is the main component of the plant cell wall and is one of the most im-
portant products in the phenylpropanoid biosynthesis pathway, which plays an important
role in the response of wheat to waterlogging stress [37]. Caffeic acid O-methyltransferase
and caffeoyl-CoA O-methyltransferase are two important enzymes that participate in lignin
biosynthesis, controlling the syringyl and guaiacyl units of the lignin polymer, respec-
tively [38]. The S/G ratio is demonstrated to be a major determinant of lignin quality [39].
The present investigation showed that three caffeic acid 3-O-methyltransferases were
specifically upregulated under WL stress but downregulated under FS stress (Figure 5B).
Two caffeoyl-CoA O-methyltransferase genes were uniquely upregulated under FS stress
(Figure 5B). Shikimate O-hydroxycinnamoyltransferase is involved in the production of
methoxylated monolignols, which are precursors to syringyl- and guaiacyl-unit lignins. In
the present study, three DEGs encoding shikimate O-hydroxycinnamoyltransferases were
only upregulated by FS (Figure 5B). Additionally, it was also observed that three 5-O-4-
coumaroyl-D-quinate 3′-monooxygenases, which catalyze the conversion of p-coumaryl
CoA to p-coumaryl shikimate, were uniquely downregulated under the FS condition
(Figure 5B). These results suggest that the synthesis of different phenolic components may
be an important mechanism of the plant response to different types of flooding. However,
further research is needed to confirm this hypothesis.

3.4. Specific Responses of Plant Hormone Signaling Genes to Different Depths of Flooding Stress

Plant hormones, including IAA, CTK, GA, ABA, ETH, BRs, JA, and SA, play an im-
portant role in the stress resistance of many plants [39]. Many genes involved in plant
hormone signaling were found to be affected in flooded plants [11,12,40]. ABA is widely
recognized as an important hormone and chemical signal in plants responding to water-
logging stress [41]. Under waterlogging stress, stomatal closure, presumably regulated
by abscisic acid (ABA), is triggered to prevent dehydration [42]. The Arabidopsis abi2-1
mutant, which has a higher stomatal transpiration due to impaired ABA signaling, showed
enhanced plant survival after submergence [43]. Waterlogging stress can promote the
accumulation of ABA, which leads to a reduction in stomatal conductance in leaves [7].
In the ABA signaling pathway, PYR/PYL, the most upstream regulator in this pathway,
interacts with PP2C to reduce the inhibition of SnRK2, thereby regulating downstream
factors such as ABF [44]. When plants are exposed to waterlogging, the DEGs regulating
PYL are significantly activated and upregulated [39]. The level of endogenous IAA was
increased in Prunus persica leaves under waterlogging stress [45]. AUX/IAA and SAUR
are the two major classes of primary auxin response genes. The genes in the IAA signaling
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pathway are negatively regulated by waterlogging [8]. In plants, SA is a common phenolic
compound. Under waterlogging conditions, the content of SA was significantly increased in
waterlogging-tolerant soybean cultivars, further stimulating adventitious roots, enhancing
gas exchange, and ultimately conferring tolerance to waterlogging stress [46]. Exogenous
SA promotes the formation of axile roots and surface adventitious roots in wheat under
waterlogged conditions [34]. Chen et al. (2022) found that a decreased SA content caused
by low-expressed PAL might impact the resistance of Styrax tonkinensis seedlings to water-
logging stress [47]. Zhang et al. (2017) further suggested that JA, SA, and BR are involved
in the waterlogging response, given that many differentially expressed genes associated
with JA, SA, and BR were upregulated in stressed cotton plants [48]. Consistent with these
studies, the plant hormone transduction pathway was significantly enriched in wheat
seedlings under the three flooding conditions (Figure 6B and Table S8). Most of the DEGs
associated with IAA, GA, ABA, BRs, JA, and SA were upregulated under one or more
flooding conditions, highlighting the importance of plant hormones in the plant responses
to flooding stress.

On the other hand, a large number of plant hormone signal-related genes were
flooding-type-specific. For example, GA-, JA-, ETH-, and CTK-related DEGs were mainly
induced by FS, and a few genes associated with ABA, SA, and IAA were coregulated under
the three flooding conditions (Figure 6B and Table S20). We speculate that wheat responds
to different types of flooding stress by activating different hormone signaling pathways.

3.5. Flooding-Type-Dependent Response Pathways and TFs

Previous research has suggested a possible connection between the number of respon-
sive genes and their association with the complexity and intensity of the imposed stress
treatment [49]. For example, experiments in barley exposed to combined water deficits
and salt stress showed that the duration of individual or combined stresses increased the
number of differentially expressed genes [49]. Consistent with these studies, the present
study revealed that the negative effect of FS on the growth of wheat seedlings was greater
than those of HS and WL (Figure 1A). At the same time, we observed clear differences in
the numbers and types of DEGs that were upregulated with differences in water depth
(Figure 3B,C). Furthermore, previous studies demonstrated that the response of plants to
stress is related to the type of stress [49,50]. For instance, Luo et al. (2019) found that the
CDPK, MAPK, CIPK, and PYL-PP2C-SnRK2 signaling pathways were involved in osmotic
stress, while the SOS core pathway was activated by ionic stress [50]. Consistent with our
study, a KEGG enrichment analysis indicated that several pathways were specially enriched
in the WL, HS, and FS treatments, such as the ‘brassinosteroid biosynthesis’ pathway under
the WL treatment, ‘taurine and hypotaurine metabolism’ under the HS treatment, and
‘carbon metabolism’ under the FS treatment (Figure 3E–G), suggesting that type-specific
response pathways exist in plant responses to flooding stress.

Transcription factors (TFs) are crucial controllers of abiotic stress, including waterlog-
ging, and participate in the regulation of downstream stress-responsive genes [7,9]. These
proteins have been identified as among the most promising targets for the improvement
of plant performance under waterlogging stress [7]. Here, a total of 1754 differentially
expressed TFs from 35 different families were identified in wheat seedlings under WL, HS,
and FS conditions (Figure 6C and Table S21). The greatest difference was the significant
over-representation of the bHLH, NAC, MYB, WRKY, and AP2/ERF families in the upreg-
ulated DEGs and downregulated DEGs in response to flooding. Consistent with previous
studies, these TF families are involved in abiotic stress and may positively improve plant
tolerance [7,9]. In soybean, Glyma.01G198000, encoding a bHLH TF, was predicted to be a
candidate gene involved in seed waterlogging tolerance [51]. The constitutive expression
of the TaERFVII.1 gene in wheat enhanced the tolerance to waterlogging in transgenic
wheat without negative impacts on its development and yield [15]. However, in this study,
the three copies of the TaERFVII.1 gene (TraesCS5B02G315500, TraesCS5A02G314600, and
TraesCS5D02G32080) were barely expressed under both control and flooded conditions
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(Table S2). This result suggests that wheat tolerance to flooding stress is regulated by other
genes. Moreover, a large number of flooding-type specific TFs were also identified across
the three flooding conditions; for example, two TF families, ARR-B and YAABY, were only
identified under the FS treatment. Stress-type-specific-response TFs were also reported by
Osthoff et al. (2019) and Luo et al. (2019), between the NaCl and mannitol treatments [49],
and between the water deficit and salt treatments [50], respectively. These results may
indicate that plants respond to stress via a complex regulatory mechanism by varying the
combination and concentration of TFs according to the stress type.

3.6. Type-Dependent Alterations in DNA Methylation Levels under the WL, HS, and
FS Treatments

Epigenetic regulators are remarkably diverse in plants, facilitating the phenotypic plas-
ticity of plant development, survival and reproduction in unfavorable environments [52].
In plants, alterations in histone modification and DNA methylation are coordinated with
changes in the expression of stress-responsive genes to adapt to environmental changes [53].
DNA methylation is a well-studied epigenetic mechanism underlying plant stress re-
sponses [20,21,54]. Furthermore, the response of DNA methylation to stress is related to the
intensity and type of stress. For example, chromium stress increased the DNA methylation
level in kenaf in a chromium-concentration-dependent manner [21]. Li et al. (2022) showed
that heat stress increased the DNA methylation level in a heat-sensitive rice group but
decreased it in a tolerant rice group [20]. The total DNA methylation in sesame increased
under drought stress but decreased under waterlogging stress [17]. In this study, both
WL and HS increased the total DNA methylation level in wheat seedlings, but this was
decreased under FS (Table 1). Thus, we deduced that flooding-type-dependent alterations
in DNA methylation levels may be a tolerance strategy in wheat. In future studies, it
would be valuable to compare the differences in genome-wide methylation under different
flooding conditions using high-throughput methylation sequencing.

4. Materials and Methods
4.1. Plant Material and Flooding Treatments

A commercial spring wheat (Triticum aestivum L.) variety Efumai 1 was used in this
study. Seeds of Efumai 1 were surface-sterilized with 2% sodium hypochlorite for 15 min
and rinsed with deionized water three times. The seeds were then planted in growth pots
(6 plants in each pot), filled with the same amount of soil, and placed in a greenhouse with
a 14 h/10 h and 22 ◦C/18 ◦C day/night and light/temperature cycle. Relative humidity
was maintained at 70%. Six pots were established for each replicate. After 18 days of
growth (at the stage with three fully expanded leaves), uniform seedlings were kept and
divided into four groups, including the CK and three flooding treatments. The three
types of flooding stress treatments were designed based on the depth of the water table,
described as waterlogging (WL: keeping the water level at the surface soil level±1 cm), half
submergence (HS: keeping the water level at half of the plant height), and full submergence
(FS: keeping the plant fully submerged). For the control, the seedlings were grown in ideal
conditions. A completely randomized design with three biological replicates was applied
in this experiment.

4.2. Physiological Measurements and Growth Parameters

After a 7-day treatment, the maximum photochemical efficiency of PSII (Fv/Fm) and
relative chlorophyll content (SPAD) were measured in the first completely-extended top
leaves using a MINI-PAM-II (Walz, Eiffeltrich, Germany) and a chlorophyll meter (Minolta
SPAD-502, Tokyo, Japan), respectively, according to the manufacturer’s protocols. The
upper, middle, and lower parts of the wheat leaves were measured twice, and the average
value was taken as one repeat. Six plants were randomly selected for each biological repeat.
Shoot (both stem and leaves) dry weight was measured for each treatment (10 plants of
each treatment) after drying at 105 ◦C in an oven for 72 h.
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On the other hand, the first top leaves of Efumai 1 were randomly selected and stored
at −80 ◦C to further detect the physiological and molecular changes that occurred under
the CK and three flooding conditions. H2O2 was extracted by homogenizing a 0.3 g sample
with 2.7 mL of phosphate buffer (50 mM, pH 6.5) at 4 ◦C. The H2O2 concentration was deter-
mined via a colorimetric method using a commercial kit (Nanjing Jiancheng Bioengineering
Institute, Nanjing, China), according to the manufacturer’s instructions. The absorbance
value of each sample was calibrated to a standard concentration curve to calculate the H2O2
concentration. The results are expressed as mmol g−1 protein. The MDA content was ex-
tracted using a 5% trichloroacetic acid (TCA) buffer. The activities of enzymes (SOD, POD,
and CAT) were extracted using a 50 mM potassium phosphate buffer (pH 7.8, containing
1% (w/v) polyvinylpolypyrrolidone (PVP), and 0.1 mM ethylenediaminetetraacetic acid
(EDTA), and 0.3% (w/v) Triton X100), respectively. The absorbance of each sample was
measured using a UV-1800 spectrophotometer (Shimadzu, Kyoto, Japan) and quantified
according to the method described by Ren et al. (2020) [55]. MDA contents and enzyme
activities are expressed as nmol g−1 FW and U g−1 FW, respectively.

4.3. Methylation-Sensitive Amplified Polymorphism (MSAP) Analysis

The total DNA of each sample was isolated using the CTAB procedure. The procedure
of MSAP analysis, which uses two pairs of restriction endonucleases (EcoRI + HpaII and
EcoRI + MspI) (Thermo Fisher Scientific, Waltham, MA, USA) for the restrictive digestion of
the DNA of each sample, is described in previous research [20]. The adaptors and primers
are listed in Table S22. The PCR products were separated using a Fragment Analyzer
Automated CE System (AATI, Ames, IA, USA) and the DNF-900 dsDNA Reagent Kit
35~5500 bp (AATI, USA), according to Li et al. (2022) [20]. The MSAP data were exported
using PROSize version 2.0 software (AATI, USA) and transformed into a binary character
matrix, using “1” or “0” to indicate the presence or absence of bands. Only the consistent
epilocus among the three biological repeats was used for future analysis. The three types
of MSAP bands were defined as nonmethylation, hemi-methylation, and full methylation
(Table 1) according to Tang et al. (2022) [21].

4.4. RNA Extraction, Library Preparation, and Sequencing

The total RNA of each sample was isolated using a TRNzol Universal RNA extraction
Kit (Tiangen, Beijing, China) according to the manufacturer’s instructions. The quantity
and purity of each RNA sample were determined using a Nanodrop 2000 (ThermoFisher
Scientific, Waltham, MA, USA) and 2100 Bioanalyzer instrument (Agilent Technologies,
Santa Clara, CA, USA), respectively. cDNA Library preparation for RNA-Seq was con-
ducted using a NEBNext® Ultra™ RNA Library Prep Kit for Illumina® (NEB, Ipswich,
MA, USA), following the manufacturer’s recommendations. The final library quality was
assessed using the Agilent Bioanalyzer 2100 system (Agilent Technologies, USA), and the
library was sequenced on an Illumina NovaSeq platform (150 bp pair end). Three biological
replicates were used for RNA-Seq experiments.

4.5. RNA-Seq Read Mapping, Sequence Assembly, and Differential Expression

After filtering the sequencing adapters and low-quality reads, valid data were aligned
to the wheat reference genome (https://urgi.versailles.inra.fr/download/iwgsc/IWGSC_
RefSeq_Assemblies/v1.0/, accessed on 1 May 2023) using HISAT2, and the alignments
were sorted using SAMTools v1.8 with default parameters. The uniquely mapped reads
were aligned with high-confidence genome annotation files (IWGSC RefSeq v1.1, https:
//wheat-urgi.versailles.inra.fr/Seq-Repository/Annotations, accessed on 5 May 2023). The
reads mapped to each gene were counted using featureCounts. The expression level of each
gene was estimated from the fragments per kilobase of transcript per million fragments
mapped (FPKM) value. Differential expression analysis between the CK and the treatments
was performed using DESeq2 software (version 1.26.0). An adjusted p value < 0.05 and

https://urgi.versailles.inra.fr/download/iwgsc/IWGSC_RefSeq_Assemblies/v1.0/
https://urgi.versailles.inra.fr/download/iwgsc/IWGSC_RefSeq_Assemblies/v1.0/
https://wheat-urgi.versailles.inra.fr/Seq-Repository/Annotations
https://wheat-urgi.versailles.inra.fr/Seq-Repository/Annotations
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|log2-fold fold change| ≥1 were used as criteria for identifying differentially expressed
genes (DEGs).

4.6. Functional Analysis of DEGs

Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrich-
ment analyses of the DEGs were performed using the free online platform, OmicShare tools
(http://www.omicshare.com/tools, accessed on 10 May 2023), where the threshold was
a corrected p value < 0.05. Transcription factors (TFs) were predicted and classified into
different families using PlantTFDB (http://planttfdb.gao-lab.org/, accessed on 11 May
2023). Heatmaps of gene expression were generated using TBtools (version v2.008) [56].

4.7. Quantitative Real-Time PCR (qRT–PCR) Validation

To validate the repeatability and reproducibility of the gene expression data obtained
via RNA-Seq in the four conditions, a total of 20 genes were randomly selected, and
gene-specific primers were designed with the online tool Primer 3 (http://primer3.ut.ee,
accessed on 25 May 2023). First-strand cDNA was synthesized using the UEIris RT mix with
a Dnase (All-in-One) kit (US Everbright, Jiangsu, China) according to the manufacturer’s
protocol. qRT–PCR was performed with the QuantStudio™ 6 Flex Real-Time PCR System
(Applied Biosystems, Foster, CA, USA) using Biolife Green I (US Everbright, Jiangsu,
China). Actin was used as an internal control to normalize the gene expression level. The
relative expression levels of selected genes were determined using the 2−∆∆CT method. The
primers for qRT–PCR are presented in Table S23. All reactions were performed in triplicate.

4.8. Statistical Analysis

All statistical analyses were performed using SPSS 18.0. The data were analyzed using
a one-way analysis of variance (ANOVA, Duncan’s test). Differences with p < 0.05 were
considered significant.

5. Conclusions

Our research provides the first characterization of the physiological, epigenetic, and
transcriptomic responses of wheat seedlings to different levels of flooding stress. The results
suggest that there was no difference in the effects of WL and HS on biomass and physiology
without the submergence of functional leaves. However, significant differences in epige-
netic and transcriptional responses were identified among the three flooding conditions.
FS increased the levels of H2O2 and MDA in the leaves and led to greater reductions in the
chlorophyll content (SPAD), photochemical efficiency (Fv/Fm), and biomass production
than HS and WL. Type-dependent alterations in DNA methylation were observed between
the three flooding conditions. Similarly, the common and specific response pathways of
wheat to the flooding stresses of different water depths were also observed. We found
that the DEGs involved in ‘photosynthesis’, ‘phenylpropanoid biosynthesis’, and ‘plant
hormone signal transduction’ were closely related to the flooding response, and these genes
were involved in specific responses to different flooding stress types. Thus, our results
provide a comprehensive view of the complex molecular events involved in the responses
of wheat leaves to flooding stress, which will promote research on the development of
flood-resistant crops and provide new information for wheat breeders. In the future, a
systemic investigation of epigenetic regulation and flooding tolerance would be valuable.
Moreover, flood depth is also a factor worth considering in future flood assessments.

Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/ijms242316785/s1.
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