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Abstract: Circular RNAs (circRNAs) are a class of non-coding RNAs with diverse functions, and
previous studies have reported that circRNAs are involved in the growth and development of pigs.
However, studies about porcine circRNAs over the past few years have focused on a limited number
of tissues. Based on 215 publicly available RNA sequencing (RNA-seq) samples, we conducted
a comprehensive analysis of circRNAs in nine pig tissues, namely, the gallbladder, heart, liver,
longissimus dorsi, lung, ovary, pituitary, skeletal muscle, and spleen. Here, we identified a total
of 82,528 circRNAs and discovered 3818 novel circRNAs that were not reported in the CircAtlas
database. Moreover, we obtained 492 housekeeping circRNAs and 3489 tissue-specific circRNAs.
The housekeeping circRNAs were enriched in signaling pathways regulating basic biological tissue
activities, such as chromatin remodeling, nuclear-transcribed mRNA catabolic process, and protein
methylation. The tissue-specific circRNAs were enriched in signaling pathways related to tissue-
specific functions, such as muscle system process in skeletal muscle, cilium organization in pituitary,
and cortical cytoskeleton in ovary. Through weighted gene co-expression network analysis, we
identified 14 modules comprising 1377 hub circRNAs. Additionally, we explored circRNA–miRNA–
mRNA networks to elucidate the interaction relationships between tissue-specific circRNAs and
tissue-specific genes. Furthermore, our conservation analysis revealed that 19.29% of circRNAs in
pigs shared homologous positions with their counterparts in humans. In summary, this extensive
profiling of housekeeping, tissue-specific, and co-expressed circRNAs provides valuable insights into
understanding the molecular mechanisms of pig transcriptional expression, ultimately deepening
our understanding of genetic and biological processes.

Keywords: pigs; housekeeping circRNAs; tissue-specific circRNAs

1. Introduction

Circular RNA (circRNA) is a type of non-coding RNA generated through a unique
splicing process known as backsplicing [1]. Backsplicing is a specific mechanism that
produces downstream splice-donor sites and upstream splice-acceptor sites, resulting in
their covalent connection [2]. Various types of circRNAs have been identified, including
exon, intron, and exon–intron type [3]. Most circRNAs (exonic circRNAs) are expressed
from known protein-coding genes and consist of a single exon or of multiple exons [4,5].
Additionally, a minority of circRNAs (intronic circRNAs) are composed of introns [6]. Other
circRNAs (exon–intron circRNAs) contain sequences derived from both exons and introns
due to internal intron retention or a failure in the debranching of intronic lariats during
canonical splicing [7–9]. The circular structure of circRNA gives it higher stability and
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resistance to degradation. This particular structure of circRNA allows circRNAs to persist
and remain stable in cells for extended periods of time [10]. Meanwhile, circRNAs have a
range of biological functions, including competitive miRNA inhibition, direct regulation of
parental mRNA expression, and protein sequestration [11–13].

Pigs exhibit a significant degree of physiology and anatomy similarity to humans, ren-
dering them a favorable animal model for investigating human diseases and developmental
processes [14]. Moreover, domestic pigs are essential farm animals with a long history of
selective breeding and immense economic value [15]. Over time, humans have conducted
extensive breeding programs for domestic pigs, resulting in a rich genetic diversity and the
development of various desirable traits [16]. Research on circRNAs is an important area of
study for pig breeding, as differential expression of circRNAs has been shown to impact
various traits, including meat quality, reproductive ability, and disease susceptibility. For
instance, Li et al. found that circIGF1R could act as a miRNA sponge to negatively regulate
miR-16 to promote the myoblast differentiation of the porcine skeletal muscle satellite cells,
thereby influencing meat quality [17]. Wang et al. detected 60, 78, and 86 differentially
expressed circRNAs that played a key role in muscle development and lipid deposition
across 38, 58, and 78 days post conception [18]. Zhuang et al. identified circKANSL1L,
which influences muscle fiber type differentiation and exhibits a high level of conservation
between mice and pigs [19]. Niu et al. detected 305 differentially expressed circRNA in
porcine ovaries, and they were enriched in several reproductive-related signaling path-
ways [20]. Mester-Tonczar et al. demonstrated that circRNA-CDR1as beneficially impacts
cardiac function in pigs by down-regulating miR-7 in the heart [21]. Although there have
been some advances in pig circRNA research over the past few years, investigations are
still mainly focused on a limited number of tissues.

The effect of circRNA on pig traits constitutes a complex regulatory network involving
multiple processes and mechanisms. A better comprehension of the circRNA profiles in
different pig tissues will help us to leverage the pig genome for applications in various fields,
such as species of evolution, growth and development, breeding, construction of models
for humans, and gene–disease phenotypic association analysis. With the advancement of
RNA sequencing technology, an increasing number of pig genomic data have been made
publicly available and widely utilized [22]. Numerous studies of non-coding RNA based on
RNA-seq and the related databases have been published [23,24]. The databases of circRNA
were published as well, such as CircFunBase and CircAtlas [25,26], but the number of
circRNAs in pigs should be greatly enriched. Furthermore, recent studies have found
a significant amount of circRNA in porcine muti-tissues. For example, Jin et al. found
48,232 circRNAs from 31 tissues and two cell lines [27]. However, circRNA expression in
multiple tissues of pigs should still be explored based on bulk data.

In this study, we aimed to investigate the circRNA profiles by RNA-seq from nine
porcine tissues (gallbladder, heart, liver, longissimus dorsi, lung, ovary, pituitary, skeletal
muscle, and spleen) to explore the association and distinctness of circRNA expression
patterns among different tissues. Our observations will provide new insights into the
biological processes of various tissues in pigs.

2. Results
2.1. CircRNA Detection in Multiple Tissues

CircRNAs were detected using the CIRI2 and find_cir methods in a total of 215 samples
from nine different tissues (see Section 2 for details). In summary, 238,923 circRNAs
were detected using the find_cir, while 111,619 circRNAs were identified utilizing the
CIRI2. Among these, a total of 82,528 circRNAs were detected by both methods and used
for subsequent analysis (Figure 1a, Table S2). Compared with the CircAtlas database
(https://ngdc.cncb.ac.cn/circatlas/, accessed on 7 November 2023) [26], in total, 3818 new
circRNA were found (Table S3). The tissue-specific distribution of circRNAs indicated that
the highest number (14,224) of circRNAs was detected in the pituitary, while the lowest
number (1709) was detected in the heart compared to other tissues (Figure 1b). Additionally,
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the longissimus dorsi exhibited the highest mean junction ratio (0.15) among the tissues,
while the spleen showed the lowest mean junction ratio (0.06) compared to other tissues
(Figure 1c). The average genome distance of all circRNAs was calculated to be 15,383 bp,
with circRNAs shorter than 50,000 bp accounting for 93.9% of the total (Figure 1d). Notably,
the majority of circRNAs belonged to the exonic type, accounting for 88.0% (pituitary)
to 92.6% (gallbladder) across different tissues. The remaining circRNA types, including
intronic and intergenic, accounted for 4.2% (gallbladder) to 7.4% (skeletal muscle) and 3.2%
(gallbladder) to 6.8% (heart), respectively (Figure 1e).

Int. J. Mol. Sci. 2023, 24, x FOR PEER REVIEW 3 of 14 
 

 

circRNAs was detected in the pituitary, while the lowest number (1709) was detected in 
the heart compared to other tissues (Figure 1b). Additionally, the longissimus dorsi exhib-
ited the highest mean junction ratio (0.15) among the tissues, while the spleen showed the 
lowest mean junction ratio (0.06) compared to other tissues (Figure 1c). The average ge-
nome distance of all circRNAs was calculated to be 15,383 bp, with circRNAs shorter than 
50,000 bp accounting for 93.9% of the total (Figure 1d). Notably, the majority of circRNAs 
belonged to the exonic type, accounting for 88.0% (pituitary) to 92.6% (gallbladder) across 
different tissues. The remaining circRNA types, including intronic and intergenic, ac-
counted for 4.2% (gallbladder) to 7.4% (skeletal muscle) and 3.2% (gallbladder) to 6.8% 
(heart), respectively (Figure 1e). 

 
Figure 1. Descriptive statistics of the identified circRNA. (a) Number of circRNA detected by 
find_cir and CIRI. (b) CircRNA numbers among different tissues. (c) CircRNA junction ratio among 
tissues. (d) CircRNA length distribution among tissues. (e) CircRNA types among tissues. 

2.2. CircRNA Clustering Analysis 
Clustering analysis was performed on the retained circRNAs, and the clustering re-

sults demonstrated that most tissues exhibited well-defined clusters. However, a noticea-
ble stratification was observed within the skeletal muscle tissues (Figure 2a). Principal 
component analysis (PCA) showed that the skeletal muscle samples could be classified 
into two distinct groups based on their developmental stages: embryonic muscle and post-
natal muscle (Figure S1). 

Furthermore, circRNA average expression levels across tissues were used to perform 
Spearman clustering analysis. Specifically, a strong correlation was observed between 
skeletal muscle and the longissimus dorsi (r = 0.55), indicating a similarity in the expres-
sion profiles of circRNAs in these tissues. Similarly, a significant correlation was found 
between the ovary and pituitary gland (r = 0.53) (Figure 2b). 

Through an analysis of the parental genes associated with circRNAs between tissues, 
it was observed that more than 99% (1427/1438) of circRNAs in the longissimus dorsi tis-
sue were shared with skeletal muscle (Figure 2c). On the other hand, circRNAs shared by 

Figure 1. Descriptive statistics of the identified circRNA. (a) Number of circRNA detected by find_cir
and CIRI. (b) CircRNA numbers among different tissues. (c) CircRNA junction ratio among tissues.
(d) CircRNA length distribution among tissues. (e) CircRNA types among tissues.

2.2. CircRNA Clustering Analysis

Clustering analysis was performed on the retained circRNAs, and the clustering re-
sults demonstrated that most tissues exhibited well-defined clusters. However, a noticeable
stratification was observed within the skeletal muscle tissues (Figure 2a). Principal com-
ponent analysis (PCA) showed that the skeletal muscle samples could be classified into
two distinct groups based on their developmental stages: embryonic muscle and postnatal
muscle (Figure S1).

Furthermore, circRNA average expression levels across tissues were used to perform
Spearman clustering analysis. Specifically, a strong correlation was observed between
skeletal muscle and the longissimus dorsi (r = 0.55), indicating a similarity in the expression
profiles of circRNAs in these tissues. Similarly, a significant correlation was found between
the ovary and pituitary gland (r = 0.53) (Figure 2b).

Through an analysis of the parental genes associated with circRNAs between tissues,
it was observed that more than 99% (1427/1438) of circRNAs in the longissimus dorsi tissue
were shared with skeletal muscle (Figure 2c). On the other hand, circRNAs shared by the
pituitary gland and ovary exhibited a high degree of overlap in their parental genes, with
over 50% (2586/4091) of these host genes being shared with both tissues (Figure 2d).



Int. J. Mol. Sci. 2023, 24, 16205 4 of 14

Int. J. Mol. Sci. 2023, 24, x FOR PEER REVIEW 4 of 14 
 

 

the pituitary gland and ovary exhibited a high degree of overlap in their parental genes, 
with over 50% (2586/4091) of these host genes being shared with both tissues (Figure 2d). 

 
Figure 2. CircRNA expression among tissues. (a) t−SNE analysis of tissues. (b) Spearman’s correla-
tion among tissues. (c) CircRNA parental gene between ovary and pituitary. (d) CircRNA parental 
gene between longissimus dorsi and skeletal muscle. 

2.3. Tissue-Specific and Housekeeping CircRNA Profile 
After a strict screening (see Section 2 for detail), in total, 24,745 circRNAs were iden-

tified by pervious materials in this study, of which 492 were categorized as housekeeping 
circRNAs and 3489 were classified as tissue-specific circRNAs (Figure 3a, Table S4). Fur-
thermore, 403 of the 492 housekeeping circRNAs’ parental genes were housekeeping 
genes identified by the pigGtex project (Table S5). To gain insights into the biological func-
tions of these circRNAs, the parental genes (housekeeping circRNAs) associated with 
them were subjected to GO pathway analyses. The GO enrichment analysis of housekeep-
ing circRNAs enriched in chromatin remodeling and nuclear-transcribed mRNA catabolic 
processes in the biological process category, like histone binding (Figure 3b, Table S6), 
suggested that housekeeping circRNAs may be involved in gene expression regulation 
and RNA metabolism. In the tissue-specific circRNAs, the parental genes are also able to 
be enriched for their associated functions, for instance, muscle system process in skeletal 
muscle and neuron-to-neuron synapse in pituitary (Figure S2, Table S7). 

We found that the tissue-specific circRNAs were significantly related to traits of meat 
and carcass, and health and reproduction (Table S10). Additionally, the KEGG pathway 
analysis of housekeeping circRNAs revealed significant enrichment, such as long-term 
depression, long-term potentiation, TGF-beta signaling pathway, and autophagy (Figure 
3c, Table S8). These pathways are known to play crucial roles in various cellular processes 
and signaling cascades. Similarly, the parent genes of tissue-specific circRNA are also able 
to be enriched for their associated functions (Figure S3). 

Furthermore, the miRNAs with the top five highest scores in miRanda-based circR-
NAs match were selected as potential miRNA targets (see Section 2 for detail). We found 

Figure 2. CircRNA expression among tissues. (a) t−SNE analysis of tissues. (b) Spearman’s correla-
tion among tissues. (c) CircRNA parental gene between ovary and pituitary. (d) CircRNA parental
gene between longissimus dorsi and skeletal muscle.

2.3. Tissue-Specific and Housekeeping CircRNA Profile

After a strict screening (see Section 2 for detail), in total, 24,745 circRNAs were identi-
fied by pervious materials in this study, of which 492 were categorized as housekeeping
circRNAs and 3489 were classified as tissue-specific circRNAs (Figure 3a, Table S4). Fur-
thermore, 403 of the 492 housekeeping circRNAs’ parental genes were housekeeping genes
identified by the pigGtex project (Table S5). To gain insights into the biological functions of
these circRNAs, the parental genes (housekeeping circRNAs) associated with them were
subjected to GO pathway analyses. The GO enrichment analysis of housekeeping circRNAs
enriched in chromatin remodeling and nuclear-transcribed mRNA catabolic processes
in the biological process category, like histone binding (Figure 3b, Table S6), suggested
that housekeeping circRNAs may be involved in gene expression regulation and RNA
metabolism. In the tissue-specific circRNAs, the parental genes are also able to be enriched
for their associated functions, for instance, muscle system process in skeletal muscle and
neuron-to-neuron synapse in pituitary (Figure S2, Table S7).

We found that the tissue-specific circRNAs were significantly related to traits of meat
and carcass, and health and reproduction (Table S10). Additionally, the KEGG pathway
analysis of housekeeping circRNAs revealed significant enrichment, such as long-term
depression, long-term potentiation, TGF-beta signaling pathway, and autophagy (Figure 3c,
Table S8). These pathways are known to play crucial roles in various cellular processes and
signaling cascades. Similarly, the parent genes of tissue-specific circRNA are also able to be
enriched for their associated functions (Figure S3).

Furthermore, the miRNAs with the top five highest scores in miRanda-based circRNAs
match were selected as potential miRNA targets (see Section 2 for detail). We found that
tissue-specific circRNA might interact with many miRNAs or indirectly with differentially
expressed tissue-specific genes in liver, longissimus dorsi, lung, ovary, and pituitary tissues
(Figure S4). For instance, we found that “circ X:27122083-27142550” might interact with
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STAT2 via ssc-mir-615, might interact with CCL4 via ssc-mir-1842, and might interact with
FETUB via ssc-mir-7-2 in liver (Figure 3d).
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2.4. Co-Expression CircRNA Network across Pig Tissues

WGCNA was performed on the filtered circRNAs to investigate the biological rela-
tionships and potential functions of the core circRNAs among tissues. In this analysis, a
soft threshold value (β) was determined to construct an efficient scale-free network. When
the R2 (coefficient of determination) value exceeded 0.8, the threshold value of 4 was
selected (Figure S5). By applying the hierarchical clustering algorithm, in total, 16 distinct
modules were obtained. These modules were subsequently corrected and merged, result-
ing in 14 modules (Figure 4a and Figure S5). Each module represents a set of circRNAs
that exhibit highly correlated expression patterns across tissues. Among these modules,
seven module–tissue relationships were tissue-specific modules (r > 0.65). For instance,
the salmon module displayed a strong correlation with heart (r = 0.96), and the red mod-
ule showed a strong correlation with liver (r = 0.93), and the magenta exhibited a strong
correlation with lung (r = 0.89) (Figure 4b).

Furthermore, among these seven tissue-specific modules, we applied the MM and GS
methods to identify hub-circRNA genes by using a cutoff of |GS| > 0.2 and |MM| > 0.8.
Finally, 142, 262, 160, 149, 29, 625, and 10 hub circRNAs were observed in heart—salmon,
liver—red, lung—magenta, skeletal muscle—black, skeletal muscle—green, pituitary—
turquoise, and spleen—blue modules, respectively (Table S9).
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2.5. Conservation between Pig and Human

We compared the circRNAs between the pig and human genomes using the LiftOver
tool (minMatch = 0.5). We found that 77.10% of circRNAs (19,078/24,745) in the pig genome
could be aligned with sequences in the human genome. Furthermore, 19.29% of the pig
circRNAs (4774/24,745) were sequenced and usage conserved with circRNAs in the human
genome (Table 1). These conserved circRNAs are all derived from orthologous genes
between pig and human (Table S11), and 96% of the conserved circRNA originate from
exons (Figure S6).

Table 1. Number of conservation circRNAs between pig and human.

Number Frequency

Detected CircRNAs 24,745 /
Aligned CircRNAs 19,078 77.10%
Conserved CircRNAs 4774 19.29%

3. Discussion

Pigs serve as an essential economic resource and an ideal animal model for studying
various aspects of animal domestication and human diseases. In recent years, circRNAs
have emerged as a prevalent class of non-coding RNAs with diverse functions. How-
ever, the pattern of circRNA expression based on large-scale data from diverse tissues
remains unclear in pigs. In our study, we aimed to comprehensively explore the land-
scape of circRNAs in pigs by analyzing a dataset comprising nine different pig tissues. In
total, 3489 tissue-specific circRNAs and 492 housekeeping circRNAs were preliminarily
identified. Meanwhile, 14 modules with 1377 hub circRNAs were obtained.

To ensure the accuracy of the results, we employed two well-established algorithms,
CIRI2 and Find_cir, to detect circRNAs using RNA sequencing data. CIRI2 algorithm
leverages paired chiastic clipping signals obtained from the mapping information, while
Find_cir predicts back-splicing events by examining the first and last 20 bp anchors of
unmapped reads [28,29]. These algorithms have been extensively validated and used in
previous studies [30]. It is important to note that due to differences in their underlying
principles and strategies, these algorithms may yield different predictions for circRNAs.
Hence, we adopted a conservative approach by combining the outputs of both algorithms
to minimize false-positive predictions and enhance the reliability of our circRNA dataset.
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By this approach, more than 95% of detected circRNA could be found in the released
database which could certify the accuracy of this method [31].

Statistical analysis of the detected circRNAs revealed that exon-derived circRNAs
accounted for approximately 90% of the total circRNAs across pig tissues. This observation
aligns with previous studies in pigs and other species [30,32]. Additionally, we observed
that the distribution of circRNAs peaked within a genomic span of 2000 bp, with a gradual
decrease in abundance as the genomic span increased. This distribution pattern is consistent
with known characteristics of circRNAs [30,33]. Furthermore, our study revealed tissue-
specific differences in the quantity and splicing rates of circRNAs. This suggests that
circRNA biogenesis and regulation are subject to tissue-specific factors, such as alternative
splicing and post-transcriptional processing. These tissue-specific differences highlight
the potential functional diversity and regulatory roles of circRNAs in different biological
contexts [34,35].

The expression analysis of circRNAs in pigs revealed distinct tissue-specific expres-
sion profiles across different tissues. Subsequently, the study further investigated and
identified 3489 tissue-specific circRNAs and 492 housekeeping circRNAs. By performing
pathway enrichment analysis on the parental genes of tissue-specific circRNAs, key path-
ways related to tissue-specific functions were uncovered. Taking the heart tissue as an
example, several parental genes were found to be involved in the formation of intercellular
junction complexes. For instance, the parental genes PKP2 of “circ5:41492479|41493703”
and “circ5:41438437|41447707” and CDH2 of “circ6:112408292|112462754” interact with
other proteins, such as intercellular adhesion proteins and cytoskeletal proteins, enhanc-
ing the adhesion and stability between cardiac muscle cells [36,37]. In the liver, the
parental gene GYS2 of “circ5:51884381|51889554” plays a role in glycogen synthesis
and metabolic regulation [38]. In the longissimus dorsi, the parental gene CACNA1S
of “circ10:23546471|23549237” encodes the α1S subunit of a voltage-gated calcium ion
channel, which is predominantly expressed in skeletal muscle cells and regulates mus-
cle contraction [39]. In the lungs, the parental gene CTSS of “circ4:98422323|98425826”
is associated with airway inflammation and lung disease development, including its in-
volvement in lung cancer progression [40]. In the ovaries, the parental gene PBX1 of
“circ4:85892566|85906932” plays a critical role in embryonic development, contributing
to processes such as axon guidance, organ formation, and segmental differentiation [41].
In the pituitary gland, the parental gene ADCY9 of “circ3:38275930|38288061” encodes
adenylate cyclase 9, which catalyzes the cyclization of adenosine monophosphate and
generates the second messenger cyclic adenosine monophosphate (cAMP) [42]. In skeletal
muscle, the parental gene ACTN2 of “circ14:54704317|54716478” encodes alpha-actinin-2,
a myofibrillar protein responsible for constructing and maintaining the cell cytoskeleton.
ACTN2 plays a crucial role in muscle contraction and force transmission [43]. In the spleen,
the parental gene ITGAL of “circ3:17840569|17841414” regulates the activity and function
of immune cells by participating in their adhesion, migration, and interactions within the
spleen [44]. Notably, specific circRNAs in the gallbladder tissue, such as SLC4A4 and
SLC5A1, are primarily involved in gastrointestinal tract-related functions [45,46]. These
findings highlight the functional diversity and tissue-specific roles of circRNAs in different
organs. The identified parental genes associated with tissue-specific circRNAs provide
insights into the potential regulatory mechanisms and biological functions of circRNAs in
specific tissues.

Similarly, the analysis of housekeeping circRNAs and their parental genes revealed
several circular RNAs that are involved in key pathways related to fundamental cellular
functions. For instance, the parental gene MAP2K1 of “circ1:164420445|164422619” en-
codes mitogen-activated protein kinase 1 (MAP2K1), which participates in the activation
of the MAPK signaling pathway [47]. This pathway regulates critical biological processes
such as cell growth, differentiation, proliferation, and survival. Another example is the
parental gene ATG4C of “circ6:149633393|149666969”, which is involved in the regula-
tion of autophagy, a highly regulated process essential for maintaining cellular survival



Int. J. Mol. Sci. 2023, 24, 16205 8 of 14

and metabolic balance [48]. Autophagy plays a crucial role in cellular homeostasis by
recycling damaged organelles and proteins. Additionally, the parental gene CREBBP of
“circ3:38413987|38414699” and “circ3:38413987|38450234” is involved in the regulation of
the cell cycle progression. CREBBP controls cell proliferation and differentiation fate, and it
can interact with various apoptosis-regulating proteins, modulating the apoptotic signaling
pathway in cells [49]. These findings indicate that housekeeping circRNAs derived from
these parental genes are involved in important cellular pathways. These circRNAs likely
contribute to the regulation of essential cellular functions, including cell growth, survival,
metabolism, and differentiation. The identification of these housekeeping circRNAs and
their associated parental genes sheds light on the functional roles of circRNAs in funda-
mental cellular processes. Understanding the regulatory mechanisms and functions of
these housekeeping circRNAs can provide valuable insights into the molecular mecha-
nisms underlying cellular homeostasis and cellular processes associated with development,
differentiation, and disease.

Additionally, we investigated the binding capabilities of circRNAs to miRNAs based
on their sequence complementarity. By evaluating the binding affinity between miRNAs
and circRNAs, we identified a subset of circRNAs with strong binding capabilities, sug-
gesting their potential role as competitive endogenous RNAs (ceRNAs). CeRNAs can
sequester miRNAs and influence mRNA expression, forming a complex regulatory ceRNA
network [19]. For example, in the liver, ebv-circLMP2A exists by regulating miR-3908, and
miR-3908 further modulates the specifically expressed STAT2 [50,51].

Furthermore, we performed co-expression circRNA network analysis to examine the
interactions among circRNAs. The analysis revealed that all circRNAs could be classified
into 14 distinct modules, each representing a set of co-expressed circRNAs. Notably, nine
of these modules exhibited strong correlations with individual tissues, suggesting their
involvement in tissue-specific functions. From these modules, we identified hub circRNAs
that likely play crucial roles in tissue-specific functions. Hub circRNAs are highly connected
within the co-expression network and are considered key regulators within the ceRNA
network. The identification of hub circRNAs provides valuable insights into the potential
regulatory roles of circRNAs in tissue-specific processes.

Moreover, we conducted a conservation analysis to assess the conservation of cir-
cRNAs between humans and pigs. The results indicated that approximately 20% of the
identified circRNAs share homologous genomic positions between the two species. The
percentage is consistent with conservation studies between human and mouse [52]. This
conservation suggests that these circRNAs may possess similar sequence and functional
characteristics across species, highlighting their potential importance in cross-species bio-
logical processes.

Finally, although 24,745 circRNAs were identified in this study, the data volume needs
further supplementation. There are a large number of genomic data in pigGTEx, but
circRNA research is still lacking [53]. In the future, we hope to include more data, such as
pigGTEx data, in the circRNA analysis, aiming to discover more novel circRNAs and thus
more comprehensively complement the circRNA data.

Overall, our findings provide valuable insights into the circRNA expression profiles
and their potential roles in the biological development and processes of various pig tis-
sues. This information lays the foundation for further investigations into the functional
significance and regulatory mechanisms of circRNAs in pigs, ultimately contributing to
our understanding of tissue-specific gene regulation and the molecular basis of pig biology.

However, there are still some limitations in this study. Although Teng et al. have
demonstrated that tissue-specific factors have a greater influence in transcriptome analysis
than sex, breeding, age, and other factors [53], we categorized these factors as batch effects
in our study due to the absence of some annotation information in the data. This approach,
as compared to individually correcting for each factor, may introduce some deviation.
Furthermore, the lack of corresponding phenotypic data means that we can only indirectly
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assess the relationship between circRNAs and phenotypes through association analysis
between circRNAs and known trait-related QTLs.

In future research, we hope to have more comprehensive annotated data to obtain a
more comprehensive pig circRNA profile, allowing for a more in-depth investigation into
the relationship between circRNA expression and phenotypes.

4. Materials and Methods
4.1. Sample Collection

Firstly, in total, 215 samples were collected from the NCBI SRA database (https:
//www.ncbi.nlm.nih.gov/ accessed on 1 November 2022) across nine different pig tissues.
The tissues included in this study were gallbladder (n = 16), heart (n = 6), liver (n = 25),
longissimus dorsi (n = 22), lung (n = 23), ovary (n = 19), pituitary (n = 26), skeletal muscle
(n = 46), and spleen (n = 32). Detailed sample information is shown in Table S1. The pig
reference genome (Sscrofa11.1) was used for the analysis.

4.2. Quality Control and Alignment

The samples were transformed into pair-end fastq format using the fast-dump module
in the sra-toolkit (version 2.8.2), and the quality of the raw sequencing data was assessed
using FASTP software (version 0.23.2) with default parameters to filter and trim the reads
to remove low-quality bases and adaptors [54]. Subsequently, the clean data were mapped
to the reference genome using HISAT2 software (version 2.1.0), and the SAM files were
converted to BAM format using Samtools (version v1.11) [55,56].

4.3. CircRNA Detection

To ensure the most reliable precision and sensitivity in circRNA identification, a
combination of CIRI2 and find_cir methods were employed on the clean data [28,29]. In
order to eliminate the impact of variables such as sex, breeding, age, and sequencing
methods, we integrated them into batch effects and subsequently applied the combat
algorithm from the R package sva after grouping the samples by their source for batch effect
correction [57]. Subsequently, the number of circRNAs, their length, and the junction ratio
(the proportion of circular junction reads compared to linear junction reads) were counted
and quantified for each tissue. Additionally, three circRNA types were detected in each
tissue, including exonic circRNAs originating from exons, intronic circRNAs originating
from introns, and intergenetic circRNA originating from the intergenetic region.

4.4. CircRNA Profile between Tissues

To minimize potentially spurious events, only circRNAs detected in more than 50% of
the samples within at least one tissue were considered for further analysis [58]. This filtering
criterion resulted in a total of 24,745 circRNAs meeting the inclusion criteria. Subsequently,
a t-distributed stochastic neighbor embedding (t-SNE) analysis was performed to explore
the relationship and patterns among the samples [59], and based on the expression levels of
circRNAs to assess the correlation between tissues, the Spearman’s correlation coefficient
was calculated [60].

4.5. Identification of Housekeeping and Tissue-Specific CircRNAs

Two categories were defined to categorize circRNAs based on their expression patterns,
housekeeping circRNAs, and tissue-specific circRNAs. The housekeeping circRNAs were
identified by the conditions for the housekeeping mRNA identification, as in a previous
study [61]. On the other hand, tissue-specific circRNAs were defined as those expressed
exclusively in one tissue. To visualize the expression patterns of circRNAs across tissues, a
heatmap was generated using the Pheatmap package of R (version 1.0.12).

https://www.ncbi.nlm.nih.gov/
https://www.ncbi.nlm.nih.gov/
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4.6. GO and KEGG Enrichment

Two tools were utilized to analyze the parental genes of the identified circRNAs
and gain insights into their potential functional roles, the clusterProfiler package of R
for Gene Ontology (GO) enrichment analysis and the ShinyGO online server (http://
bioinformatics.sdstate.edu/go/ accessed on 1 January 2023) for Kyoto Encyclopedia of
Genes and Genomes (KEGG) pathway enrichment analysis [62,63]. In both analyses, the
hypergeometric test was applied to determine the significance of enrichment. A significance
threshold of p < 0.05 was considered, indicating that genes associated with circRNAs were
significantly enriched in specific GO terms or KEGG pathways.

4.7. Competing Endogenous RNA Network Construction

To investigate the potential regulatory interactions between circRNAs (housekeep-
ing circRNAs and tissue-specific circRNAs), miRNAs, and mRNAs, miRanda software
(version 3.3a) was used to predict the interaction between circRNA–miRNA and miRNA–
mRNA, a match score above 140 was used as a threshold to predict significant inter-
actions [64]. Firstly, the miRNA sequences were obtained from the miRBase database
(http://www.mirbase.org/ accessed on 1 March 2023) [65], and the sequences of cir-
cRNAs and mRNAs were obtained from a previous study using bedtools2 software
(version 2.23.0) [66,67]. Subsequently, miRanda was used to calculate the free energy
and score between miRNAs and circRNAs, as well as between miRNAs and mRNAs.
These calculations provided information about the stability and potential strength of in-
teractions between miRNAs and their targets. Finally, the regulatory interactions among
circRNA–miRNA–mRNA were visualized using Cytoscape software (version 3.10.0) [68].

4.8. Co-Expression Network Analysis

The Weighted Gene Co-expression Network Analysis (WGCNA) method was em-
ployed to investigate the co-expression patterns of circRNAs among tissues [69]. The hclust
function with the average agglomeration method for the WGCNA package was used for
cluster analysis. The pickSoftThreshold function from the WGCNA package was utilized
to determine the soft threshold (β), which determines the connectivity strength between
circRNAs. The module with a correlation coefficient larger than 0.65 was considered the
important tissue-specific module in this study [61]. Subsequently, the important tissue-
specific modules were identified from the co-expression network and further analyzed to
identify core circRNAs within them. Briefly, the key circRNAs within the tissue-specific
modules, which are called hub circRNAs, were identified using Module Membership (MM)
and Gene Significance (GS) methods. Hub circRNAs were determined based on predefined
thresholds, typically |GS| > 0.2 and |MM| > 0.8, indicating strong correlations between
circRNAs and module eigengenes [70].

4.9. Association Analysis of Traits

To identify the relationship between tissue-specific circRNAs and phenotypes, the QTL
data of pigs were downloaded from the QTLdb database (https://www.animalgenome.
org/cgi-bin/QTLdb/index accessed on 1 November 2023), and we counted any QTLs that
overlapped with circRNAs in terms of location and subsequently performed Fisher’s tests
to obtain the degree of association between circRNA and trait-related QTL [71].

4.10. Conservation Analysis

To identify and compare circRNAs between pig and human, the predicted circR-
NAs were converted from pig genomic locations (susScr11) to human genomic locations
(hg19) by using the LiftOver tool from the UCSC genome browser with the parameter
“minMatch = 0.5” [72]. The circRNAs aligned to the human genome were then compared
with the known circRNAs in humans, which were obtained from the circBase database
(http://www.circbase.org/ accessed on 1 May 2023) [31].

http://bioinformatics.sdstate.edu/go/
http://bioinformatics.sdstate.edu/go/
http://www.mirbase.org/
https://www.animalgenome.org/cgi-bin/QTLdb/index
https://www.animalgenome.org/cgi-bin/QTLdb/index
http://www.circbase.org/
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5. Conclusions

In summary, our study focused on exploring the expression profiles of circRNAs
in nine tissues of pigs. We successfully identified 492 housekeeping circRNAs and
3489 tissue-specific circRNAs, highlighting their distinct expression patterns and poten-
tial roles in tissue-specific processes. Moreover, we obtained 14 modules consisting of
1210 hub circRNAs which are likely to play crucial regulatory roles in various biological
activities across tissues. Notably, we have discovered a total of 3818 novel circRNAs,
contributing additional information to augment the pig circRNA dataset.
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