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Abstract: There are reports indicating that licochalcones can inhibit the proliferation, migration,
and invasion of cancer cells by promoting the expression of autophagy-related proteins, inhibiting
the expression of cell cycle proteins and angiogenic factors, and regulating autophagy and apop-
tosis. This study aims to reveal the potential mechanisms of licochalcone A (LCA), licochalcone B
(LCB), licochalcone C (LCC), licochalcone D (LCD), licochalcone E (LCE), licochalcone F (LCF), and
licochalcone G (LCG) inhibition in liver cancer through computer-aided screening strategies. By
using machine learning clustering analysis to search for other structurally similar components in
licorice, quantitative calculations were conducted to collect the structural commonalities of these
components related to liver cancer and to identify key residues involved in the interactions between
small molecules and key target proteins. Our research results show that the seven licochalcones
molecules interfere with the cancer signaling pathway via the NF-κB signaling pathway, PDL1
expression and PD1 checkpoint pathway in cancer, and others. Glypallichalcone, Echinatin, and
3,4,3′,4′-Tetrahydroxy-2-methoxychalcone in licorice also have similar structures to the seven lic-
ochalcones, which may indicate their similar effects. We also identified the key residues (including
ASN364, GLY365, TRP366, and TYR485) involved in the interactions between ten flavonoids and
the key target protein (nitric oxide synthase 2). In summary, we provide valuable insights into the
molecular mechanisms of the anticancer effects of licorice flavonoids, providing new ideas for the
design of small molecules for liver cancer drugs.

Keywords: network pharmacology; machine learning; quantitative calculation; flavonoids; licorice

1. Introduction

Cancer seriously affects human health and is expected to become the main cause
of death in every country/region in the 21st century [1]. According to calculations for
2020, liver cancer is the sixth most common cancer and the third leading cause of cancer
death [2]. Scientists from the International Agency for Research on Cancer (IARC) and its
collaborating institutions have estimated the global burden of cancer in 2020 and predicted
that by 2040, the number of new cases and deaths will increase by over 55% annually.
The latest estimates show that in 2020, 905,700 people worldwide were diagnosed with
cancer, and 830,200 died from liver cancer [3]. Assuming that the current incidence rate
and mortality rates remain unchanged, scientists evaluate that 1.4 million people may be
diagnosed with cancer and 1.3 million people may die of liver cancer by 2040 [3].

Epidemiological data show that risk factors, including viral infections (Hepatitis B
Virus (HBV) and Hepatitis C Virus (HCV)), metabolic changes (Alcoholic Steatohepati-
tis (ASH) and Non-Alcoholic Steatohepatitis (NASH)), chronic toxin exposure (such as
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aflatoxin), or parasitic infections (such as flukes), are crucial for the occurrence and develop-
ment of most liver cancers [4]. The conventional treatment for liver cancer includes surgery,
chemotherapy, and radiotherapy [5]. Due to the decrease in the liver’s regeneration ability,
surgical resection is only suitable for early patients who usually do not have cirrhosis.
In addition, surgical resection also carries the risk of postoperative complications. The
treatment strategy for advanced liver cancer patients mainly relies on radiotherapy and the
use of chemotherapy drugs. The long-term use of chemotherapy drugs (such as sorafenib)
not only leads to significant drug resistance within six months [6] but also causes other
issues, such as toxicity and/or drug ineffectiveness. Due to their weak efficacy and extreme
systemic toxicity, these traditional therapies cannot significantly improve the prognosis of
liver cancer. Further research is necessary to find new natural compounds that are found in
food and have medicinal properties with the ability to reduce cancer recurrence rates and
mortality rates.

The perennial herbaceous plant licorice is a widely used traditional Chinese medicine
and is distributed in the temperate zones of Asia, represented by China. It has a vari-
ety of pharmacological activities, such as anti-diabetic, anti-asthmatic, antioxidant, anti-
inflammatory, and anticancer effects [7–12]. Its pharmacological effects are related to the
flavonoids it contains, among which licochalcones have considerable anticancer activity [13].
According to previous research, LCB caused HepG2 cell toxicity after 24 h by controlling
the cell cycle during the G2/M phase and inducing cell apoptosis and intracellular ROS
production [12]. Jun Wang et al. studied the anticancer mechanism of LCB based on miRNA
and mRNA transcriptomics through high-throughput sequencing technology [14].

Licochalcones are a group of structurally similar licorice flavonoids and their deriva-
tives, including LCA, LCB, LCC, LCD, LCE, LCF, and LCG. This study reveals the potential
mechanisms by which licochalcones inhibit liver cancer through network pharmacology
methods. Other structurally similar components in licorice were analyzed through machine-
learning clustering, and the structural commonalities of these components related to liver
cancer were found through quantitative calculations. Key residues between small com-
ponents and key target proteins were also identified. In summary, we provide valuable
insights into the molecular mechanisms of the anticancer effects of licorice flavonoids,
providing new ideas for the design of small molecules for liver cancer drugs and serving as
a reference for improving liver cancer treatment strategies.

2. Results

Taking LCA as an example, the workflow of network pharmacology combined with
machine-learning methods used to study the anticancer-related mechanisms of licorice
flavonoids is shown in Figure 1. Firstly, we obtained and compared gene data between
licorice flavonoids and liver cancer from different online databases, such as UCSC-TCGA,
DisGeNET [15], GeneCards [16], Super-Pred [17], etc. Then, based on cross-gene data,
GO and KEGG enrichment analysis was conducted to reveal the potential significance
of licorice flavonoid molecules in liver cancer, including potential biological processes,
pathways, and mechanisms. A cluster analysis of licorice components was conducted
through unsupervised learning to identify potentially active molecules in licorice with sim-
ilar efficacy. Quantitative calculations and analysis were conducted on licorice flavonoids
using Gaussian 09, and their structural characteristics were explored. In addition, Discov-
ery Studio was used for molecular docking between the main target protein, which was
identified as nitric oxide synthase 2 (NOS2), and ten active ingredients.
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Figure 1. Workflow of network pharmacology combined with machine learning and quantitative 
calculation methods to identify the key targets and molecular mechanisms related to intervention 
with licochalcones in treating liver hepatocellular carcinoma (LIHC). It includes database screening, 
GO and KEGG pathway enrichment analyses, licorice component clustering analysis, PPI network 

Figure 1. Workflow of network pharmacology combined with machine learning and quantitative
calculation methods to identify the key targets and molecular mechanisms related to intervention
with licochalcones in treating liver hepatocellular carcinoma (LIHC). It includes database screening,
GO and KEGG pathway enrichment analyses, licorice component clustering analysis, PPI network
mapping, quantum chemical calculation, target gene identification, complex fingerprint analysis, and
related gene analysis.

2.1. Potential Targets for Liver Cancer and Licochalcones

We obtained 2389 pathogenic genes/targets related to liver cancer from the Dis-
GeNET [15], PharmGKB [16], and GeneCards [17] databases. By conducting differen-
tial gene analysis on the UCSC-TCGA database, a total of 7674 upregulated genes and
3853 downregulated genes were identified (Figure 2). A total of 1190 potential target genes
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for hepatocellular carcinoma were predicted to intersect with differentially expressed genes.
In addition, regarding the 85, 109, 84, 91, 83, 72, and 82 pharmacological genes/targets
of LCA, LCB, LCC, LCD, LCE, LCF, and LCG initially detected, Venn plots show that
28, 27, 21, 24, 26, 23, and 27 targets of these licochalcones molecules were significantly
associated with liver cancer (Figure S1), and a petal diagram shows the same genes that
may significantly affect LIHC among the seven licochalcones (Figure 3). The PPI network,
including common targets, is shown in Figure 4.

Int. J. Mol. Sci. 2023, 24, x FOR PEER REVIEW 4 of 28 
 

 

mapping, quantum chemical calculation, target gene identification, complex fingerprint analysis, 
and related gene analysis. 

2.1. Potential Targets for Liver Cancer and Licochalcones 
We obtained 2389 pathogenic genes/targets related to liver cancer from the Dis-

GeNET [15], PharmGKB [16], and GeneCards [17] databases. By conducting differential 
gene analysis on the UCSC-TCGA database, a total of 7674 upregulated genes and 3853 
downregulated genes were identified (Figure 2). A total of 1190 potential target genes for 
hepatocellular carcinoma were predicted to intersect with differentially expressed genes. 
In addition, regarding the 85, 109, 84, 91, 83, 72, and 82 pharmacological genes/targets of 
LCA, LCB, LCC, LCD, LCE, LCF, and LCG initially detected, Venn plots show that 28, 27, 
21, 24, 26, 23, and 27 targets of these licochalcones molecules were significantly associated 
with liver cancer (Figure S1), and a petal diagram shows the same genes that may signifi-
cantly affect LIHC among the seven licochalcones (Figure 3). The PPI network, including 
common targets, is shown in Figure 4. 
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Figure 2. Differential gene analysis of liver cancer genes in the UCSC-TCGA database was performed
using edgeR, Deseq2, and limma methods. The results show a total of 7674 upregulated genes
and 3853 downregulated genes. (A) Three differential analysis methods for analyzing upregulation
and downregulation genes in Venn plots. (B) Use volcano plots to display the upregulation and
downregulation genes of three different differential analyses (the blue dots represent downregulated
genes, while the red dots represent upregulated genes).
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Figure 4. STRING database was used to perform PPI network analysis and display the interactions
of the cross genes found in licochalcones and LIHC. (A–G): PPI network of LCA-LCG.

2.2. GO and KEGG Pathway Enrichment Analysis

An enrichment analysis of GO and KEGG pathways was performed using cross genes
related to liver cancer and licorice flavonoid small molecules. The calculated data are
displayed as bubble plots and histograms obtained from GO and KEGG (Figures 5–11).

Among potential biological processes related to the core targets, LCA, LCF, and LCG
were all associated with the positive regulation of kinase activity; LCA, LCB, LCC, LCD,
and LCF were all related to the intrinsic apoptotic signaling pathway; LCA, LCD, LCE,
and LCG were all related to response to reactive oxygen species; and LCB, LCC, LCD,
LCE, and LCF were all related to the hormone metabolic process. Among those enriched
in cellular components, LCA, LCB, LCD, and LCG were all associated with the transfer
complex and serine/threonine protein kinase complex; LCA, LCB, and LCG were all related
to transferring phosphorus-containing groups; and LCC and LCF were both related to
secretory granule lumen, cytoplasmic vessel lumen, and vessel lumen. LCA, LCB, LCC,
LCD, LCE, LCF, and LCG were highly similar in molecular function, with all of them
related to transmembrane receptor protein tyrosine kinase activity and transmembrane
receptor protein kinase activity; LCC, LCD, LCE, and LCF were related to platelet-derived
growth factor binding and platelet-derived growth factor receiver binding (Figures 5–11).

The enriched KEGG pathways of LCA, LCB, LCC, LCD, LCE, LCF, and LCG were
also highly similar, all containing pathways such as MicroRNAs in cancer, human cy-
tomegalovirus infection, MAPK signaling pathway, NF-kappa B signaling pathway, and
PD-L1 expression and PD-1 checkpoint pathway in cancer. Although there were differences
in enrichment levels, they were all within a relatively high range (Figures 5–11).

In addition, the unique potential biological processes of LCA included peptidyl-
tyrosine modification, regulation of actin cytoskeleton organization, etc.; LCB’s unique
potential biological processes included regulation of chemotaxis, positive regulation of ion
transport, regulation of blood coagulation, etc.; LCD’s unique processes included response
to toxic substance; and LCE’s unique processes included protein localization to plasma
membrane and calcium ion import (Figures 5–11).
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Figure 5. Visualization of GO and KEGG pathway enrichment analysis results. The adjusted p-value 
is indicated by the color of the bar, and the bubble size represents the number of genes. GO analysis 
is based on the genes common to LCA and LIHC, including those related to biological processes, 
molecular functions, and cellular components. KEGG pathway enrichment analysis emphasizes en-
riched pathways. 

Figure 5. Visualization of GO and KEGG pathway enrichment analysis results. The adjusted p-value
is indicated by the color of the bar, and the bubble size represents the number of genes. GO analysis
is based on the genes common to LCA and LIHC, including those related to biological processes,
molecular functions, and cellular components. KEGG pathway enrichment analysis emphasizes
enriched pathways.
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is indicated by the color of the bar, and the bubble size represents the number of genes. GO analysis 
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Figure 6. Visualization of GO and KEGG pathway enrichment analysis results. The adjusted p-value
is indicated by the color of the bar, and the bubble size represents the number of genes. GO analysis
is based on the genes common to LCB and LIHC, including those related to biological processes,
molecular functions, and cellular components. KEGG pathway enrichment analysis emphasizes
enriched pathways.
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Figure 7. Visualization of GO and KEGG pathway enrichment analysis results. The adjusted p-value
is indicated by the color of the bar, and the bubble size represents the number of genes. GO analysis
is based on the genes common to LCC and LIHC, including those related to biological processes,
molecular functions, and cellular components. KEGG pathway enrichment analysis emphasizes
enriched pathways.
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Figure 8. Visualization of GO and KEGG pathway enrichment analysis results. The adjusted p-value 
is indicated by the color of the bar, and the bubble size represents the number of genes. GO analysis 
is based on the genes common to LCD and LIHC, including those related to biological processes, 
molecular functions, and cellular components. KEGG pathway enrichment analysis emphasizes en-
riched pathways. 

Figure 8. Visualization of GO and KEGG pathway enrichment analysis results. The adjusted p-value
is indicated by the color of the bar, and the bubble size represents the number of genes. GO analysis
is based on the genes common to LCD and LIHC, including those related to biological processes,
molecular functions, and cellular components. KEGG pathway enrichment analysis emphasizes
enriched pathways.
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Figure 9. Visualization of GO and KEGG pathway enrichment analysis results. The adjusted p-value 
is indicated by the color of the bar, and the bubble size represents the number of genes. GO analysis 
is based on the genes common to LCE and LIHC, including those related to biological processes, 
molecular functions, and cellular components. KEGG pathway enrichment analysis emphasizes en-
riched pathways. 

Figure 9. Visualization of GO and KEGG pathway enrichment analysis results. The adjusted p-value
is indicated by the color of the bar, and the bubble size represents the number of genes. GO analysis
is based on the genes common to LCE and LIHC, including those related to biological processes,
molecular functions, and cellular components. KEGG pathway enrichment analysis emphasizes
enriched pathways.
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Figure 10. Visualization of GO and KEGG pathway enrichment analysis results. The adjusted p-
value is implied by the color of the bar, and the bubble size represents the number of genes. GO 
analysis based on the genes common to LCF and LIHC, including those related to biological pro-
cesses, molecular functions, and cellular components. KEGG pathway enrichment analysis empha-
sizes enriched pathways. 

Figure 10. Visualization of GO and KEGG pathway enrichment analysis results. The adjusted p-
value is implied by the color of the bar, and the bubble size represents the number of genes. GO
analysis based on the genes common to LCF and LIHC, including those related to biological processes,
molecular functions, and cellular components. KEGG pathway enrichment analysis emphasizes
enriched pathways.
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analysis is based on the genes common to LCG and LIHC, including those related to biological pro-
cesses, molecular functions, and cellular components. KEGG pathway enrichment analysis empha-
sizes enriched pathways. 

Among potential biological processes related to the core targets, LCA, LCF, and LCG 
were all associated with the positive regulation of kinase activity; LCA, LCB, LCC, LCD, 
and LCF were all related to the intrinsic apoptotic signaling pathway; LCA, LCD, LCE, 
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Figure 11. Visualization of GO and KEGG pathway enrichment analysis results. The adjusted p-value
is indicated by the color of the bar, and the bubble size represents the number of genes. GO analysis
is based on the genes common to LCG and LIHC, including those related to biological processes,
molecular functions, and cellular components. KEGG pathway enrichment analysis emphasizes
enriched pathways.

2.3. Cluster Analysis of Licorice Components

The SMILES formulas of active small molecules obtained by searching for licorice
components in the TCMSP database are shown in Table S1. The results of machine-learning
clustering analysis show that the molecules LCA, LCB, LCC, LCD, LCE, LCF, and LCG
of licorice flavonoids are all in the same category (purple part of Figure 12). In addi-
tion, this class also includes Glypallichalcone, Echinatin, and 3,4,3′,4′-Tetrahydroxy-2-
methoxychalcone (Table 1).
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Figure 12. Cluster analysis of licorice components. Cluster analysis was conducted on the active
ingredients in licorice using machine-learning methods. The results show that seven licochalcones,
namely, LCA, LCB, LCC, LCD, LCE, LCF, and LCG, all belong to the same category. In addition, this
category also includes Glyphallichalcone, Echinatin, and 3,4,3′,4′-Tetrahydroxy-2-methoxychalcone.
Different colors represent different categories (Table S1).

Table 1. Cluster analysis results for licorice components (the category that includes licochalcones).

Molecule Name Smiles Color Closeness
Centrality

Glypallichalcone COC1=CC=C(C=C1)C(=O)/C=C/C2=C(C=C(C=C2)O)OC Purple 0.473
Echinatin COC1=C(C=CC(=C1)O)/C=C/C(=O)C2=CC=C(C=C2)O Purple 0.512

Licochalcone B COC1=C(C=CC(=C1O)O)/C=C/C(=O)C2=CC=C(C=C2)O Purple 0.501
Licochalcone C CC(=CCC1=C(C=CC(=C1OC)/C=C/C(=O)C2=CC=C(C=C2)O)O)C Purple 0.378
Licochalcone D CC(=CCC1=C(C=CC(=C1)C(=O)/C=C/C2=C(C(=C(C=C2)O)O)OC)O)C Purple 0.343
Licochalcone E C[C@H](C1=C(C=C(C(=C1)/C=C/C(=O)C2=CC=C(C=C2)O)OC)O)C(=C)C Purple 0.445
Licochalcone F CC(C1=C(C=CC(=C1OC)/C=C/C(=O)C2=CC=C(C=C2)O)O)C(=C)C Purple 0.464
Licochalcone G CC(C)(C=C)C1=C(C=C(C(=C1)/C=C/C(=O)C2=C(C=C(C=C2)O)O)OC)O Purple 0.308

3,4,3′ ,4′-Tetrahydroxy-2-methoxychalcone COC1=C(C=CC(=C1O)O)/C=C/C(=O)C2=CC(=C(C=C2)O)O Purple 0.438
Licochalcone A CC(C)(C=C)C1=C(C=C(C(=C1)/C=C/C(=O)C2=CC=C(C=C2)O)OC)O Purple 0.357

2.4. Quantum Chemical Calculation of Ten Licorice Flavonoids

Gaussian quantification calculations for the ten licorice flavonoids were performed
using the B3LYP/6–31G* method. Firstly, the HOMO–LUMO orbit results (Figure 13)
were as follows: (1) LCA: the energy gap between the HOMO orbit and LUMO orbit is
3.95 eV (the energy calculation results for HOMO and LUMO are −5.72 eV and −1.77 eV);
(2) LCB: the energy gap between the HOMO orbit and LUMO orbit is 3.81 eV (the energy
calculation results for HOMO and LUMO are −5.67 eV and −1.86 eV); (3) LCC: the
energy gap between the HOMO orbit and LUMO orbit is 3.91 eV (the energy calculation
results for HOMO and LUMO are −5.67 eV and −1.76 eV); (4) LCD: the energy gap
between the HOMO orbit and LUMO orbit is 3.82 eV (the energy calculation results for
HOMO and LUMO are −5.63 eV and −1.82 eV); (5) LCE: the energy gap between the
HOMO orbit and LUMO orbit is 3.91 eV (the energy calculation results for HOMO and
LUMO are −5.50 eV and −1.59 eV); (6) LCF: the energy gap between the HOMO orbit
and LUMO orbit is 3.95 eV (the energy calculation results for HOMO and LUMO are
−5.76 eV and −1.81 eV); (7) LCG: the energy gap between the HOMO orbit and LUMO
orbit is 3.69 eV (the energy calculation results for HOMO and LUMO are −5.54 eV and
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−1.85 eV); (8) Glypallichalcone: the energy gap between the HOMO orbit and LUMO
orbit is 3.99 eV (the energy calculation results for HOMO and LUMO are −5.75 eV and
−1.77 eV); (9) Echinatin: the energy gap between the HOMO orbit and LUMO orbit is
3.87 eV (the energy calculation results for HOMO and LUMO are −5.54 eV and −1.67 eV);
(10) 3,4,3′,4′-Tetrahydroxy-2-methoxychalcone: the energy gap between the HOMO orbit
and LUMO orbit is 3.91 eV (the energy calculation results for HOMO and LUMO are
−5.64 eV and −1.73 eV). Next, the electrostatic potential (ESP), local electron affinity
energy (LEA), and average local ionization energy (ALIE) diagrams (Figure 14) of the
Gaussian calculations demonstrate that the ten types of flavonoid small molecules have
similar flavonoid structures, with two benzene rings and three carbons, which may be the
functional structure of these compounds.
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2.5. Hub Target Collection of Flavonoid Targets for Anti-Hepatoma Effects

Using CytoHubba, a functional protein network of the flavonoid–liver-cancer system
was created by applying the topological analysis method of Maximum Climate Centrality
(MCC) [18]. The MCC algorithm was used to obtain scores for estimating the relationships
between nodes and edges, with a higher score and darker color indicating a more significant
correlation between genes and liver cancer. Then, we screened out the top 10 target genes
with the highest scores for each active compound in the union set. The important proteins
detected include ABCG2, CDK1, CXCL12, CYP3A4, JUN, LGALS3, NFE2L2, NFKB1, NOS2,
PDGFRA, PDGFRB, PIK3R1, TLR2, TNFRSF1A, TOP2A, and XDH (Figure 15).
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teractions of key targets of LCA-LCG. The interactions of hub targets related to intervention with
licochalcones for treating LIHC were displayed using cytoHubba.

2.6. Binding of Ten Flavonoids to NOS2

Using Echinatin, a representative flavonoid compound in the licorice component
clustering analysis, 16 hub union target genes were reverse-docked to find the key target
protein, and NOS2 received the highest score. Then, the NOS2 crystal structure was
determined with PDBID 1dd7. Ten flavonoid compounds (LCA, LCB, LCC, LCD, LCE, LCF,
LCG, Glypallichalcone, Echinatin, and 3,4,3′,4′-Tetrahydroxy-2-methoxychalcone) were
used to analyze the complex fingerprint of NOS2 (Figure 16). Due to the lack of an effective
small-molecule-binding crystal structure for NOS2, we selected binding sites based on
the receptor cavity in Discovery Studio. In NOS2 (1DD7), we set the input site sphere
parameters to 69.43719, −11.18631, 55.94179 (coordinates of the sphere), accompanied by
2.25 Å RMSD in the original protein. The results are as follows: the conventional hydrogen
bonds between LCA and amino acids involve ASN364 and TYR485; the conventional
hydrogen bond between LCB and amino acids involves ASN364; the conventional hydrogen
bond between LCC and amino acids involves TYR483; the conventional hydrogen bonds
between LCD and amino acids involve SER236 and TYR485, and the carbon–hydrogen bond
between them is GLY365; the conventional hydrogen bond between LCE and amino acids
involves TRP366; the conventional hydrogen bond between LCF and amino acids involves
TYR485; the carbon–hydrogen bonds between LCG and amino acids involve GLY365
and TRP366; the conventional hydrogen bond between Glypallichalcone and amino acids
involves GLN199; the conventional hydrogen bond between Echinatin and amino acids
involves THR184, and the carbon–hydrogen bond between them involves TRP366; and
the conventional hydrogen bonds between 3,4,3′,4′Tetrahydroxy-2-methoxychalcone and
amino acids involves ASN364 and CYS194, and the carbon–hydrogen bond between them
involves ASN364. According to compound fingerprint analysis, the common key residues
of small molecules in ten flavonoids are TRP288 and PHE363. The research results indicate
that these residues may be potential key residues for the action of small molecules of licorice
flavonoids on liver cancer.
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LCG (G), Glypallichalcone (H), Echinatin (I), and 3,4,3′,4′-Tetrahydroxy-2-methoxychalcone (J).

2.7. Analysis of NOS2-Related Genes

Linkedomics was used to select RNAseq data from the TCGA-LIHC database for
the analysis of genes related to NOS2, and the results were screened according to the
Pearson correlation coefficient (Table S2). According to Table 2, the genes most related to
NOS2 include TIE1, CDH5, FLT4, PLEKHG1, ERG, ESAM, TSPAN18, NOTCH4, AOC3,
TMEM204, RHOJ, BCL6B, MMRN2, CLEC14A, etc.

Table 2. Related analysis of NOS2-related genes.

Query Statistic p-Value FDR (BH)

NOS2 1.000 1.00 × 10−20 1.00 × 10−16

TIE1 0.451 5.25 × 10−20 5.23 × 10−16

CDH5 0.441 4.05 × 10−19 2.69 × 10−15

FLT4 0.431 3.18 × 10−18 1.58 × 10−14

PLEKHG1 0.429 4.47 × 10−18 1.78 × 10−14

ERG 0.416 6.12 × 10−17 2.03 × 10−13

ESAM 0.412 1.25 × 10−16 3.55 × 10−13

TSPAN18 0.408 2.79 × 10−16 6.94 × 10−13

NOTCH4 0.406 3.55 × 10−16 7.28 × 10−13

AOC3 0.406 3.84 × 10−16 7.28 × 10−13

TMEM204 0.406 4.02 × 10−16 7.28 × 10−13

RHOJ 0.404 5.06 × 10−16 8.40 × 10−13

BCL6B 0.404 5.69 × 10−16 8.42 × 10−13

MMRN2 0.403 5.92 × 10−16 8.42 × 10−13

CLEC14A 0.403 6.35 × 10−16 8.44 × 10−13
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3. Discussion

In this study, network pharmacology analysis combined with machine learning and
quantitative calculations revealed the biological processes, pathways, and mechanisms
of licorice flavonoid molecules’ anti-hepatoma effects, expanding the range of potentially
active small molecules in licorice that may have anticancer activity. The results of target
screening and reverse docking indicate that the core cross-target is NOS2. The complex
fingerprint and quantitative analysis of ten licorice flavonoids revealed the binding activity
of the flavonoids with NOS2 in liver cancer, indicating that LCA, LCB, LCC, LCD, LCE,
LCF, LCG, Glypallichalcone, Echinatin, and 3,4,3′,4′Tetrahydroxy-2-methoxychalcone can
interact with specific proteins in liver cancer patients through key amino acid residues.

Nitric oxide (NO) is a reactive free radical that acts as a biological regulator in various
processes. Its functional roles in tumors are complex and diverse, and it basically involves
all of the characteristics of cancer, such as cell cycle progression, survival, apoptosis resis-
tance, proliferation, metastasis, angiogenesis, or chemotherapy/radiotherapy resistance.
It has neurotransmission, antibacterial, and anti-tumor activities [19]. In addition, NO
affects tumors not only by regulating blood flow and maintaining vascular tension in tumor
microvessels but also by acting as a cytotoxic molecule against tumors, with the ability to
induce cell apoptosis and necrosis. Macrophages stimulated by pro-inflammatory factors
upregulate inducible NOS2 and produce high steady-state NO concentrations. NO causes
tumor cell death by inducing cell apoptosis and/or necrosis [20]. There are three levels
of tumor–immune interactions. Firstly, chronic inflammation is beneficial for malignant
transformation [21]; secondly, the development of tumors is influenced by tumor rejection
or tumor dormancy after being controlled by the immune system [22–24]; and thirdly,
tumors contain immune cell populations that support tumor development, rather than
inducing tumor destruction [25]. Each of the three levels of tumor–immune interactions
mentioned above is influenced by NOS2, and the NO produced by NOS2 during chronic
inflammation may cause genetic toxicity, supporting malignant transformation [26]. NO
explosions produced by macrophages may kill transformed cells [27], and low levels of
NO produced by myelocytes may inhibit tumor-killing lymphocytes [25].

Many clinical trials have shown that expression level differences in NOS2 exist in
more than 50% of patients with glioma, breast cancer, prostate cancer, pancreatic cancer,
melanoma, liver cancer, cervical cancer, ovarian cancer, nasopharyngeal cancer, lung cancer,
stomach cancer, colon cancer, and esophageal cancer [28]. More importantly, NOS2 has
been proven to predict a poor prognosis in breast cancer, glioma, melanoma, pancreatic
cancer, gastric cancer, liver cancer, and colon cancer. In many cases, it is associated with
an increase in blood vessels and metastatic potential [28]. In addition, studies have shown
that LCA, LCB, and LCD significantly inhibit NO production induced by LPS and the
expression of TNF and αMCP-1 in RAW264.7 cells and primary macrophages [29,30].

Many in vitro studies have focused on the antiproliferative and proapoptotic effects of
NO donors on hepatocellular carcinoma (HCC) cell lines, as well as the synergistic killing
of tumor cells by NO and sorafenib in vitro [31]. Research has shown that the concentration
of NO-derived products in the plasma of HCC patients increases [32], and the expres-
sion of NOS2 in HCC is lower compared to normal liver tissue [33]. NOS2 is positively
correlated with tumor proliferation and microvascular formation, negatively correlated
with cell apoptosis, and significantly correlated with a poor prognosis in HCC [34]. In
liver cancer cells, the overexpression of NOS2 and NOS3 induces a transition between
apoptosis and autophagy by disrupting the Beclin 1/Vps34 association and increasing the
Bcl-2/Beclin 1 interaction [32]. The expression of NOS2 in CD24 + CD133 + liver CSC pro-
motes NO/cGMP/PKG, driving Notch signaling and stemness characteristics in vitro and
in vivo, and accelerates HCC initiation and tumor formation in the murine HCC tumor [35].
HCC often occurs in patients with HBV or HCV. The X gene of HBV (HBx) is associated
with the development of HBV-related HCC induced by NOS2 [36]. HBx-induced NOS is
associated with NF-kB signaling [37].
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In terms of GO and KEGG pathway enrichment, the enrichment pathways of LCA,
LCB, LCC, LCD, LCE, LCF, and LCG are highly similar, all containing pathways such
as MicroRNAs in cancer, human cytomegalovirus infection, MAPK signaling pathway,
NF-kappa B signaling pathway, and PD-L1 expression and PD-1 checkpoint pathway in
cancer. The gene commonalities among licochalcones affecting the intersection targets in
liver cancer include 17 genes, including CXCL12, CYP3A4, MAPT, MDM4, NFKB1, NOS2,
PIK3R1, TOP2A, etc., which are also concentrated in the above enrichment pathways.

In HCC, miRNAs can serve as carcinogenic genes, promoting the progression of liver
cells toward HCC, or as tumor inhibitors to prevent this process [38]. An increase in
carcinogenic miRNA levels leads to a decrease in the translation of its gene targets, which
contributes to the development and progression of HCC. On the contrary, miRNAs can
also act as tumor inhibitors to prevent the expression of their oncogenic targets, so the
downregulation of these miRNAs allows for more expression of these oncogenic genes,
promoting the development and progression of HCC. The development from normal liver
cells to HCC is a multi-stage process. Some changes are partially mediated by miRNA
expression profiles, including liver fibrosis and liver regeneration mediated by hepatic
stellate cells [39]. Cytomegalovirus infection is the most common viral infection after liver
transplantation for hepatoblastoma, and research on nonmalignant diseases has shown an
incidence of 30–80% [40].

The activity of PI3K is related to pathological cell growth and tumorigenesis. At
present, high-throughput sequencing methods have confirmed that genetic overactivation
of PI3K/AKT signaling is considered one of the most common driving mechanisms in many
cancers [41]. Cancer-promoting levels of NO were found at concentrations of 100 to 500 nM,
which led to the activation of pathways involving RAS/ERK, PI3K/Akt/b-catenin, HIF-1α,
NrF2, and TGFb. Unlike epidermal growth factor or other growth factors, the level of NO
is a common driving factor in the carcinogenic pathway and is usually associated with a
poor prognosis in patients. And NOS2 is the only subtype that can achieve these NO levels
over a period of time, indicating that NOS2 may play a role in both tumor-promoting and
anti-tumor processes [42]. However, the potential cytotoxic activity of macrophages is often
compromised in the tumor microenvironment, where they instead exert tumor-promoting
activity. The contributing factors are signals generated by surviving and dying tumor
cells, the attraction and activation of bone-marrow-derived inhibitory cells, and hypoxia.
The expanding tumor faces hypoxic areas. A limited oxygen supply not only affects the
accumulation of hypoxia-inducible factors-1 and -2 (HIF-1α, HIF-2α) but also weakens
the activity of NOS2. Therefore, the degree of hypoxia may not only affect the efficacy
of anticancer drugs on tumor cells but also affect the formation of reactive nitrogen and
reactive oxygen species (ROS) through hypoxia or the HIF transcription system [43–45].
The activation of the HIF system is closely related to the formation of NO and affects the
expression of macrophage phenotype markers, thereby increasing tumor progression.

The HBx is the most common open reading framework integrated into the host genome
in HCC. The integrated HBx often undergoes mutations and has a diminished ability to
function as a transcriptional cotransactivator and to activate the NF-kappa B pathway [46].
The inhibition of IFN-γ induced by regulatory T cells (Tregs) can be partially blocked by
specifically neutralizing PD-1 and PD-L1 antibodies in HCC patients. In HCC, periph-
eral Tregs upregulate checkpoint inhibitors and promote systemic immune dysfunction
through several inhibitory pathways, which may promote the development of tumors at a
young age. Blocking PD-L1/PD-1 interactions in vitro selectively interfered with inhibitory
Treg–T-effector cell interactions in patients with HCC and resulted in improved antitumoral
activity against checkpoint-inhibitor-negative tumor cells, as well [47].

In addition, the unique potential biological processes of LCA include peptidyl-tyrosine
modification, regulation of actin cytoskeleton organization, etc. The YT521-B homology
(YTH) domain family plays an important role in the development of HCC. The function of
the YTH domain family is related to several cancer-related pathways, including peptide
serine modification and negative regulation of cellular component movement [48].
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The unique potential biological processes of LCB include the regulation of chemotaxis,
regulation of blood coagulation, etc. Chemokines and their receptors play a crucial role in
determining the metastasis destinations of tumor cells [49]. Coagulation factor VII (FVII)
is synthesized physiologically in the liver and then released into the bloodstream. The
binding of FVII to tissue factor (TF) is related to the metastatic potential of tumor cells [50].
Both LCB and LCD are related to ion transport. Liver cancer stem cells (LCSCs) mediate
therapeutic resistance and are associated with adverse outcomes in patients with HCC.
Fibroblast growth factor (FGF) −19 is an important oncogenic driver gene in HCC and is
associated with a poor prognosis. Mechanistically, FGF19/FGFR4 signaling stimulates store-
operated Ca entry (SOCE) through both the PLCγ and ERK1/2 pathways. Subsequently,
SOCE calcineurin signaling promotes the activation and translocation of nuclear factor of
activated T cells (NFAT) c2, which transcriptionally activates the expression of stem-related
genes [51].

LCD pathways include the response to toxic substance. Per-/polyfluoroalkyl sub-
stances (PFASs) are widely present in human blood and have certain toxic effects on the
liver. This new discovery supports the evidence of a positive correlation between PFAS ex-
posure, changes in specific tumor markers, and the risk of liver cancer [52]. LCE pathways
include protein localization to plasma membrane. The localization of proteins on the cell
membrane is closely related to the metastasis of liver cancer [53].

According to the docking results, it can be seen that the key residue between LCA,
LCB, 3,4,3′,4′Tetrahydroxy-2-methoxychalcone, and NOS2 is ASN364. The O-H on the first
benzene ring of the three compounds forms a traditional hydrogen bond with the C=O
double bond of ASN364; the –OCH3 on the first benzene ring of 3,4,3′,4′Tetrahydroxy-
2-methoxychalcone forms a hydrocarbon bond with the C=O double bond of ASN364.
The key residue between LCA, LCF, and NOS2 is TYR485. The O-H bond on the second
benzene ring of LCA forms a traditional hydrogen bond with the O atom of TYR485; the
O-H bond on the first benzene ring of LCF forms a traditional hydrogen bond with the
O atom of TYR485. The key residue between LCE, LCG, Echinatin, and NOS2 is TRP366.
The O-H on the first benzene ring of LCE forms a traditional hydrogen bond with the C=O
double bond of TRP366, while the center of the first benzene ring of LCE forms a Pi-donor
hydrogen bond with the N-H of TRP366; the second benzene ring center of LCG forms a
Pi-donor hydrogen bond with the N-H of TRP366; and the second benzene ring center of
Echinatin forms a Pi-donor hydrogen bond with the N-H of TRP366. The natural reversal
of small molecules and changes in their dynamics during the docking process may be the
reasons for the involvement of different parts of the molecule in key residue interactions.

From the HOMO-LUMO orbital diagrams of the ten flavonoids, it can be seen that
the sites where orbital transitions are prone to occur are all concentrated on the skeleton,
dominated by two benzene rings, which is consistent with the positions of the interactions
between small molecules and target proteins that we have identified. In addition, the
energy gap between HOMO and LUMO orbitals can reflect the binding activity of small
molecules in the reaction. From Figure 13, it can be concluded that binding reactions with
LCG are the easiest, while those with Gly are the most difficult. Based on the structural
differences between the two molecules, it is speculated that an appropriate side chain on
the benzene ring can increase the activity of small molecules.

On the molecular surface, the contribution of electrons and the contribution of the
atomic nucleus can be counterbalanced, and the uneven distribution of the electron density
can lead to positive and negative electrostatic potentials on the molecular surface. The
process in which molecules approach each other through electrostatic attraction in the
initial stage of the chemical reaction is closely related to the electrostatic effect generated
by molecules. Therefore, we can predict which chemical reaction is most likely to occur at
which site by analyzing the distribution of electrostatic potential on the van der Waals sur-
faces of molecules. It is generally believed that atoms with a negative (positive) electrostatic
potential are more likely to undergo electrophilic (nucleophilic) reactions. According to the
ESP, LEA, and ALIE plots, it can be seen that the benzene ring sites of the ten flavonoids
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all have relatively negative electrostatic potentials. The LEA plot shows that there is no
bond formation at sites with obvious positive electrostatic potentials, indicating that the
electrostatic potential at the NOS2 active site may be positive, leading to the complementary
contact of small molecule benzene rings. In addition, the use of electrostatic potential can
predict and explain the relative orientation of molecules in the complex. In the docking
results, we found the involvement of different parts of the molecules in key residue interac-
tions. The ESP, LEA, and ALIE plots can serve as evidence to support the differences in
their relative orientations. For example, the O-H bond on the second benzene ring of LCA
forms a traditional hydrogen bond with the O atom of TYR485; the O-H bond on the first
benzene ring of LCF forms a traditional hydrogen bond with the O atom of TYR485. The
difference in the bonding site may be due to the repulsion between the excess side chains of
the first benzene ring of LCA and the electrostatic potential of the target protein, resulting
in a change in orientation and the participation of the second benzene ring in the reaction.

The HOMO-LUMO orbital diagrams and ESP diagrams reflect the structural charac-
teristics of small molecules, and the positions of different side chains of different small
molecules may be the reason for the differences in their targets and pathways of action.

In summary, this study indicates that ten small molecules of licorice flavonoids mainly
exhibit their anti-hepatoma relief effect through the positive regulation of kinases and
response to reactive oxygen species. In addition, bioinformatics analysis showed that the
active ingredients studied exert their effects through the NF-κB signaling pathway, central
carbon metabolism in tumors, and the PDL1-PD1 checkpoint pathway in cancer. Finally,
our analysis also revealed the potential of NOS2 as a potential biomarker for diagnosing
liver cancer.

4. Materials and Methods
4.1. Prediction of Hepatocellular-Carcinoma-Related Targets and Licochalcone Targets

Firstly, potential target genes in hepatocellular carcinoma were screened in DisGeNET
(https://www.disgenet.org/, accessed on 28 July 2023) [15], GeneCards (https://www.
genecards.org/, accessed on 28 July 2023) [16], PharmGKB (https://www.pharmgkb.org/,
accessed on 28 July 2023) [54], and UniProt (https://www.uniprot.org/, accessed on
28 July 2023) databases [55]. We identified 632 potential liver cancer target genes with
scores >0.1 in DisGeNET, 2093 potential target genes with scores >5 in GeneCards, and
16 potential target genes in PharmaGKB. After deleting the repeated parts in the three
databases, 2389 potential hepatocellular carcinoma target genes were identified. Secondly,
7674 upregulated genes and 3853 downregulated genes were identified by differential gene
analysis using edgeR, Deseq2, and limma methods in the UCSC-TCGA database. Finally,
intersecting the predicted potential target genes and differential genes resulted in a total of
1190 potential target genes for hepatocellular carcinoma.

Then, we used SEA (http://sea.bkslab.org/, accessed on 28 July 2023) [56] and Super-
Pred [17] (https://prediction.charite.de/subpages/target_prediction.php, accessed on 28
July 2023) databases for the cross predictions of LCA, LCB, LCC, LCD, LCE, LCF, and LCG
target genes based on active components and disease target genes, generating 28, 27, 21, 24,
26, 23, and 27 related cross genes, respectively.

4.2. Construction of Protein–Protein Interaction (PPI) Network

The PPI network was built using the STRING database (http://string-db.org/, ac-
cessed on 29 July 2023) [57] to evaluate the potential interactions between the screened
hub targets. Subsequently, Cytoscape software (version 3.9.1; https://cytoscape.org/,
accessed on 22 November 2022) was used [58]. Then, the topological characteristics of the
PPI network were analyzed, and the top 10 hub genes were selected using the Cytoscape
analysis tool.

https://www.disgenet.org/
https://www.genecards.org/
https://www.genecards.org/
https://www.pharmgkb.org/
https://www.uniprot.org/
http://sea.bkslab.org/
https://prediction.charite.de/subpages/target_prediction.php
http://string-db.org/
https://cytoscape.org/
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4.3. GO and KEGG Enrichment Analysis

Based on the core target information, enrichment analysis was conducted on the Gene
Ontology (GO) [59,60] biological processes and the Kyoto Encyclopedia of Genes and
Genomes (KEGG) using R packages such as BiocManager, ClusterProfiler, AnnotationHub,
org.Hs.eg, pathview, dplyr, and ggplot2. Using cut-off values of p = 0.01 and q = 0.01,
we retrieved GO information from org.Hs.eg.Db of Bioconductor. The final results were
visualized using bar and bubble charts.

4.4. Cluster Analysis of Licorice Components

RDKit was used to calculate Morgan fingerprint vectors with a length of 2048 and
a molecular radius of 2. The similarity between fingerprints was calculated using Dice
coefficients, and the formula is as follows:

DiceSimilarity(a, b) =
2× (a ∩ b)

a + b

Here, a and b are the substructure characteristics of the two molecules. Then, we
used t-distributed random neighbor embedding (t-SNE) to reduce the dimensionality to
a two-dimensional space to obtain their relative spatial positions. In order to unify the
number of digits of fingerprint vectors, the explicit bit vector method was used to generate
ECFP fingerprints during the dimensionality reduction process; the number of bits was
set to 1024, and the radius was 2. Then, we constructed a chemical spatial network based
on the node coordinates and edge connections generated in the first two steps. This space
represents the chemical space of the molecules. In this method, if the distance between two
molecules is less than 1/24 of the distance between the farthest two molecules in the entire
molecular set, the molecules are considered a group, and then all molecules are traversed
to complete the clustering. The compound with the maximum closeness centrality will be
the representative compound of this group.

Finally, we clustered and identified the representative compounds of each group. The
grouping of compounds was determined based on whether there were edge connections be-
tween molecules and whether their positions were close. The average intragroup similarity
(MWGS) was calculated for each group of molecules:

MWGS(Si, n) =
(∑n

i=1 Si)− 1
n

(1)

In the formula, n is the number of molecules in the group, and Si is the similarity
between the molecule and the i-th molecule in the group.

The compound with the largest MWGS in this group is considered a representative
compound of this group.

Clustering was based on Matplotlib’s chemical spatial network (https://matplotlib.
org/ accessed on 19 August 2023). Visualization methods include visualizing the node
radius to represent distance truncation and edge thickness to represent the Dice similar-
ity coefficient between two molecules. Through machine learning, we identified other
structurally similar active small molecules in licorice [61].

4.5. Cluster Analysis of Licorice Components

Ten flavonoid molecules were quantitatively calculated using Gaussian 09W and
Gaussian View 5.0 [62]. The Gaussian calculation method was the B3LYP of the ground-
state DFT, and we made the Basis Set 6–31G*. Multiwfn [63] and VMD [64] were used to
plot visualization graphs for quantitative calculations, including HOMO-LUMO orbitals,
electrostatic potential (ESP), average local ionization energy (ALIE), and local electron
affinity (LEA).

https://matplotlib.org/
https://matplotlib.org/
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4.6. Compound Fingerprint Analysis

Discovery Studio was used to evaluate the interactions between ten flavonoid small
molecules and central targets. Based on the PPI analysis results (the union of the top 10 hub
targets with high values), the most representative compound, Echinatin, in component
enrichment analysis was used for reverse docking of the union. The crystal structure
(1dd7, resolution: 2.25 Å) of NOS2 was selected as the receptor protein from the RCSB
protein database (http://www.rcsb.org/pdb, accessed on 27 August 2023) [65] for further
molecular docking. The filtering standard for selecting the reported protein was the
organism ‘Homo’. Before docking, ligands and water were removed from the NOS2 crystal
structure to prepare the NOS2 protein. Due to the lack of the crystal structure of NOS2
with active small molecules, the molecular docking sites were determined based on the
acceptor cavity structure of NOS2. Then, the ten flavonoid molecules were used as ligands
for docking. Before docking, the energy of all small molecules was minimized by preparing
them and adding a CHARMM force field [66]. In addition, LibDock [67] was used for batch
docking between the ten flavonoid molecules and NOS2. Using Discovery Studio [68] for
complex fingerprint analysis, hydrogen bonding and coordination interactions between
the receptor protein’s active-site residues and flavonoid small molecule postures were
identified. Finally, Pymol software (version 2.3.4) [69] was used to display the details of
interactions between flavonoid small molecule targets.

5. Conclusions

By enriching cross genes in liver cancer, we found that licorice flavonoids pass through
the NF-κB signaling pathway, central carbon metabolism in cancer, and PDL1 expression
and PD1 checkpoint pathway in cancer to exert their anti-hepatoma effects. In addi-
tion to LCA-G, there are also Glypallichalcone, Echinatin, and 3,4,3′,4′Tetrahydroxy-2-
methoxychalcone in licorice, which have similar structures and may play similar roles.
NOS2 is a key target protein shared by ten licorice flavonoid molecules, with ASN364,
GLY365, TRP366, and TYR485 identified as key residues. In summary, using network phar-
macology analysis, combined with machine learning and quantitative calculations, we com-
prehensively revealed the biological processes, targets, and molecular mechanisms of LCA,
LCB, LCC, LCD, LCE, LCF, LCG, Glypallichalcone, Echinatin, and 3,4,3′,4′Tetrahydroxy-2-
methoxychalcone in liver cancer, and our results indicate that they can serve as promising
compounds for the treatment of liver cancer.
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