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Abstract: The Capsicum annuum Mildew Locus O (CaMLO2) gene is vital for plant defense responses
against fungal pathogens like powdery mildew, a significant threat to greenhouse pepper crops.
Recent advancements in genome editing, particularly using clustered regularly interspaced short
palindromic repeats (CRISPR)/Cas9, have unlocked unprecedented opportunities for modifying
disease-resistant genes and improving crop characteristics. However, the application of CRISPR
technology in pepper cultivars has been limited, and the regeneration process remains challeng-
ing. This study addresses these limitations by investigating the feasibility of using the validated
CaMLO2 genetic scissors system in six commercial hot pepper cultivars. We assessed the gene-editing
efficiency of the previously reported high-efficiency Cas9/CaMLO2single-guide RNA (sgRNA)1-
ribonucleoprotein (RNP) and the low-efficiency Cas9/CaMLO2sgRNA2-RNP systems by extending
their application from the bell pepper ‘Dempsey’ and the hot pepper ‘CM334’ to six commercial
hot pepper cultivars. Across the six cultivars, CaMLO2sgRNA1 demonstrated an editing efficiency
ranging from 6.3 to 17.7%, whereas CaMLO2sgRNA2 exhibited no editing efficiency, highlighting
the superior efficacy of sgRNA1. These findings indicate the potential of utilizing the verified
Cas9/CaMLO2sgRNA1-RNP system to achieve efficient gene editing at the CaMLO2 locus in different
Capsicum annuum cultivars regardless of their cultivar genotypes. This study provides an efficacious
genome-editing tool for developing improved pepper cultivars with CaMLO2-mediated enhanced
disease resistance.

Keywords: CRISPR/Cas9 RNP; genome editing; CaMLO2; pepper leaf protoplasts; Capsicum annuum;
commercial hot pepper cultivars

1. Introduction

The genus Capsicum has been domesticated in the American tropics with breeding
programs for human consumption [1]. The C. annuum species, which includes three closely
related forms (C. annuum, C. chinense, and C. frutescens), is a globally consumed horticultural
crop with culinary and medicinal significance. However, it is susceptible to climate-induced
proliferation of pathogens and vectors [2]. Climate change has exacerbated powdery
mildew, a disease that inhibits pepper growth and yield by disrupting photosynthesis
and hormonal production. Wind and water aid in the spreading of powdery mildew
infections [3,4]. In addressing the vulnerability of peppers to powdery mildew, there has
been a growing focus on utilizing clustered regularly interspaced short palindromic repeats
(CRISPR)/Cas9 editing of the Mildew Locus O (MLO) gene, which plays a pivotal role in
enhancing resistance to powdery mildew [5,6]. Our preceding studies have shown precise
editing of the C. annuum MLO gene (CaMLO2) via CRISPR in both ‘Dempsey’ and ‘CM334’
pepper protoplasts, a stride toward powdery mildew resilience and crop enhancement [5,6].
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Pepper molecular breeding is of significant importance due to its potential to revolutionize
pepper cultivation by enhancing crop yield, quality, and resilience. The advanced breeding
approach utilizes insights from molecular genetics and genomics, combining scientific
understanding with practical agriculture to accelerate the development of improved pepper
cultivars that are more productive, resilient, and better aligned with consumer preferences.
This has the potential to transform pepper cultivation, address agricultural challenges, and
contribute to food security and economic prosperity.

Recent strides in genome-editing technology offer exceptional ways to modify DNA
sequences precisely in living organisms [7,8]. Genome-editing tools, like zinc finger nucle-
ases (ZFNs), transcription activator-like effector nucleases (TALENs), and CRISPR/Cas9
systems, have enabled refined gene editing in plants [9]. Among these, CRISPR/Cas9
stands out with its proficiency, precision, and adaptability [7]. SpCas9 from Streptococcus
pyogenes is a widely applied Cas9 nuclease, guided by single-guide RNAs (sgRNAs) to
target specific DNA sequences and accomplish precise genetic modifications through cellu-
lar repair mechanisms. Its broad utility and effectiveness in genetics and biotechnology
have been well established [10,11]. The simplicity and cost-effectiveness of CRISPR/Cas9
tools have led to its extensive adoption in various organisms, including plants [12–18]. Its
application in crop genome editing, particularly in genes governing growth, fertility, and
disease resistance, holds promise [19–22].

Plant protoplasts, distinct derivatives of plant cells, harbor multifaceted potential
for a wide range of applications [23]. In agriculture, their perpetual culturing confers a
noteworthy edge, facilitating the generation of superior crop variants via seed production
or large-scale vegetable cultivation [24]. In biological research, protoplasts offer invaluable
tools for exploring plant physiology, genetics, and biochemistry [25–28]. Genetic studies,
particularly concerning gene functions and mutational effects, rely on protoplasts [23,29].
Notably, protoplast fusion has emerged as a potent technique enabling hybrid plant creation
and genetic material transfer between diverse plant species. Protoplast fusion plays a piv-
otal role in plant breeding, extending opportunities to enhance traits and introduce novel
characteristics [29,30]. Within the field of gene editing, the use of CRISPR/Cas9 ribonucleo-
protein (RNP) delivery to plant protoplasts holds significant promise for high-efficiency
genome editing [29]. Delivery of CRISPR/Cas9 RNPs to protoplasts can be accomplished
through a polyethylene glycol (PEG) treatment, gene gun, or electroporation [29,31,32].
These methods exhibit exceptional gene-editing efficiency not only in the model plant
Arabidopsis thaliana but also in crop protoplasts, such as lettuce, soybean, petunia, camelina,
and pepper [5,29,33–35].

C. annuum encompasses bell pepper varieties known for their mild and sweet flavor
and hot pepper varieties characterized by pronounced spiciness, reflecting the diverse
genetic traits found within various cultivars of this species [36]. Previously, we identified a
high-efficiency CRISPR/Cas9 RNP complex targeting the CaMLO2 gene in the hot pepper
‘CM334’ and the bell pepper ‘Dempsey’ [5]. However, it remains undetermined whether
the Cas9 RNP can be broadly applied across a range of pepper cultivars with varied
genetic profiles. To further explore the prospect for wide-ranging resistance to powdery
mildew through leveraging this CRISPR/Cas9 RNP complex, we employed six commercial
hot pepper cultivars with different horticultural characteristics. Our findings from the
extended analyses of the efficiency and specificity of the CRISPR/Cas9 RNP across different
commercial cultivars will furnish valuable insights, paving the way for the applicability of
the CRISPR/Cas9 RNP tool for future molecular pepper breeding programs.

2. Results
2.1. Robust Hot Pepper Protoplasts Isolated from Six Commercial Cultivars

To extend DNA-free CRISPR/Cas9-mediated genome editing in peppers, we explored
the following six commercial hot pepper cultivars: D21101, D21102, E21301, E21302, F21201,
and J21401. These six pepper cultivars have different agronomic traits, as outlined in Table 1,
encompassing factors such as germplasm origin, pungency level, resistance to various
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pathogens, and growing purpose. Despite these varied traits, none of the six cultivars have
powdery mildew resistance (personal communication with the seed provider). Careful
observation was conducted on these cultivars at two distinct growth phases: a five-week
in vitro stage (Figure 1A) and a subsequent ten-week stage where they were nurtured in
soil (Figure 1B). Notably, these cultivars exhibited variations in their growth dynamics.
The six cultivars produced their third leaves for isolating protoplasts during the five-week
growing period. Even though the six pepper cultivars belong to C. annuum, we examined
whether these six pepper cultivars produced robust and stable protoplasts that could be
used with the DNA-free CRISPR/Cas9 RNP. Upon employing cell-wall digesting enzymes
to extract protoplasts from the six pepper cultivars, we noted an absence of substantial
differences in the general appearance of the resultant protoplasts (Figure 1C). Therefore,
we delivered DNA-free CRISPR/Cas9 RNP into the resilient pepper protoplasts derived
from each of the assessed six cultivars.
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Figure 1. Observations of the six commercial hot peppers in Capsicum annuum and their leaf-derived
protoplasts. (A) Six MS media-grown hot pepper cultivars at five weeks old (scale bars = 1 cm).
(B) Soil-transferred hot pepper cultivars at different developmental stages at ten weeks old (scale
bars = 10 cm). (C) Five-week-old pepper leaf-derived protoplasts.
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Table 1. Summary of the agronomic traits of the six commercial hot peppers.

Cultivar Name Agronomic Trait

D21101 Korean cultivar (KC) for pepper powder, highly pungent, resistant to Phytophthora blight

D21102 KC for pepper powder, highly pungent, resistant to Phytophthora blight, tomato spotted wilt virus
(TSWV), and anthracnose

E21301 India cultivar for pepper powder
E21302 Southeast Asian cultivar, upright type, single-podded
F21201 KC for green pepper, highly pungent, resistant to Phytophthora blight
J21401 South American cultivar, jalapeño, resistant to bacterial leaf spot (BLS)

2.2. The Conserved CaMLO2 Gene among Six Commercial Hot Peppers

Although the gene structure of the MLO homologs is highly conserved as membrane-
anchored by seven transmembrane helices with an extracellular N-terminus and an intracel-
lular C-terminus, the MLO family members are genetically diverse [37]. The target sequence
specificity of the CRISPR tools critically impacts the efficiency of the target gene editing
in a genome. We investigated the genetic loci of the CaMLO2 gene within the six pepper
cultivars using a gene-specific primer pair (Table S1) previously validated in the bell pepper
‘Dempsey’ and the hot pepper ‘CM334’ (Figure 2A) [5]. The PCR-amplified 2.0 kb CaMLO2
genomic regions from the six cultivars were analyzed by Sanger sequencing, and the six
amplicon sequences were aligned to the reference CaMLO2 gene. All the sequenced genetic
regions among the six cultivars were identical to the reference CaMLO2 sequence without a
single nucleotide polymorphism and contained the previously designated CaMLO2sgRNA1
and sgRNA2 regions (Figure 2B).

Int. J. Mol. Sci. 2023, 24, x FOR PEER REVIEW 5 of 14 
 

 

Figure 2. Evaluation of the CaMLO2 target gene and the two designated CRISPR/Cas9 RNP com-

plexes in the six commercial pepper cultivars. (A) Target locus of the CaMLO2 gene, the two de-

signed sgRNAs for Cas9, and the specific primer pair. (B) Target sequence confirmation of the 

CaMLO2 genetic locus of the six pepper cultivars by Sanger sequencing. The specific primers (brown 

marks) were designed to target the third exon of CaMLO2 containing both sgRNA1 and sgRNA2. 

The magenta marks designate sgRNA1 and sgRNA2 of CaMLO2. (C) In vitro cleavage assay with 

Figure 2. Cont.



Int. J. Mol. Sci. 2023, 24, 16775 5 of 13

Int. J. Mol. Sci. 2023, 24, x FOR PEER REVIEW 5 of 14 
 

 

Figure 2. Evaluation of the CaMLO2 target gene and the two designated CRISPR/Cas9 RNP com-

plexes in the six commercial pepper cultivars. (A) Target locus of the CaMLO2 gene, the two de-

signed sgRNAs for Cas9, and the specific primer pair. (B) Target sequence confirmation of the 

CaMLO2 genetic locus of the six pepper cultivars by Sanger sequencing. The specific primers (brown 

marks) were designed to target the third exon of CaMLO2 containing both sgRNA1 and sgRNA2. 

The magenta marks designate sgRNA1 and sgRNA2 of CaMLO2. (C) In vitro cleavage assay with 

Figure 2. Evaluation of the CaMLO2 target gene and the two designated CRISPR/Cas9 RNP com-
plexes in the six commercial pepper cultivars. (A) Target locus of the CaMLO2 gene, the two designed
sgRNAs for Cas9, and the specific primer pair. (B) Target sequence confirmation of the CaMLO2 ge-
netic locus of the six pepper cultivars by Sanger sequencing. The specific primers (brown marks) were
designed to target the third exon of CaMLO2 containing both sgRNA1 and sgRNA2. The magenta
marks designate sgRNA1 and sgRNA2 of CaMLO2. (C) In vitro cleavage assay with preassembled
Cas9 only (as the control), Cas9-sgRNA1, and Cas9-sgRNA2 for the CaMLO2 gene in the six cultivars.

With the confirmation of the target CaMLO2 gene sequences in all six pepper cultivars,
we conducted in vitro cleavage analyses to verify whether the preassembled CRISPR/Cas9-
sgRNA1 or -sgRNA2 RNP complexes could specifically cleave the target CaMLO2 gene
throughout the six commercial cultivars. Based on the validated conservation of the
CaMLO2 gene sequences, the amplified approximately 2 kb fragments of target DNA were
cleaved into two fragments of approximately 1.2 and 0.8 kb (Figure 2C) in all six commercial
hot pepper cultivars, as described in a previous study using the reference cultivars [5].
These results suggest that the preassembled DNA-free CRISPR/Cas9-sgRNA1 or -sgRNA2
RNP complexes could be used to generate CaMLO2-edited peppers throughout the six
commercial hot pepper cultivars.

2.3. Comparison of Indel Frequencies of CaMLO2sgRNA1 or sgRNA2 among the Six Commercial
Hot Peppers

To investigate precise CaMLO2 gene editing within the six-pepper protoplast-based
transient systems, we conducted in vivo protoplast-based CRISPR/Cas9 RNP delivery ex-
periments on the six commercial hot pepper cultivars. All the CRISPR/Cas9 RNP-mediated
gene-editing experiments were conducted with at least four to five biological replicates
(Figure 3). In the D21101 cultivar, insertions/deletions (Indels) were observed at the target
sites with frequencies that ranged from 3.9 to 9.2% for Cas9/CaMLO2sgRNA1 and from
0.0 to 0.2% for Cas9/CaMLO2sgRNA2. In the D21102 cultivar, Indels were observed at
frequencies that ranged from 4.4 to 8.5% for Cas9/CaMLO2sgRNA1 and from 0.0 to 0.1% for
Cas9/CaMLO2sgRNA2. The E21301 cultivar had Indel frequencies that ranged from 6.3 to
17.7% for Cas9/CaMLO2sgRNA1 and 0.0 to 0.3% for Cas9/CaMLO2sgRNA2. The E21302
cultivar had Indel frequencies that ranged from 3.0 to 10.9% for Cas9/CaMLO2sgRNA1
and from 0.0 to 0.8% for Cas9/CaMLO2sgRNA2. The F21201 cultivar had Indel frequen-
cies that ranged from 3.5 to 7.5% for Cas9/CaMLO2sgRNA1 and from 0.0 to 0.2% for
Cas9/CaMLO2sgRNA2. The J21401 cultivar had Indel frequencies that ranged from 1.1
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to 6.3% for Cas9/CaMLO2sgRNA1 and from 0.0 to 0.5% for Cas9/CaMLO2sgRNA2. In
a one-way ANOVA conducted based on the Indel frequencies of all the pepper cultivars,
a significant difference was observed in the Indel frequency for Cas9/CaMLO2sgRNA1.
Specifically, the p-values for D21101, D21102, and F21201 were found to be below 0.0001, in-
dicating a highly significant difference with Cas9 only and CaMLO2sgRNA2. These results
indicate that the Indel frequencies of Cas9/CaMLO2sgRNA1 complexes were consistently
higher than Cas9/CaMLO2sgRNA2 within the six commercial cultivars (Figure 3). These
results demonstrate that Cas9/CaMLO2sgRNA1 complexes induce Indel mutations more
efficiently than Cas9/CaMLO2sgRNA2 in the six tested hot pepper cultivars.
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Figure 3. Comparison of the Indel frequencies (%) with Cas9 only, Cas9-sgRNA1, or Cas9-sgRNA2
transfected into the protoplasts of the six cultivars. The vertical bars represent the mean ± standard
deviation (n ≥ 3). The Indel frequencies (%) were calculated as the number of measured reads
divided by the number of total reads. In the graph, the rotundity, square, and triangle shapes depict
the Indel frequencies corresponding to Cas9 only, Cas9-sgRNA1, and Cas9-sgRNA2 transformed
protoplasts, respectively. Each feature is a biological replicate. An asterisk indicates a significant
difference compared with Cas9 only, based on the one-way ANOVA; ****, p < 0.0001; ***, p < 0.001;
**, p < 0.01; *, p < 0.05.

2.4. Comparison of the Indel Patterns by CaMLO2sgRNA1 or sgRNA2 among the Six Commercial
Hot Peppers

In addition to the Indel frequencies, we also analyzed the Indel patterns at the target
loci of the CaMLO2 gene by targeted deep sequencing. The predominant Indel patterns
induced by the Cas9/CaMLO2sgRNA1 complex were observed with high ranks as various
nucleotide deletions ranging from one to nine nucleotides across all biological replicates
from the six hot pepper cultivars (Figures 4 and S1). Notably, several nucleotides deletions
(−1, −2, −4, −5, −7, and −8) and one nucleotide insertion (+1) occurring immediately
following the PAM sequence (5′-CCT-3′) resulted in the formation of an early stop codon
within the third exon of CaMLO2. The deletion of three nucleotides (−3) generated a single
amino acid deletion of the CaMLO2 protein. The Cas9/CaMLO2sgRNA2 delivered to the
pepper protoplasts also showed various deletion patterns, from one nucleotide to eleven nu-
cleotides and insertions of one or three nucleotides (Figure 4). These results indicate that the
predominant Indel patterns induced by the Cas9/CaMLO2sgRNA1 complex successfully
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produce CaMLO2 mutations in the applied six cultivars. Thus, the Cas9/CaMLO2sgRNA1
complex will be an excellent gene-editing tool for commercial pepper cultivars.
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listed with the top-three-ranked reads from those with the highest Indel frequencies among the
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measured reads divided by the number of total reads. Total reads (#) were obtained by targeted deep
sequencing. WT denotes the depicted target gene carrying the sgRNA sequences; Indel %, Indel
frequencies of the edited reads; red letters, the PAM sequences; blue letters, CRISPR target (sgRNA)
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2.5. In Vivo Off-Taget Validation of the CaMLO2sgRNA1 Delivered across the Six Cultivars

To validate the specificity of the Cas9/CaMLO2sgRNA1 complex-mediated genome
editing, we surveyed the pepper genomes in silico using the Cas-OFFinder program
(http://rgenome.net, accessed on 20 November 2023). Initially, to avoid off-target effects,
we specifically selected sgRNA1 and sgRNA2 that did not have two nucleotide mismatches
based on the entire homology of the pepper reference genome, except the target sites, using
Cas-Designer (http://rgenome.net, accessed on 20 November 2023). Therefore, we identi-
fied potential off-target (OT) sites with three nucleotide variations (Figure 5). We designed
specific primer sets (Table S2) to amplify the putative OT loci from the genomic DNA
isolated from the Cas9/CaMLO2sgRNA1 complex protoplasts across the six hot pepper
cultivars. We performed targeted deep sequencing analyses from OT1 to OT6. No Indel
mutations were detected at the six examined OTs compared with the Cas9-only protoplasts
from the six cultivars (Figure 5). This finding suggests that the Cas9/CaMLO2sgRNA1

http://rgenome.net
http://rgenome.net
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complex did not tolerate three nucleotide mismatches. Consequently, CaMLO2sgRNA1
demonstrated high sequence specificity, adequately targeting the CaMLO2 target locus
across the six cultivars. These results align with the previous findings of precise editing in
tobacco and soybeans [33], indicating that Cas9/CaMLO2sgRNA1 can serve as an excellent
gene-editing tool for precisely improving commercial pepper cultivars.
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3. Discussion

We investigated the potential application of the CaMLO2 genetic scissors, a DNA-free
CRISPR/Cas9 RNP, to six commercial hot pepper cultivars. The six inbred hot pepper
cultivars have different horticultural traits and growth rates. In the five-week in vitro
stage, the F21201 cultivar grew nearly twice as tall as the E21302 cultivar (Figure 1A).
However, these growth rates were less pronounced when grown in soil pots in the growth
room (Figure 1B). The six commercial pepper cultivars used in this study exhibited typical
characteristics of C. annuum-derived protoplasts (Figure 1C), similar to the C. annuum-
derived protoplasts usually used in genome-editing studies, such as the hot pepper ‘CM334’
and the bell pepper ‘Dempsey’ [5]. However, unlike pure protoplasts from the hot pepper
‘CM334,’ the protoplasts isolated from the six hot pepper cultivars were stable enough
for PEG-mediated, transient delivery of the DNA-free CRISPR/Cas9 RNP for editing the
CaMLO2 gene within 48 h. Notably, we further observed the variable viability among
the six hot pepper cultivar-derived protoplasts over three days of cultivation, indicating
distinct characteristics at the cellular level.

Before applying the CRISPR/Cas9 RNPs to the six hot pepper cultivar-derived proto-
plasts, we conducted a Sanger sequencing analysis to confirm the target gene loci of the
designed CaMLO2sgRNA1 and sgRNA2 based on the reference genomes of the hot pepper
‘CM334’ and the bell pepper ‘Dempsey.’ Thus, the genetic loci of the six cultivars were
precisely conserved at the target sgRNA1 and sgRNA2 for the CaMLO2 gene, like the two
reference peppers [5]. Subsequently, we performed in vitro DNA cleavage experiments
to validate the activities of the CRISPR/Cas9 RNP complexes with CaMLO2sgRNA1 or
CaMLO2sgRNA2. The cleavage activities of the Cas9sgRNA1 or Cas9sgRNA2 complexes
exhibited an elaborate function at the CaMLO2 target amplicon of the genomes of the six
hot peppers (Figure 2C).

Since the whole genome sequence of the hot pepper ‘CM334’ and the bell pepper
‘Dempsey’ has been reported [38,39], both ‘CM334’ and ‘Dempsey’ are genome-editable
cultivars using the CRISPR/Cas9 and CRISPR/Cpf1 tools [5,6]. Moreover, the DNA-free



Int. J. Mol. Sci. 2023, 24, 16775 9 of 13

CRISPR/Cas9 RNP tool-mediated gene editing in both pepper protoplasts showed far better
editing efficiency than in Agrobacterium-mediated transformation using pepper callus [5,6].
Using CRISPR/RNPs provides a method of minimizing off-target effects and cytotoxicity
related to DNA transfection while simultaneously avoiding the potential integration of
small DNA fragments from the plasmids [33]. Our extensive off-target analyses across
all six cultivars provided evidence that the Cas9/CaMLO2sgRNA1 genetic scissors are
effective across diverse cultivars and serve as an elaborate gene-editing tool, displaying an
intolerance to three mismatches. This study expanded on the fact that pepper protoplast-
based genome editing of seven hot pepper cultivars (CM334, D21101, D21102, E21301,
E21302, F21201, and J21401) and a bell pepper cultivar (Dempsey) is a good strategy for
developing an improved new pepper cultivar.

Although the evaluation of anticipated powdery mildew resistance resulting from the
edited pepper cultivars with Cas9/CaMLO2sgRNA1 remains to be validatednot shown,
the assessment of disease resistance through editing MLO genes has been demonstrated
in various plants. Previous studies have documented that powdery mildew resistance
can be attained through MLO gene mutation in barley [40]. Other studies extended the
understanding of powdery mildew resistance to model plants such as Arabidopsis and
rice [41,42]. Notably, gene functional studies have successfully revealed biotic stress
resistance through the MLO gene in peppers using RNAi [43]. Moreover, in recent gene-
editing studies, CRISPR/Cas9 systems have successfully conferred resistance to powdery
mildew in hexaploid bread wheat [44,45]. Hence, editing CaMLO2, the ortholog of the MLO
gene in peppers, could confer resistance to powdery mildew, similar to the demonstrated
effects observed in various plant species.

However, one issue is the need for a robust regeneration protocol for pepper protoplast-
based whole plants because the cultivation of pepper protoplasts primarily relies on proto-
cols for a few cultivars, such as Dulce Italiano [46] and California Wonder [47]. There is a
need to establish significantly better regeneration methods for various cultivars, especially
those whose whole genome sequence is available. Fortunately, we have recently updated a
reliable regeneration method for the pepper cultivar ‘Dempsey’ [48]. Therefore, success-
fully editing the protoplasts from eight cultivars would be a good resource for initiating
a molecular breeding program to regenerate whole pepper plants besides the effort of
Agrobacterium-mediated transformation in peppers.

We confirmed that the highly efficient CaMLO2 genetic scissors, CRISPR/Cas9 CaMLO2
sgRNA1 RNP, could be successfully applied to six commercial hot peppers regardless of
their genotypes and agricultural traits. Moreover, these results can serve as a foundation for
developing genetically edited peppers by demonstrating the versatility of validated gene-
editing scissors and identifying candidate cultivars advantageous in post-transformation
regeneration processes. This study will contribute to expanding the knowledge and un-
derstanding of genome-editing technology in pepper genetics and will provide a valuable
tool for developing improved pepper cultivars with enhanced disease resistance and other
desirable traits.

4. Materials and Methods
4.1. Plant Materials

Six cultivars (D21101, D21102, E21301, E21302, F21201, and J21401) of C. annuum were
provided by the New Breeding Technology Center (Gwangju, Republic of Korea). The seeds
of the pepper cultivars were sterilized with 70% ethanol and 2% commercial bleach and
washed five times with distilled water for one minute each. The surface-sterilized seeds
were germinated on a medium composed of half-strength Murashige and Skoog (MS) with
MES (M0222, Duchefa Biochemie, Haarlem, The Netherlands; M1053, Duchefa Biochemie,
Haarlem, The Netherlands), 3% sucrose, and 0.8% phytoagar (P1003, Duchefa Biochemie,
Haarlem, The Netherlands). The medium was then adjusted to a pH of 5.8. The sowed
seeds were incubated in the dark at 25 ◦C for a week. The germinated pepper seedlings
were grown at 25 ± 2 ◦C, with a 16 h light and 8 h dark photoperiod, and 60% relative
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humidity in a growth chamber for four weeks or transferred into soil pots in a growth room.
The images of the cultivars in soil pots were taken when they were ten weeks old.

4.2. CaMLO2 Genomic Loci Analyses by Sanger Sequencing

Genomic DNA from the six pepper cultivars was prepared using a Plant SV Mini
kit (GeneAll, Seoul, Republic of Korea). We performed a PCR using specific primers
targeting the third exon sequence of CaMLO2, the target region of the designed guide RNAs
(Table S1). The target amplicons were sequenced by Sanger sequencing to confirm the
nucleotide sequences and the designated two sgRNAs at the genetic loci of CaMLO2.

4.3. Preparation of the Single-Guide RNA and Cas9 Protein

The two single-guide RNAs (sgRNA) for CaMLO2 gene editing have been reported in
our previous studies [5,6]. The sgRNAs were synthesized by in vitro transcription using T7
RNA polymerase (New England Biolabs, MA, USA), purified using an Exipin PCR SV kit
(GeneAll, Seoul, Republic of Korea) and dissolved in DEPC-treated water. E. coli Rosetta
harboring the His-tagged Cas9 expression vector was cultured in 1 mM isopropyl-b-D-
thiogalactoside (IPTG) and harvested by centrifugation. The sonicated total protein extract
was purified using Ni-NTA affinity chromatography (Ni-NTA agarose, Qiagen, Hilden,
Germany) [33].

4.4. In Vitro Cleavage Analysis Using the Designed CRISPR/Cas9 RNP

The activity of the designed sgRNA and purified Cas9 was validated by an in vitro
cleavage analysis. The target DNA amplicons were generated by the primer pair of F0
and R0 (Table S1) and digested with a mixture of purified Cas9 and sgRNA1 or sgRNA2
in 10X NEB 3.1 buffer for one hour at 37 ◦C and subsequently incubated with RNase A
for 30 min at 37 ◦C. The digested target DNA amplicons were confirmed by agarose gel
electrophoresis.

4.5. Protoplast Isolation and PEG-Mediated Transfection

Pepper leaves of the six cultivars at five weeks old were digested in 1× VCP en-
zyme [49] for four hours at room temperature to isolate pure protoplasts. The digested
pepper protoplasts were diluted with an equal volume of W5 solution (154 mM NaCl,
125 mM CaCl2, 5 mM KCl, 5 mM glucose, 1.5 mM MES-KOH, pH 5.6). The isolated proto-
plasts were gently collected by a low-speed swing centrifugation and then rinsed twice with
the W5 solution. The isolated pepper protoplasts were counted using a hemocytometer.
Approximately 2× 105 isolated protoplasts were used for the PEG-mediated delivery of the
CRISPR/Cas9 RNP. Briefly, preassembled Cas9/sgRNA (1:6 molar ratio) complexes were
carefully suspended with the counted protoplasts in 300 µL of MMG solution (400 mM
mannitol, 15 mM MgCl2, 5 mM MES, pH 5.6). An equal volume of freshly prepared PEG
solution (200 mM mannitol, 100 mM CaCl2, 40% PEG 4000) was added. The CRISPR/Cas9
RNP-delivered protoplasts were incubated at 25 ◦C for 48 h, harvested for genomic DNA
extraction, and finally analyzed for target gene editing.

4.6. Targeted Deep Sequencing

The target gene locus was amplified by a nested PCR using specific primer pairs (F and
R) and subsequently amplified using individual primary primer pairs (F1 and R1) to exam-
ine the Indel frequencies and patterns (Table S1). The six off-target loci were amplified by a
nested PCR using specific primer pairs (OT F and OT R) and subsequently amplified using
individual primary primer pairs (F1 and R1) to examine the Indel frequencies (Table S2).
The target amplicons were attached with multiplexing indexes and specific sequencing
adaptors by consecutive PCR. The amplicons were purified and sequenced using an Illu-
mina MiSeq V2 Reagent Kit (300 cycle; San Diego, CA, USA). The raw data of paired-end
MiSeq were analyzed using Cas-Analyzer (http://www.rgenome.net/cas-analyzer/#!,
accessed on 20 November 2023) from the RGEN tools [50].

http://www.rgenome.net/cas-analyzer/#!
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4.7. Statistical Analyses

The data are presented as the mean and standard deviation of at least three biological
replicates. The significant difference (*, p < 0.05; **, p < 0.01, ***, p < 0.001, ****, p < 0.001)
was assessed by a one-way ANOVA.

5. Conclusions

This study established the feasibility of robust protoplast generation and validated
Cas9/CaMLO2sgRNA1 as an effective gene-editing tool without potential off-target effects
in six commercial hot pepper cultivars. Despite the genetic diversity inherent across the six
pepper cultivars, the examination of the genetic structure of the CaMLO2 homologs revealed
a consistent and reliable approach for targeting and modifying the gene. Furthermore, the
analyses of Indel frequencies and patterns at the target locus of CaMLO2 demonstrated the
superiority of the Cas9/CaMLO2sgRNA1 complex in inducing effective CaMLO2 mutations
across the diverse set of the six cultivars. Consequently, Cas9/CaMLO2sgRNA1 emerges as
a promising gene-editing tool with significant potential for enhancing genetic modifications
in commercial pepper cultivars.
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