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Abstract: In the last two decades, there has been increasing evidence supporting non-neuronal cells
as active contributors to neurodegenerative disorders. Among glial cells, astrocytes play a pivotal role
in driving amyotrophic lateral sclerosis (ALS) progression, leading the scientific community to focus
on the “astrocytic signature” in ALS. Here, we summarized the main pathological mechanisms char-
acterizing astrocyte contribution to MN damage and ALS progression, such as neuroinflammation,
mitochondrial dysfunction, oxidative stress, energy metabolism impairment, miRNAs and extracel-
lular vesicles contribution, autophagy dysfunction, protein misfolding, and altered neurotrophic
factor release. Since glutamate excitotoxicity is one of the most relevant ALS features, we focused
on the specific contribution of ALS astrocytes in this aspect, highlighting the known or potential
molecular mechanisms by which astrocytes participate in increasing the extracellular glutamate level
in ALS and, conversely, undergo the toxic effect of the excessive glutamate. In this scenario, astrocytes
can behave as “producers” and “targets” of the high extracellular glutamate levels, going through
changes that can affect themselves and, in turn, the neuronal and non-neuronal surrounding cells,
thus actively impacting the ALS course. Moreover, this review aims to point out knowledge gaps
that deserve further investigation.

Keywords: astrocytes; amyotrophic lateral sclerosis; glutamate release; glutamate excitotoxicity;
neuroinflammation; oxidative stress; autophagy; energy metabolism; mitochondria dysfunction

1. Introduction

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease affecting
motor neurons (MNs) in the motor cortex, brainstem, and spinal cord [1–3]. The clinical
traits of ALS involve adult-onset muscle weakness and wasting. Most commonly, weakness
arises distally in the limb muscles and extends to the proximal muscles. Dysarthria,
dysphagia, and dysphonia are relevant symptoms in about one-third of patients. In 10–15%
of cases, patients also have frontotemporal dementia [4,5]. There is a high degree of
variability in ALS onset, site, and progression. In most patients, survival is 3–5 years after
symptom onset, with death primarily attributed to respiratory failure [6]. The incidence
is 2–3 new cases per 100,000 individuals/year, and the prevalence is about 7–9 cases per
100,000 individuals [5]. Men are more at risk of developing ALS than women [7,8].

ALS patients can be familial (fALS) or sporadic (sALS). fALS patients are based on
genetic mutations, usually inherited in a Mendelian autosomal dominant manner [9].
Nowadays, more than thirty mutated genes define the familial form of ALS. The most
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common mutations are Chromosome 9 open reading frame 72 (C9orf72), copper–zinc Su-
peroxide dismutase (SOD1), trans-activation response DNA-binding protein 43 (TARDPB)
and fused in sarcoma/translated in liposarcoma (FUS/TLS). However, fALS cases repre-
sent approximately 10% of ALS cases, while sALS includes most of ALS patients [9–11].
Genetic heterogeneity suggests that multiple cellular events may contribute to the disease.
They include oxidative damage, mitochondrial dysfunctions, metabolic defects, protein
misfolding and aggregation, impaired axonal transport, inflammation, dysregulated RNA
signaling, immunological imbalance, glutamate-mediated excitotoxicity, and insufficient
growth factor signaling [12–17].

The above studies aimed to unveil the pathogenic mechanisms at the basis of ALS,
focusing on MN degeneration, since they represent the neuronal cells that directly lead to
ALS symptoms. However, in the last two decades, non-neuronal cells, such as astrocytes,
microglia, and oligodendrocytes, have been recognized to play a pivotal role in disease onset
and progression. This viewpoint change derives from numerous histological observations
and transcriptomic profiling of diseased tissues that unveiled a solid non-neuronal signature
in neurodegenerative diseases including ALS. Several experimental pieces of evidence
highlighted the non-neuronal components of ALS and identified astrocytes, microglia, and
oligodendrocytes as critical players in disease onset and progression [18–23].

In this review, we focus on astrocytes in shaping the course of ALS and the mecha-
nisms at the basis of their activity, specifically highlighting their commitment to glutamate
excitotoxicity. Although the attention on astrocytes and their function in ALS progression is
intensifying, studies unveiled only a limited number of altered mechanisms, thus, making
urgent the need to understand which player molecules and processes are involved. Indeed,
astrocytes could be a promising target to modulate the disease because of their multiple
functions in maintaining CNS homeostasis.

2. ALS as a Non-Cell-Autonomous Disease

ALS involves different cell types, such as neurons, astrocytes, microglia, and oligoden-
drocytes [23–25]. Since all these cells express the same mutated genes in patients, ALS can
arise from a combination of damaged MNs and their glial partners rather than only from
the neuronal lineage. Several animal studies supported this assumption. ALS progression
slowed in mutant SOD1-expressing ALS mouse models with genetic mutations restricted
to neurons [20,26–28]. Many studies highlighted the solid non-neuronal signature in ALS
and suggested astrocytes and microglia as critical players in disease progression rather
than disease onset. Conversely, data support an alteration of oligodendrocyte function at
the disease pre-symptomatic and early symptomatic stages [19,20,29].

2.1. Astrocyte Contribution to ALS

The first evidence of astrocyte alterations in ALS has derived from animal models
in which mutant SOD1 was selectively expressed or deleted in these cells [30]. Pivotal
experiments in chimeric animals bearing mixtures of normal cells and cells that express a
human mutant SOD1 at levels sufficient to cause fatal MN disease reported that wild-type
non-neuronal cells in the SOD1G37R and SOD1G85R chimeras delayed disease onset and
prolonged mouse survival. In accordance, transgenic animals expressing mutant SOD1
in non-neuronal cells, but not in MNs, showed histological signs of neurodegeneration
caused by the accumulation of ubiquitinated epitopes absent in age-matched wild-type
littermates [30]. Some years later, similar experiments used Cre-Lox recombination to delete
mutant SOD1 genes selectively in microglia or astrocytes. The reduction of mutant SOD1 in
the astrocytes of SOD1G37R or SOD1G85R mice did not delay disease onset and early disease
progression. Moreover, it significantly slowed the late disease course extending mouse
survival, suggesting that astrocyte dysregulation negatively controls the status of MNs at
the late stage of ALS [31]. At the same time, they exhibit a more protective phenotype at the
disease onset [18,28,31]. Furthermore, transplantation of wild-type astrocyte precursors in
the cervical spinal cord of SOD1G93A mice slowed the disease progression and prolonged



Int. J. Mol. Sci. 2023, 24, 15430 3 of 37

survival probability [32]. Oppositely, the transplantation of astrocyte precursors carrying
the SOD1G93A gene mutation promoted local degeneration in the spinal cord and caused
motor dysfunction in wild-type mice [33].

Further experiments validated the role of astrocytes in ALS neurodegeneration. Na-
gai and colleagues demonstrated the detrimental role of ALS astrocytes through in vitro
co-culture studies. Mutant SOD1 astrocytes were able to induce neurodegeneration both
in ALS MNs from SOD1G93A, SOD1G37R, or SOD1G85R mice, as well as in healthy MNs,
supporting the hypothesis of a gain of toxic functions of astrocytes in ALS [34]. Sev-
eral studies demonstrated that MN viability was strongly impaired when wild-type or
mutant MNs were co-cultured in direct contact with ALS astrocytes or exposed to ALS
astrocyte-conditioned medium, thus encouraging the characterization of astrocyte secre-
tome to clarify the contribution of astrocytes to disease progression [35–39]. Astrocytes
differentiated from human fibroblasts carrying C9orf72 mutation-induced MN death in
co-culture experiments [37,39]. C9orf72-astrocyte RNA sequencing showed several gene
alterations, including genes involved in ionotropic glutamate receptor signaling (GRIA1,
GRIA4), complement activation, ribosomal subunit assembly, nuclear RNA export, cell
adhesion (L1CAM, TSP1, NTN1), synapse assembly (BDNF, NRG1, THBS2), cell-to-cell
signaling (GPC6), regulation of sodium ion transport (SLC8A1, ATP1B2, NKAIN4), and
potassium ion import (DLG1, ATP1B2) [39]. In addition, the mutant TDP-43 or mutant
VCP expression in astrocytes increased mitochondrial and ER dysfunction and induced
abnormal oxidative stress in MNs, thus causing MN death [36,38]. Overall, the current
literature has revealed a remarkable astrocytic dysfunction in ALS, potentially underlying
molecular mechanisms that could represent a target for therapeutic approaches [40–42].

2.2. Microglia and Oligodendrocyte Contribution to ALS

For completeness, we will briefly describe the possible role of these other non-neuronal
cells in the CNS.

Although the pathological mechanisms are partially obscure, microglia have a well-
established relevance in ALS. Mouse SOD1G93A microglia cells reduced the immune re-
sponse at pre-onset stages and exhibited an anti-inflammatory behavior, then becoming
mostly pro-inflammatory during disease progression [43,44]. The importance of the in-
flammatory signature of microglia has been highlighted by Frakes and colleagues that
demonstrated a significantly reduced gliosis and increased survival following the selective
partial deletion of the inhibitor of nuclear factor kappa-B kinase subunit beta (IKKB) and,
consequently, NF-κB inhibition in microglia from SOD1G93A mice. Knocking down IKKB
in SOD1G93A microglia reduced typical pro-inflammatory molecules, such as CD68, CD86,
and iNOS [45].

Microglia classification in pro-inflammatory M1 and immunoregulatory M2 is chal-
lenging, and many studies showed no significant prevalence of M1 or M2 markers during
the disease time course, suggesting the existence of a more complex scenario [46,47]. Ac-
cordingly, a new nomenclature should define the microglia phenotype. This scenario is
even more composite since these cells can acquire individual cellular activation patterns
depending on the pathological environment to which they are exposed, leading to unique
disease-associated microglia (DAM) phenotypes [48].

The transcriptomic profile in single cells of spinal cord sections from SOD1G93A mice
and ALS patients depicted different microglia populations, varying during disease progres-
sion [49], further pointing out the diversity of microglia in ALS.

As to oligodendrocytes, ALS patient motor cortex and spinal cord showed reduced
grey matter myelin and reactive changes in NG2+ cells and SOD1G93A mice exhibited
degeneration of grey matter oligodendrocytes before the symptom onset [20,29]. Deleting
SOD1 from oligodendrocytes in the SOD1G37R mouse model, proved the contribution
of oligodendrocytes to the disease, showing a significant delay of the disease onset and
increased survival, with no MN degeneration at the time of death [19]. These precocious
alterations suggest a loss of function of oligodendrocytes, possibly in providing lactate to
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MNs, supporting MN degeneration [25,50]. Among the proposed mechanisms affecting
oligodendrocytes functions, we can list the formation of protein aggregates, inducing ER
stress, and the robust pro-inflammatory environment characterized by a high level of inter-
feron γ (IFN-γ) [20], and dysregulation of myelination and lipid signaling pathways [51].

A significant survival reduction in MN/SOD1G93A oligodendrocytes co-cultures com-
pared to co-cultures with control oligodendrocytes has been reported [52]. The authors
obtained similar results when co-culturing MNs with oligodendrocytes being differentiated
from sporadic, and mutated SOD1, C9orf72, or TDP-43 fibroblasts generally reducing MN
survival based on the decreased lactate production and transport in the oligodendrocytes,
leading to an energetic deficit in the MNs [52]. Ferraiuolo and colleagues silenced SOD1 in
mutated human and mouse oligodendrocytes and observed an increase in MN survival,
indicating a SOD1-dependent toxic mechanism.

As for the lactate support to MNs by oligodendrocytes, a first work demonstrated a
reduced expression of monocarboxylate transporters (MCTs) in the motor cortex of ALS
patients [25] and rodent and canine models of the disease [53,54]. In mouse SOD1 mu-
tants, MCT1 transcripts were downregulated in early and late-symptomatic mouse spinal
cord ventral horn grey matter [53]. Overexpressing misfolded SOD1 in zebrafish mature
oligodendrocytes also induced disruption of the myelin sheaths and MCT-1 downregu-
lation [55] along with behavioral abnormalities, such as thigmotaxis, freezing behavior,
erratic movements, and learning impairment [56].

3. Astrocyte Mechanisms Fostering Neuronal Damage in ALS

Astrocytes are the primary cell type regulating homeostasis in the CNS and are very
specialized and heterogeneous throughout the CNS. They control extracellular ion concen-
tration, maintain blood–brain barrier integrity, promote myelination in the white matter,
and support neurons [57]. Astrocytes play a fundamental role in synapse regulation. Peri-
synaptic astrocytes abundantly express various transporters that maintain neurotransmitter
homeostasis in the synaptic cleft. A high plastic capacity characterizes these astrocytes,
which participate in synaptogenesis, synaptic maturation, and synaptic extinction [58].
Apart from the fundamental astrocyte physiological functions, their dysfunction can gen-
erate neurological disorders such as neurodegenerative or neurodevelopmental diseases,
epilepsy, and astrogliomas [59].

In response to a damaging insult, astrocytes shift from rest to a highly reactive and
proliferative phenotype with supportive characteristics to mend the damage by supplying
trophic factors and reducing neuronal degeneration. In many neurodegenerative diseases,
this mechanism is impaired and leads to neurotoxic events [60]. Indeed, the influence of
astrocytes is more complex and can be beneficial or detrimental depending on the disease
and the pathological conditions [61]. Accordingly, distinctive molecular and functional
profiles characterize the reactive astrocytes and their impact on diseases and produce
unique astrocyte phenotypes [62]. Many studies have suggested that astrocytes can act as
two distinct reactive categories, the A1 neurotoxic phenotype and the A2 neuroprotective
one [63–65]. However, scientists should consider this dual polarization with caution since
more recent studies proposed moving beyond the A1–A2 classification since only a subset
of transcripts related to the A1 and A2 states are upregulated in patient or mouse models
of CNS disease astrocytes, and multidimensional data support the idea that A1 and A2 are
just two of many potential transcriptomes of astrocytes [66–69].

Thus, astrocytes may play a fundamental role in shaping CNS disease genesis and
progression. In the following sections, we will describe the impact of astrocytes on the
main etiological mechanisms involved in ALS.

Figure 1 schematically summarizes the main pathogenic mechanisms that affect ALS
astrocytes, concurring with their aberrant activation and neurotoxicity.
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enhancer of activated B cells (NFkB) and mitogen-activated protein kinases (MAPKs) [70–
72]. The evidence that astrocytes actively modulate the inflammatory response and the 
increased serum/plasma and cerebrospinal fluid (CSF) levels of tumor necrosis factor-α 
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Figure 1. The mechanisms that characterize ALS astrocytes fostering neuronal and glial damage
are schematically represented. Neuroinflammation, mitochondrial dysfunction, oxidative stress,
energy metabolism impairment, miRNAs and extracellular vesicle involvement, protein misfolding,
autophagy dysfunction, and neurotrophic factor dysregulation are major phenomena in ALS progres-
sion. The contribution of glutamate and excitotoxicity has been reported in detail in Figures 2 and 3.
The figure was generated using BioRender.com (accessed on 25 July 2023) and Servier Medical
Art, provided by Servier, licensed under a Creative Commons Attribution 3.0 unported license
(https://creativecommons.org/licenses/by/3.0/ (accessed on 25 July 2023)).

3.1. Astrocytes and Neuroinflammation in ALS

Among the several functions of astrocytes, one is the regulation of innate immunity
in the CNS. Astrocytes express numerous receptors and produce factors involved in im-
munological response activation, such as Toll-like receptors, inducible nitric oxide synthase
(iNOS), major histocompatibility complex-II, nuclear factor kappa-light-chain-enhancer
of activated B cells (NFkB) and mitogen-activated protein kinases (MAPKs) [70–72]. The
evidence that astrocytes actively modulate the inflammatory response and the increased
serum/plasma and cerebrospinal fluid (CSF) levels of tumor necrosis factor-α (TNF-α),
interleukin-6 (IL-6), interleukin-8 (IL-8), and interferon-β (INF-β) [73] encouraged the study
of astrocytes as inflammatory mediators in ALS.

A recent analysis described astrocyte alteration following transient ischemia induced
by the rat treatment with the bacterial endotoxin lipopolysaccharide (LPS) to generate
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an inflammatory response in the brain cortex or by the middle cerebral artery occlusion
(MCAO) to produce an ischemic status. LPS-treated astrocytes showed an increased
transcription of the genes related to classical complement cascade activation, such as
complement components C1r, C1s, C1q, C3, and C4 that play a critical role in synapse
pruning during development and likely lead to synapse loss in neurodegenerative diseases.
On the other hand, after MCAO, most of the upregulated genes were associated with the
production of neurotrophic factors and cytokines, including corticotrophin-like cytokine
factor 1 (CLCF1), leukemia inhibitory factor (lif), and IL-6, IL-10 and thrombospondins
that facilitate the regeneration of lost synapses. These different transcriptional patterns
demonstrate that astrocyte reactive gliosis is a highly heterogeneous state, which differently
alters astrocytes to respond to the specific disease evolution stage [63], thus raising the
question of how many subtypes of reactive astrocytes exist beyond the simplified A1 and
A2 classification mode.

The following study indicated that LPS-stimulated M1-like microglia induced A1-
like astrocyte toxic activation by secreting interleukine-1α, IL-1β, TNF-α, and C1q [64].
In ALS and most neurodegenerative diseases, neuroinflammation and M1-like activated
microglia were described, suggesting its activation of A1-like astrocytes. Indeed, C3, highly
upregulated in A1-like and absent in A2-like astrocytes, was massively represented in
post-mortem tissues from ALS, Alzheimer’s disease, Huntington’s disease, Parkinson’s
disease, and multiple sclerosis. This evidence demonstrates that A1-like astrocytes are
present in most neurodegenerative diseases and probably retain a non-marginal role in
neuronal death [64,74].

It is becoming clear that astrocytes in neurodegenerative diseases, including ALS, are
subjected to a shift from a supportive to a neurotoxic phenotype, causing the metabolic
alteration, loss of trophic function, secretion of toxic factors, and development of a chronic
inflammatory response [60]. In ALS, this assumption founded the basis of the pivotal
reports showing that down-regulation of SOD1G37R or SOD1G85R in astrocytes of trans-
genic mice did not affect the early phases of the disease but ameliorate clinical symptoms
of the late disease course and survival [18,31,75]. Recent studies confirm the different
astrocyte signatures and activation states cultured from neonatal and adult SOD1G93A

mice. Indeed, primary astrocyte cultures from the neonatal SOD1G93A mouse brain did
not show upregulation of the classical pro-reactive astrocyte genes, such as inflammatory
genes and the reactive factor lipocalin 2 (Lcn2). On the contrary, astrocytes prepared from
2-month-old or late symptomatic stage SOD1G93A mice recapitulated the typical pheno-
type observed in post-mortem astrocytes from ALS patients [76–78]. This evidence also
highlights the importance of in vitro studies focusing on the in vivo maturation of astro-
cytes during disease progression, spanning from the pre-symptomatic/low-progressing to
the symptomatic/fast-progressing stages, which determine their activation upon in vivo
exposure to an authentic pathological environment.

ALS patients are characterized by high transforming growth factor-β1 (TGF-β1) levels
in serum, plasma and CSF [79]. Abnormal expression of TGF-β1 has also been detected
in astrocytes from sporadic ALS patients and SOD1G93A mice, causing a faster disease
progression. This neurotoxic effect seems to derive from a TGF-β1-dependent alteration of
the balance between interferon-γ (INF-γ) and interleukin-4 (IL-4) production in T cells and
microglia. The pharmacological treatment after the disease onset with a TGF-β signaling
inhibitor prolonged the survival of SOD1G93A mice, rescuing INF-γ/IL-4 dysregulation
and decreasing the number of activated microglial cells. Moreover, the correlation between
TGF-β1 level and the disease rank suggested using TGF-β1 as a predictive biomarker for
disease progression and severity [80]. In addition, increased TGF-β1 secretion by astrocytes
was reported to activate the mammalian target of the rapamycin (mTOR) signaling pathway,
inducing aggregation of sequestosome-1 and microtubule-associated protein 1A/1B-light
chain 3-II and leading to an impairment of autophagy in MNs [76].

TNF-α is one main cytokine overexpressed in the blood and CSF of ALS patients [81–83].
High TNF-α concentrations and TNF-α receptor (TNFR) up-regulation have also been re-
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ported in the spinal cord of SOD1G93A mice before the symptom onset [84,85]. TNF-α
can be differentiated into membrane-bound TNF-α (mTNF-α) and soluble TNF-α, me-
diating cytotoxic and apoptotic effects through TNFR1 and TNFR2 activation. TNRF2
can induce tumoral and neuronal cell death by binding mTNF-α. This mechanism seems
strongly involved in ALS. Indeed, a study in spinal cord astrocytes/MN co-cultures from
SOD1G93A mice reported the mTNF-α increase in MNs and the reduction of TNRF2, not
of TNRF1, ultimately rescued MNs. The same MN survival-linked positive effects were
observed in TNFR2 knocked-out SOD1G93A mice [86]. Oppositely, TNRF1 ablation exac-
erbated the detrimental effects of TNF-α by decreasing the production and secretion of
the glial-derived neurotrophic factor from astrocytes [85]. Another study demonstrated
that both receptors exert their functions by activating the apoptosis signal-regulated kinase
1 (ASK1)/p38MAPK pathway, which was harmful to MNs. p38MAPK inhibition pre-
vented MN death in SOD1G93A mouse-derived astrocyte/MN co-cultures, suggesting the
essential role of the TNFR/ASK1/p38MAPK pathway in neurodegeneration [87]. TNF-α
exerts its toxic function also in other models of ALS. For instance, mutant FUS-expressing
astrocytes secreted TNF-α as the primary toxic factor mediating MN death through the
NFκB pathway activation. Moreover, TNF-α modulated the expression of α-amino-3-
hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors and GluA2 AMPA subunit
in MNs, determining an increased permeability to Ca2+ and leading to excitotoxicity [88].
In addition, FUS-overexpressing astrocytes produce a robust inflammatory response by
abnormal TNF-α, IL-1β, and IL-6 secretion and augmented transcription of inducible nitric
oxide synthase (iNOS) and prostaglandin E2 (PGE2) [89]. The cytosolic nucleotide-binding
oligomerization domain-like receptor pyrin domain containing 3 (NLRP3) is one principal
mediator of neuroinflammation in ALS, in other neurodegenerative diseases, and during
brain aging [90–92]. The SOD1G93A rat brain possesses increased NLRP3 and active caspase
1 levels, and this augmentation was associated with a higher NFκB expression [93]. Johann
and colleagues identified astrocytes as the primary cell population expressing NLRP3
in ALS. They detected excessive NLRP3 and IL-1β concentrations, co-localized with the
glial fibrillary acidic protein (GFAP) in the spinal cord of 60 days old SOD1G93A mice and
post-mortem ALS patient tissue [94]. A subsequent paper hypothesized that one cause
for the increased NLRP3 expression is protein nitration due to reactive oxygen (ROS) and
nitrogen (RNS) species, highly produced and secreted in ALS. The treatment of SOD1G93A

microglia with iNOS and NAPHH oxidase 2 inhibitors reduced the nitrotyrosine levels
and, consequently, caspase 1 and NLRP3 activation, supporting the involvement of protein
nitration in the neuroinflammation spread [95].

Finally, a link between neuroinflammation and S100β, a Ca2+ binding protein ex-
pressed selectively in astrocytes, was described. S100β behaves as a component of the
danger-associated molecular pattern signaling and, when released in high concentrations,
participates in the cascade of events causing cell injury and binds the receptor for ad-
vanced glycation end products (RAGE), leading to microglia migration. S100β silencing
in SOD1G93A astrocytes determined the down-regulation of GFAP, TNF-α, C-X-C motif
chemokine 10 and Chemokine (C-C motif) ligand 6 expression, ameliorating the reactive
pro-inflammatory phenotype of ALS astrocytes [96].

The above evidence highlights the essential role of astrocyte in supporting the inflam-
matory response. However, further studies are required to clarify the dual function of
astrocyte-released cytokines during ALS progression and to understand the timeline of
astrocyte phenotypes shifting to pro-inflammatory ones.

3.2. Astrocytes, Mitochondrial Dysfunction, and Oxidative Stress in ALS

Oxidative stress is one of the best-studied subjects in ALS research. Oxidative stress
biomarkers are present in ALS patients’ urine, blood, CSF, and individual tissues [97,98].
Oxidative stress derives from the imbalance between oxidants and antioxidants within a
biological structure. Abnormal production of ROS or a deficit in antioxidant systems might
be the basis of tissue damage and cell death [99]. Hydrogen peroxide (H2O2), superoxide
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anion (O2
•−), and hydroxyl radical (HO•), but also (RNS), such as nitric oxide (NO), are

physiologically produced during the cell life cycle. Indeed, many cell functions, such as
signal transduction, gene transcription, oxidative phosphorylation, and ATP production in
mitochondria, require oxygen as a substrate and generate H2O2, O2

•−, or HO• through
redox reactions [100]. We know that, under massive oxidative stress, when antioxidant
enzymes, such as glutathione peroxidase, SOD1, and catalase, do not detoxify the cells, the
accumulation of reactive molecules, damage the cell structure by causing the oxidation of
different biomolecules, such as lipids, protein, and DNA/RNA [101].

The mitochondrion is the cell compartment where most ROS/RNS originate, probably
because mitochondria are enriched in redox enzymes [102]. Mitochondria dysfunctions,
e.g., due to mitochondria DNA damage, could improve ROS/RNS production and re-
duce protective action from these reactive species. Since mitochondria are the principal
producers of the energy needed by cells, their malfunction leads the cells to apoptosis
or senescence, producing catastrophic events, especially in non-proliferative cells, such
as neurons [103,104]. In addition, a mitochondrial deficit can cause ER stress, exacerbat-
ing the dysregulation of Ca2+ homeostasis and promoting abnormal protein folding and
aggregation [105]. Mitochondrial and ER dysfunctions also determined communication
impairment between these two organelles [106]. For instance, defects in mitochondria-
associated ER membranes (MAMs) in iPSC-derived FUS MNs showed detrimental effects
on axonal transport and ATP availability for neuronal survival, further emphasizing the
importance of MAMs in cell homeostasis [107].

Astrocytes help neurons to prevent and counteract oxidative stress damage in phys-
iological conditions by releasing glutathione, antioxidant enzymes, and ROS/RNS scav-
engers [108]. On the other hand, primary astrocytes prepared from SOD1G93A rats exacer-
bated oxidative stress through the abnormal NO production and secretion, sensitizing wild-
type MNs to nerve growth factor (NGF)-induced apoptosis through p75 neurotrophin re-
ceptor (p75NTR) signaling. The transcription factor nuclear factor erythroid 2-related factor
2 (Nrf2) induction in SOD1G93A astrocytes, which decreases in ALS patients [109], rescued
MN degeneration by promoting glutathione biosynthesis, which abolished NGF/p75NTR-
induced apoptosis [110]. In accordance, the selective Nrf2 over-expression in SOD1G93A

mouse astrocytes determined delay of disease onset, lifespan extension, and gliosis de-
crease [111]. A very recent study also demonstrated that specific miRNAs shuttled by
extracellular vesicles (EVs) from mesenchymal stem cells (MSCs) can induce the nuclear
translocation of Nrf2 and the expression of the antioxidant factor NQO1, reducing the
accumulation of oxidative species and, in turn, the reactive phenotype and neurotoxicity
of mouse- and human-derived ALS astrocytes [77]. Another study emphasized the Nrf2
involvement in protecting neurons from oxidative stress [112]. In response to oxidative
stimuli, neurons release angiogenin (ANG), which binds the syndecan-4 receptor and
activates the protein kinase Cα (PKCα). In turn, PKCα phosphorylates Nrf2, upregulating
its transcriptional activity. To confirm the ANG and Nrf2 neuroprotective characteristics,
primary neonatal astrocytes from antioxidant-responsive element-human placental alka-
line phosphatase (ARE-hPAP) transgenic mice or Nrf2 knock-out mice were treated with
ANG. ARE–hPAP astrocyte-conditioned medium supported cell survival when applied
to neurons exposed to H2O2. The Nrf2 knock-out mouse astrocyte-conditioned medium
had no neuroprotective effects [112]. ANG gene mutations are associated with ALS disease,
leading to loss of function [113,114]. Indeed, the astrocyte ARE–hPAP stimulation with the
ANGH114R mutated variant did not benefit cell survival [112].

Because of the key role of Nrf2 in regulating antioxidant response, many studies
focused on administering Nrf2 activators to slow disease progression. Two analogues
of the 2-cyano-3,12-dioxooleana-1,9-dien-28-oic acid were tested in the SOD1G93A mouse
model. Nrf2 function was recovered in treated mice, and the upregulation of classical
Nrf2-regulated genes was registered. These positive biomolecular effects improved motor
performance, reduced weight loss, and prolonged survival [115]. Then, other Nrf2 activa-
tors were tested, such as tert-butylhydroquinone, DL-sulphoraphane, lipoic acid, fumaric
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acid and curcumin [109]. The unsuccessful results of these positive modulators have been
ascribed to their low blood-brain barrier penetration. However, they could also relate to
the still undefined mechanism of action. Interestingly, the expression of a large variety of
non-Nrf2-dependent genes was modified from these substances [116].

Along with the oxidative stress defense impairment, increased production of ROS
and NOS is present in ALS due to mitochondrial dysfunction [117–119]. Cassina and col-
leagues reported that rat spinal cord SOD1G93A astrocytes exhibit defective mitochondrial
respiration. Indeed, stimulation of the mitochondrial activity in the presence of ADP did
not enhance oxygen consumption and ATP synthesis in SOD1G93A astrocytes compared to
controls. One of the possible causes of mitochondria malfunction refers to nitroxidative
stress, confirmed by the observation that the treatment with antioxidants and the inhibition
of NOS generation partially restored the mitochondrial respiratory chain function [120]. A
following study carried out on gliosomes, an ex vivo model of the peri-synaptic astrocyte
processes, isolated from the spinal cord of 30, 60, 90, and 120 days old SOD1G93A mice,
described a substantial increase in lipid peroxidation already at 30 days of age. However,
dysfunction of mitochondrial respiration and, therefore, reduction of ATP/AMP ratio was
recorded only at 90 and 120 days, representing symptomatic stages of the disease [119].
These data support the idea that elevated oxidative stress is one of the first events occurring
in ALS astrocytes, leading to toxicity in the neuronal compartment.

In addition, primary astrocytes isolated from transgenic mice carrying ALS-causing
SOD1 mutations (SOD1G93A or SOD1G86R) or TDP-43 (TDP-43A315T) induced ROS/NOS
in MNs, due to the astrocytic release of toxic factors. Astrocyte-conditioned medium in-
duced MN death by activation of Nav channels and nitroxidative stress. Treating MNs
with Nav channel blockers, such as mexiletine, spermidine, or riluzole, before exposure
to the astrocyte-conditioned medium abolished ROS/NOS formation and prevented MN
death [36]. The ALS astrocyte-mediated opening of the Nav channel in MNs might be one
of the first events in the detrimental cascade leading to neuronal loss. Indeed, Na+ influx,
induced by mutant SOD1 and TDP-43 astrocyte-conditioned medium, caused membrane
depolarization and, consequently, Ca2+ entrance in MNs. To counteract the massive in-
crease in Ca2+, mitochondrion Ca2+ content was overloaded, causing mitochondria damage
and ROS/NOS generation. Lastly, high levels of ROS/NOS promote the phosphorylation
and activation of Abelson murine leukaemia viral oncogene homolog 1 (c-Abl) signal-
ing pathway and MN death, which was prevented by the c-Abl inhibitor STI571 or by
antioxidants [118].

Targeting oxidative stress and mitochondrial dysfunction has always been a promising
approach for treating ALS [121]. Therefore, many drugs counteracting oxidative stress and
ameliorating mitochondria response have been tested during the last decades [122]. Among
these, dichloroacetate inhibits pyruvate dehydrogenase (PDH) kinase (PDK), maintaining
PDH in the unphosphorylated active form and increasing coenzyme-A formation from
pyruvate. Treatment with dichloroacetate promoted the mitochondrial respiration rate
and regulated the proliferation of rat SOD1G93A astrocytes, which positively affected
MN survival in co-culture experiments [123]. Moreover, in vivo studies administering
dichloroacetate to SOD1G93A rats delayed the disease onset, preserved the neuromuscular
junctions, normalized gliosis, and prolonged survival probability [124]. These promising
results should encourage us to keep studying mitochondria alterations in the different
CNS cell types to identify specific pathways at the basis of pathological dysfunction and
to develop cell-targeted therapies. Of note, edaravone, one of the two drugs approved for
ALS treatment, is a free-radical scavenger [125].

3.3. Astrocytes and Energy Metabolism in ALS

Astrocytes represent one primary energy source for MNs, mainly through the shuttle
of lactate [126]. MNs can promote aerobic glycolysis in astrocytes by glutamate release.
This latter induces the activation of the Na+/K+-ATPase pump that consumes the ATP
produced by phosphoglycerate kinase (Pgk), triggering glucose uptake and glycolytic
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processing, leading to the release of lactate from astrocytes. Lactate can then contribute to
the activity-dependent fueling of the neuronal energy demands associated with synaptic
transmission [127]. However, gene expression analysis in SOD1G93A astrocytes revealed an
impairment of many proteins involved in the lactate shuttle, such as GLAST-1, Na+/K+

-ATPase, Pgk and the lactate efflux transporter Solute carrier 16a4 (Slc16a4).
The quantification of lactate levels in the spinal cord of SOD1G93A transgenic mice

validated the gene analysis results. SOD1G93A mice showed a significant reduction of
lactate shuttle between astrocytes and MNs at an early stage, followed by a further decrease
during disease progression. SOD1G93A-derived astrocytes showed the same impairment
of lactate shuttle when co-cultured with transgenic or wild-type mouse MNs [128,129].
Moreover, the lactate transporter Slc16a4 expression was downregulated in spinal cord
iNPC-derived astrocytes from three patients with ALS carrying SOD1 mutations compared
to control individuals. Impairment of the lactate shuttle led to MN energy deficit, causing
membrane potential alteration and ion concentration imbalance [128].

Metabolic analysis of culture medium collected from SOD1G93A mouse-derived astro-
cytes pointed out an altered composition of metabolites, highlighting a dysregulation of
arginine, proline, lysine, glutathione, glycerophospholipid, and glycolysis or gluconeogene-
sis metabolism markers. This evidence supports a significant dysregulation of excitotoxicity,
mitochondrial dysfunction, and oxidative stress pathways in MNs and astrocytes [129,130].

Metabolism dysregulation also occurred in gliosomes isolated from the spinal cord and
motor cortex of SOD1G93A mice that showed increased glycolysis and lactate fermentation
at the symptomatic but not at a pre-symptomatic stage of the disease. However, these
alterations occurred at more precocious stages of the disease in the neuronal counterpart,
indicating precocious changes at the presynaptic level and later in the peri-synaptic region.
Interestingly, the augmented lactate dehydrogenase activity in gliosomes could be the
astrocyte response to the impairment of the lactate shuttle to attempt supplying more energy
to MNs [131]. In addition, rat astrocytes facilitated anaerobic glycolysis and increased
lactate production when transfected with mutant TDP-43208-414. Although the lactate
concentration was high in TDP-43208-414-transfected astrocytes, its transfer was impaired
due to the astrocyte-specific monocarboxylate transporter-1 (MCT-1) downregulation [132].

The metabolism of nucleosides was also altered in astrocytes from C9orf72 and sporadic
ALS patients. ALS models showed an increased release of ATP from MNs, determining mi-
croglia activation and increased astrogliosis and neuroinflammation. Moreover, adenosine,
the last step of ATP metabolism, was found to be significantly elevated in the cerebrospinal
fluid of ALS patients [133]; concomitantly, the expression of adenosine A2A receptors
(A2ARs) is also increased in the spinal cord of ALS patients and SOD1G93A mice [134,135].
Acting on A2AR, adenosine promotes astrocyte proliferation and activation, reduces gluta-
mate uptake, and stimulates Ca2+-dependent glutamate release [136,137]. The up-regulated
adenosine levels were related to a lower adenosine deaminase (ADA) expression in ALS
astrocytes, which converts adenosine into inosine. As a proof-of-concept, the inhibition
of ADA in control astrocytes caused an impairment of MN viability in astrocyte/MN co-
cultures. In addition, exposure of ALS astrocytes to inosine partially rescued MN survival,
validating the relevant function of adenosine and inosine in ALS [138].

Recently, a study on energy metabolism revealed that astrocytes from C9orf72 patients
were subject to a generally reduced metabolic flexibility, increasing their sensitivity to
starvation-induced stress. Indeed, C9orf72 repeat expansion altered the transport of energy
substrates and caused defects in fructose and glycogen metabolism, thus promoting the
formation of advanced glycation end products and the glycogen accumulation in the CNS
due to its mobilization impairment following high-energy demand. The picture highlights
the deprivation of mitochondrial energy substrate availability and a propensity to shift
toward a more glycolytic ATP production state in the C9orf72 astrocytes [139].

It is well-established that ALS patients exhibit lipid hypermetabolism [140,141]. Lipidomic
analysis of the spinal cord from SOD1G93A rats showed cholesteryl esters and cardiolipin
augmentation, and ceramide metabolism alteration [142]. Interestingly, astrocytes derived
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from SOD1G93A rats or rat astrocytes transfected with mutant TDP-43208-414 presented an
accumulation of lipid droplets (LDs) [132,143]. The impact of LD accumulation in glial cells
is still controversial. Indeed, reduced LD deposition in glial cells slowed neurodegenerative
processes in Drosophila mutants, affecting mitochondrial function [144]. However, a sub-
sequent study demonstrated that ROS could induce abnormal lipid synthesis in neurons.
Because high levels of lipids can promote lipid peroxidation and cellular damage, neurons
transfer lipids to glial cells as a protective mechanism [145].

3.4. Astrocytes, miRNAs and Extracellular Vesicles in ALS

The miRNA expression levels are modified in ALS animal models. Cortical astro-
cytes from SOD1G93A mice showed a down-regulation of miR-146a, miR-125 and miR-21
compared to control astrocytes [146]. miR-146a works as a negative feedback regulator
of the TLR inflammatory pathway [147]; therefore, its downregulation, already observed
at the early stages of the disease, could be one of the causes of the augmented HMGB1
and NFκB levels in SOD1G93A astrocytes. MiR-125 and miR-21 are modulators of neurite
outgrowth [148,149], thus making them potential toxic factors involved in impairing the
synaptic structure and function [146].

At the same time, the pattern of miRNAs released from astrocytes through extracellu-
lar vesicles (EVs) is also altered. MiRNAs secreted by astrocytes regulate several transcripts
encoding proteins involved in axonal growth and maintenance. EV cargo was modified in
C9orf72 astrocytes and was able to induce MN toxicity. MiR-494-3p was strongly down-
regulated in EVs derived from C9orf72 human astrocytes, determining impairment of axonal
development, and causing neurite retraction and MN death by increasing Semaphorin-3A
levels [150]. The study of the altered miRNA pattern represents a growing field in ALS.
Identifying circulating miRNA modification, particularly at pre-symptomatic and early
stages of the disease, can generate a panel of biomarkers to diagnose ALS precociously.
Saucier and colleagues described a miRNA signature in EVs from ALS patient plasma,
identifying a variety of miRNAs involved in the regulation of known ALS-linked altered
functions, such as the Nrf2 pathway, Wnt/β-catenin axis, transcription, and protein ubiq-
uitination [151]. Another study focused on neuron-derived EVs in ALS patients’ plasma
identified a panel of modified miRNAs related to synaptic vesicle docking and exocytosis,
regulation of neurotransmitter secretion, and synaptic vesicle cycle [152]. These are only
two examples of a broader and promising landscape that needs a systematic analysis for
functional and translational readouts.

EVs may be a way to eliminate toxic substances from the affected cells and may repre-
sent a mode for disease spreading, including in ALS. Mutant and misfolded wild-type SOD1
can propagate from different cells to recipient cells in association with the vesicles released
into the extracellular environment [153], and it has been shown that SOD1G93A mouse
exosomes derived from primary astrocytes contain and sprout abnormal amount of mutant
SOD1, provoking MN death [154,155]. Similar findings come from other cell types. For in-
stance, the exposure of Neuro2a cells to exosomes from the brains of TDP-43A315T mice, but
not from the control brains, caused cytoplasmic redistribution of TDP-43, suggesting that
secreted exosomes contributed to the propagation of the TDP-43 proteinopathies. However,
blocking EV production in vivo exacerbated the disease progression of mice expressing
human TDP-43A315T. The in vivo data suggest that EV secretion is overall beneficial in the
neuronal clearance of pathological TDP-43 [156]. Increased SOD1, TDP-43, and FUS levels
were reported in EVs from the plasma of sporadic ALS patients [157]. EVs-containing
wild-type or mutant (R521G or R495X) FUS were also isolated from SH-SY5Y and N2A
cells and showed higher mutant FUS levels than wild-type FUS [158]. Finally, primary rat
cortical neurons, transfected with plasmids encoding poly(GA)50, poly(GP)50, poly(GR)50,
poly(PA)50, and poly(PR)50, and FLAG-GFP, and iPSC-derived human neurons carrying
the C9orf72 mutation were able to transfer dipeptide repeat (DPR) proteins both through
cell-to-cell contact and the EV release, thus spreading DPR aggregate toxicity to primary
control astrocytes [159].
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Despite the evidence supporting the astrocyte secretome toxicity in ALS, the content
of EVs released from astrocytes is only partially uncovered. Understanding cell-to-cell
communication mechanisms is the leading step to evaluate CNS functioning. Because of the
large variety of CNS functions and the essential role of EVs in cell-to-cell communication,
more efforts to comprehend the astrocyte EV release regulation and the cargo composition
and their texting with neurons and microglia could also drive the identification of new
pathogenic mechanisms in ALS.

3.5. Astrocytes and Protein Misfolding and Autophagy in ALS

Autophagy impairment represents a well-established ALS feature in MNs and glial
cells [160–162]. Many ALS genes are autophagy regulators, such as OPTN, SQSTM-1 and
TBK-1; in addition, proteins encoded by the genes C9orf72, VCP, CHMP2B, VAPB, ALS2, and
DCTN1 modulate vesicular trafficking and autophagosome assembly; therefore, they may
affect autophagy [163]. Given the crucial role of autophagy in balancing the beneficial and
detrimental effects of immunity, inflammation, and metabolism in other cell types [164], au-
tophagy appears an attractive target for the titration of cell activity to ultimately slow down
disease progression. Most studies focused on autophagy contribution in the MNs, and the
involvement of autophagy in glial cell dysfunction still needs to be included. Despite the
progress that has been made in understanding the basic mechanistic principles underlying
autophagy, many unanswered questions remain for cell type-specific roles of autophagy
and autophagy-related pathways, as well as regarding the contribution of defects in these
processes to the onset and/or progression of neurodegenerative diseases. Indeed, the
non-cell autonomous mechanisms leading to autophagy impairment are still undefined.

Little is known about the role of autophagy in astrocytes. Astrocytes actuate the
phagocytic and secretive processes linked to the activity of inflammatory molecules, such
as IL-1β and IL-18. Like microglia, these cell types might also share the involvement of
autophagy in immune-related processes [165,166]. However, evidence for this hypothesis
is lacking.

A link between glutamate processing by astrocytes and autophagy has been pro-
posed [167]. Increased cytosolic Ca2+ concentration led by glutamate uptake into astrocytes
may activate the autophagic pathways. While Ca2+ elevations can trigger gliotransmitter
release, autophagy induction could provide metabolic support for astrocytes and nearby
neurons. Furthermore, parts of the autophagy machinery could play a role in releasing
molecules from astrocytes, as described for the insulin-degrading enzyme in murine pri-
mary astrocytes [168,169]. The finding that the ATP release into the extracellular space
involves autophagic vesicles in HeLa cells, melanoma cells, and rat primary astrocytes
supports this notion [170–173]. However, the exact role of autophagy in astrocyte uncon-
ventional secretion remains to be established.

Interest in the astrocyte autophagy role in ALS is increasing since astrocyte contri-
bution to ALS has been largely substantiated. In a mutant SOD1 mouse ALS model,
inclusions appear in astrocytes first and to a greater extent than in neurons [174]. Accord-
ingly, astrocyte-specific attenuation of mutant SOD1 expression slowed disease progression
in transgenic mice [18,175]. Pro-inflammatory conditions in neurodegenerative diseases can
induce profound changes in the astrocyte mitochondrial network. Under these conditions,
fragmentation of mitochondria and decreased respiratory capacity occur [176]. Therefore,
functional autophagy is indispensable for astrocytes in an inflammatory environment to
maintain the mitochondrial architecture and prevent ROS accumulation. In ALS mice
models with mutated FIG4 and VAC14, most p62-containing inclusions were in astrocytes,
highlighting the relevance of autophagic clearance in these cells [177].

Moreover, astrocytes from mice with autophagic-lysosomal dysfunction contribute
directly to neurodegeneration due to an impaired ability to metabolically support neu-
rons [178]. Astrocytes may also assist neurons in the degradation of their waste. Neurons
extrude protein aggregates and damaged organelles, which are subsequently taken up and
degraded by C. elegans and murine astrocytes [179,180].
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In this context, natural polyamines (putrescine, spermidine and spermine) are ubiq-
uitous molecules known to regulate several physiological processes, including triggering
autophagy, and result altered in the spinal cord of ALS mouse model, especially in the
spinal cord and at the late stage of the disease [181]. Moreover, polyamine system dysregu-
lation has also been found in human ALS patients [182]. Polyamines can be released from
and stored in astrocytes [183–185]. In the first case, these molecules regulate the function of
receptors and channels in glia and neurons [183], while in the second condition, they affect
their own glial functions [186–188]. How polyamines affect autophagy in ALS astrocytes
has yet to be elucidated and deserves better investigation since it could be a promising
target for modifying disease progression.

The notion that several astrocyte-supportive roles involve the autophagy pathway
highlights the importance of assessing the impact of ALS-causing mutations in autophagy
components on astrocyte function in ALS.

3.6. Astrocytes and Neurotrophic Factors in ALS

Astrocytes secrete many trophic factors, including nerve growth factor (NGF), glial
cell line-derived neurotrophic factor (GDNF), insulin growing factor-1, and fibroblast
growing factors (FGF) [189], especially during ALS [190], mature nerve growth factor
(NGF) modulates neuronal differentiation and survival by binding to the Tyrosine receptor
Kinase A (TrKA). On the other hand, Pro-NGF preferentially binds the p75 receptor, which
determines axonal growth and remodelling during development, although its expression is
barely detectable in adults. Notably, p75 expression increases in pathological conditions,
promoting the activation of apoptotic pathways by boosting NFκB, p53 and Bax. Ferraiuolo
and colleagues demonstrated that astrocytes derived from SOD1G93A mice expressed a
higher amount of Pro-NGF compared to WT astrocytes and, at the same time, the p75
receptor and its pro-apoptotic associate protein were upregulated in SOD1G93A astrocytes.
This alteration and a reduction of mature NGF decrease MN viability in ALS mice [191].
GDNF is considered a strong protective factor promoting neuronal survival, and many
efforts have been made to translate this evidence into an effective ALS therapy [192]. A
recent study tested the systemic injection of AAV9-GDNF in SOD1G93A rats. However,
these experiments registered only a modest functional improvement of motor performance
and any effects on survival in SOD1G93A rats.

Moreover, AAV9-GDNF administration caused side effects, including slowed weight
gain, reduced overall activity levels and impaired working memory [193]. Interestingly,
a subsequent study showed that hNPCs expressing GDNF that differentiate in vivo into
astrocytes ameliorated the health of the upper MNs, supported lower MN survival, delayed
paralysis, and extended lifespan when transplanted in the cortex of SOD1G93A rats. The
FDA has approved these cells for clinical trials to explore their safety and efficacy in ALS
patients (ClinicalTrials.gov Identifier: NCT02943850) [194].

3.7. Astrocytes and Glutamate Excitotoxicity in ALS

Glutamate is the most engaged neurotransmitter in the mammalian CNS, mediating
excitatory neurotransmission. However, excessive glutamatergic input elicits excitotoxicity
in ALS [195–201], starting from the pre-symptomatic phases of the disease and contributing
to neurodegeneration.

Excessive glutamate can originate from neuronal release, and also indirectly from a
reduced uptake. Synaptosomes prepared from the spinal cord of SOD1G93A mice showed
increased glutamate release both under basal conditions and after depolarizing stimuli,
suggesting increased glutamate levels at the synapse biophase. Interestingly, this event
was already detectable in 30-day-old SOD1G93A mice in the early, pre-symptomatic stage of
the disease [195,196]. Glutamate release was exocytotic and sustained by plastic changes in
the release machinery protein expression, phosphorylation, and assembly.

As to astrocytes, the elevation of extracellular glutamate concentration was ascribed
to the impaired glutamate clearance due to reduced expression of the astrocytic excitatory
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amino acid transporter 2 (EAAT2) [174,202,203]. In addition, astrocytes can actively release
the excitatory amino acid. Astrocytes in culture derived from sporadic or SOD1A4V, but
not C9orf72 ALS patients, abnormally secrete glutamate in the culture medium [204]. Also,
the GABA-induced glutamate release from spinal cord gliosomes, an in vitro functional
preparation of the peri-synaptic astrocyte regions [205,206], was enhanced in SOD1G93A

mice, and this excessive release was very precocious, largely preceding the onset of the
disease’s symptoms [207].

Thus, glutamate released by non-neuronal cells can represent an additional factor
contributing to the increasing extracellular glutamate levels in ALS [208]. Of note, this
increased glutamate availability can, in turn, dysregulate post-synaptic neuronal and
neighboring glial cells. There are various mechanisms by which ALS astrocytes can act
as producers of glutamate excitotoxicity, increasing the glutamate extracellular levels and
simultaneously being the target of their released glutamate. The dual faces may be linked to
each other. The excess of glutamate released by astrocytes in ALS will target heterologous
cells in the brain and spinal cord, such as MNs, microglia and oligodendrocytes, as well as
neighboring astrocytes contributing to further amplifying, in a vicious circle, their reactive
phenotype and, consequently, also the toxic impact versus the neighboring neuronal and
non-neuronal cells.

Globally, we believe that the emerging astrocyte roles should consider these cells to be
“producers” and “targets” of glutamate excitotoxicity in ALS.

The mechanisms contributing to the role of astrocytes as producers of the excessive
glutamate levels and targets of glutamate toxicity in ALS, described in the following
chapters, are schematically represented in Figures 2 and 3.

4. Astrocytes as Producers of Excessive Glutamate in ALS

Astrocytes can actively contribute to defining the glutamate commitment in develop-
ing neuronal and glial damage during ALS progression. Several altered astrocyte mecha-
nisms in ALS can impact the enhanced glutamate in the extracellular milieu and its action
on MNs, astrocytes, microglia, oligodendrocytes, and other non-neural cells (Figure 2).

4.1. Excitatory Amino Acid Transporter 2

Abnormal glutamate availability represents one of the fundamental ALS-linked fea-
tures. In 1995, EAAT2, expressed predominantly in astrocytes and responsible for about
90% of glutamate reuptake from the synapses, was found dysfunctional in the brain cortex
and spinal cord astrocytes of ALS patients, causing impairment of the synapse glutamate
clearance [174,209]. A further study revealed that EAAT2 functional alterations derived
from aberrant truncated transcripts of the EAAT2 gene [210]. Many factors affect EAAT2
transcription, translation, and activity, such as oxidative stress, fatty acids, growth factors,
or cytokines [211–214]. The reduced glutamate clearance leads to increased activation of
the glutamate receptors of MNs with an abnormal influx of Ca2+, determining fatal changes
in cell physiology and inducing ER stress, mitochondria overload, and cell death [215].

Recent research described the involvement of caspase 3 in regulating EAAT2 expres-
sion and function. Indeed, EAAT2 presents a caspase-3 consensus sequence cleaved by
activated caspase-3 in vitro, thus determining the formation of truncated fragments of
EAAT2 and their accumulation into the cells, inducing the release of neurotoxic substances
from astrocytes in ALS. The generation of a double transgenic mouse carrying SOD1G93A

mutation and EAAT2D504N, a point mutation inhibiting the caspase 3 cleavage of EAAT2,
produced slowed disease progression, characterized by delayed development of hind-
and fore-limb muscle weakness and significant extension of the lifespan. However, the
disease onset was not affected, suggesting other pathway involvement in regulating EAAT2
expression, and hindering the importance of EAAT2 impairment as a triggering cause of
ALS [216].
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Yin and colleagues described an interplay between the astrocyte elevated gene-1
(AEG-1) and EAAT2 expression in astrocytes. AEG-1 was up-regulated in primary cortical
astrocyte cultures prepared from SOD1G93A mice, leading to a decreased astrocyte mem-
brane EAAT2 expression through NFκB activation. Silencing AEG-1 (siAEG-1) restores
EAAT2 expression and glutamate uptake. Moreover, mutant-SOD1 neurons cultured with
siAEG-1 astrocyte-conditioned medium improved viability. These results encourage the
investigation of other pathways for AEG-1 in ALS and point to AEG-1 as a promising target
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for ALS pharmacological approaches [217]. Notably, valosin-containing protein (VCP)
astrocytes, another gene causing ALS, showed a reduced glutamate uptake and enhanced
reactive state, increasing proinflammatory signaling and becoming less supportive for
neurons [218].

Overall, a significant reduction of EAAT2 in the motor cortex and spinal cord is one of
the principal factors leading to glutamate excitotoxicity in ALS [219].

4.2. Exocytotic Glutamate Release

Ca2+-dependent astrocytic exocytosis is a long-lasting known occurrence in astro-
cytes [220,221]. The increase in intracellular Ca2+ concentration [Ca2+]i can arise primarily
by the mobilization of internal stores and may involve astrocyte-expressing receptor acti-
vation [222–225]. However, increased [Ca2+]i involving external Ca2+ entry has also been
reported after electrical or chemical depolarization of cultured astrocytes [226,227]. The
KCl-induced depolarization evoked glutamate release has also been reported in adult
astrocytes and peri-synaptic astrocyte processes (gliosomes) prepared from rat brain cor-
tex [228], thus supporting the astrocytic excitability properties. Accordingly, astrocytes
possess release machinery typical of neurons, such as the SNARE complex proteins and
synaptotagmin-1, likely to produce regulated exocytosis [221,229,230]. The presence of
vesicle-associated proteins, including the vesicular glutamate transporters, suggested the
presence of glutamate-containing vesicles in the astrocyte active zone and cytoplasm, which
were evidenced by electron microscopy and proteomic studies [205,206,231–233].

As the neuronal counterpart, whose exocytotic glutamate release has been found
abnormal in SOD1G93A mice after membrane depolarization or mGluR1/5 receptor activa-
tion [195,196,199,201,234], the exocytotic release from astrocytes is altered in ALS. Manfredi
and colleagues analyzed Ca2+ homeostasis and exocytosis in SOD1G93A mouse-derived
astrocytes and found that ATP stimulation augmented [Ca2+]i due to excessive Ca2+ release
from endoplasmic reticulum (ER) stores and based on altered Ca2+ accumulation in the
ER in SOD1G93A astrocytes [235]. Astrocytic exocytosis inhibition in SOD1G93A astrocytes
preserved MNs from death in astrocyte-MN co-cultures and delayed the disease onset
in SOD1G93A mice without affecting disease progression, providing in vitro and in vivo
evidence that astrocyte exocytosis contributes to ALS pathogenesis. However, no evidence
was provided about glutamate exocytosis and its involvement in the effects described.
Another study evidenced that immunoglobulins G (IgG) purified from patients with amy-
otrophic lateral sclerosis (ALS) enhanced the vesicle mobility in cultured rat astrocytes,
which depended on the cytoplasmic Ca2+ homeostasis, with no apparent indirectly assessed
release of their cargo most likely including glutamate [236].

Considering that the exocytotic mechanism represents one of the main processes for
glutamate release by astrocytes, further studies are needed to gather compelling evidence
that, besides altered neuronal release, astrocyte glutamate exocytosis is instrumental to ALS.

4.3. Purinergic P2X7 Receptors

The purinergic P2X7 receptor subtype (P2X7R) is a ligand-gated cation channel that
provides another pathway for glutamate release from astrocytes [220]. ATP acts as a ligand
of the receptor that, upon binding, facilitates the influx of the small cations, such as Ca2+

and Na+, and the efflux of K+. Instead, prolonged exposure to high ATP concentrations
leads to the opening of a dilated membrane pore permeable to large molecules up to
900 Da, including glutamate [237,238]. The P2X7Rs are mainly localized on microglia
cells but are also expressed on neurons, oligodendrocytes, and astrocytes [239,240]. Duan
et al. provided the first evidence that these receptor channels could mediate the release
of glutamate from astrocytes [241]. The release of glutamate through P2X7Rs is [Ca2+]i
independent, insensitive to voltage changes, and blocked by the P2X antagonists [220,242].

The main pathological function of P2X7Rs is during the inflammatory response and
is characterized by increased extracellular ATP that activates the receptor and enables
the maturation and release of cytokines, such as interleukin-18 (IL-18) and IL-1β [243].
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In astrocytes, P2X7R stimulation potentiates the inflammatory cascade by enhancing the
IL-1β-induced activation of NF-κB and the activator protein 1 (AP-1) transcription factors,
increasing the production of NO, the monocyte chemoattractant protein-1 (MCP-1), and
IL-8 chemokines [244,245].

The P2X7R has been found to be upregulated in microglia and astrocytes, resident in
the spinal cord of ALS patients and SOD1G93A animals, thus leading to the hypothesis that
ATP signaling may trigger cytotoxic events in astroglial cells, resulting in proximal motor
neuron damage [246,247]. Extensive preclinical studies identified the P2X7Rs as playing
two roles in ALS: neuroprotective and neurodegenerative, depending on the disease stage,
being predominantly neuroprotective in early disease stages while becoming gradually
detrimental during ALS progression [248–250]. Moreover, the P2X7R pharmacological
modulation displayed controversial gender-dependent effects in SOD1G93A mice [251,252].

Gandelman and collaborators demonstrated that selective activation of the P2X7Rs in
SOD1G93A astrocytes led to motor neuron death, most likely due to releasing toxic factors,
including glutamate. Indeed, the P2X7R is constitutively activated in SOD1G93A astrocytes
by increased extracellular ATP signaling [253], thus contributing to ATP-dependent exac-
erbation of the astrocyte neurotoxic phenotype [254]. Of note, supporting the role of ATP
and the consequent P2X7R activation, the SOD1G93A astrocyte-mediated MN death was
significantly prevented by depleting ATP with apyrase or by blocking the P2X7R with the
antagonist brilliant blue G (BBG) [254].

Considering the above evidence, astrocyte-expressed P2X7Rs play a role in ALS
disease, contributing to oxidative stress, inflammatory signaling and glutamate-mediated
neurotoxicity. Even though there are some controversies, the pharmacological or genetic
inhibition of this receptor may facilitate the astrocyte switch to a more trophic phenotype
toward neurons; however, further studies on ATP and P2X7R signaling in astrocytes are
encouraged to understand better the potential contribution for the development of effective
and cell-specific therapies in ALS [255].

4.4. Cystine/Glutamate Antiporter System xc

The cystine/glutamate antiporter system xc (Sxc) is a membrane heterodimer crucial
to sustaining astroglial glutamate release in several CNS regions. It is an anionic amino acid
antiporter that exports glutamate for cystine. Cystine is critical for glutathione synthesis
and maintaining the cellular antioxidant pool [220]. Moreover, increased Sxc-mediated
glutamate release was observed even before the EAAT2 reduction, thus contributing to the
early glutamate toxicity during the disease initiation in the SOD1G93A transgenic mouse
model of ALS [256].

A recent study showed that the deletion of xCT (core protein of Sxc-) delayed the
disease progression rate in the mutant SOD1G37R ALS mouse model [257], thus confirming
its essential role in driving the disease. Of note, the oxidant environment upregulates xCT,
causing an increase in extracellular glutamate levels that, in turn, induce Ca2+-mediated ex-
citotoxicity [258]. Since oxidant species are present during ALS progression, this exchanger
could enhance glutamate excitotoxicity during the disease progression.

Although there is evidence for exact upregulation in ALS mouse models and post-
mortem spinal cords of ALS patients, there are a few discrepancies concerning the molecule
location. In the genetic SOD1G37R and SOD1G85R mouse model, xCT levels in microglial
cells were significantly upregulated in the spinal cord [257], whereas, in human ALS
postmortem spinal cord tissues, xCT was specifically expressed and upregulated only in
astrocytes [258]. This differential expression could be based on the differences of species
between humans and mice.

Further analysis will better clarify the role of this mechanism in ALS astrocytes and its
impact on the surrounding cellular environment.
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4.5. Hemichannels

Connexins (Cx) and pannexins (Pn) are two membrane protein families forming
hemichannels [259], creating connexons or gap junctions (GJs), allowing the exchange
of molecules and ions as well as toxic substances, such as excitatory amino acids, with
neighboring cells and promoting Ca2+ overload [260,261]. In the CNS, GJs are widely
expressed in astrocytes, where they couple these cells to create a functional syncytium [262],
also allowing glutamate release [263] and favoring the inflammatory response [264]. As-
trocytes preferentially expressed Cx30 and Cx43 [265,266]. The selective activation of
astrocyte Cx43favors ion diffusion and ATP, prostaglandin E2, D-serin, and gliotrans-
mitter release [262,267–270]. The Cx-mediated glutamate release could, in turn, activate
n-methyl-D-aspartate (NMDA) receptors, favoring Ca2+ oscillation in the same or nearby
astrocytes [271] and regulating synaptic plasticity [272–274].

Accumulating evidence suggests a connection between ALS and Cxs [275,276]. Astro-
cytic GJ Cx43 was strongly dysregulated in the anterior horns of the spinal cords of mutant
SOD1G93A transgenic mice during disease progression and at the end stage, suggesting
that the GJ disruption can aggravate MN death, contributing to glutamate excitotoxicity
and ALS progression [277]. Keller and colleagues found an intimate connection between
activated microglia and astrocytes via Cx43 at the end stage of ALS [278], thus supporting
the idea that the altered Cx43 function affects microglia reactivity and the inflammatory
response. As confirmation of this scenario, Cx43 overexpression was described in the
SOD1G93A mouse model as well as in post-mortem motor cortex, spinal cord, and cere-
brospinal fluid derived from ALS patients; accordingly, neuroprotection through Cx43
blockers and Cx43 hemichannel blockers was shown to be beneficial [279]. Conversely, no
noticeable Cx30 expression changes exist in SOD1G93A mutant mice [277,279].

Although there is an apparent lack of Cx30 effect in slowing down ALS progression,
this protein has an important role in regulating the inflammatory response. Cx30 deficiency
increased microglia ramifications enlarged astrocytic processes, and reduced Cx43 expres-
sion [280,281]. Recent findings suggest, using a genetic approach that reduced expression of
astroglial Cx30 in SOD1G93A mice protects neurons at the early disease stage by attenuating
astroglial inflammation [282] and, similarly, reducing Cx43 expression improved disease
progression [283]. Further evidence confirming the importance of hemichannels in ALS
has been proposed by Lehrer and collaborators, pointing out that insulin can block Cx31
and Cx43, inhibiting the release of toxic molecules, including glutamate, thus representing
a potential pharmacological intervention for ALS [284].

Overall, further research on hemichannels expressed by astrocytes is needed to better
individuate the toxic molecules that over-activate them and their possible negative effects
on glutamate balance, astrocytes, or other neighboring cells during ALS progression.

4.6. Bestrophin-1, TWIK-Related Potassium Channel 1 and Volume-Regulated Anion Channels

Bestrophin-1 (Best-1) is an anionic channel activated by Ca2+. Its physiological activi-
ties include the release of molecules, such as glutamate, GABA, and chloride ions [285,286].
Best-1 is expressed in astrocytes and releases glutamate upon increased Ca2+ concentration,
thus activating neuronal and non-neuronal NMDA receptors and, in turn, potentiating
synaptic responses and modulating synaptic plasticity [287]. In specific pathological condi-
tions, such as AD and PD, astrocytes undergo a phenotypic change, shifting from glutamate
to GABA-releasing astrocytes through Best-1, thus affecting synaptic excitability and con-
tributing to memory loss [288] and altered dopamine excitability [289]. No information
about the Best-1 role in ALS is available to date. Due to the Best-1 role in other pathological
conditions, studies on a possible contribution to ALS will help understand whether it
excessively releases glutamate or shifts to GABA release, clarifying whether its activity
needs to be blocked or enhanced.

The TWIK-related potassium channel 1 (TREK-1) is a type of K2P channel with a
double-pore-domain background potassium channel [290]. In astrocytes, TREK-1 controls
cell excitability by maintaining the membrane negative potential [291], and it mediates the
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passive potassium conductance and release of glutamate from astrocytes upon heterodimer-
ization [292]. Given that these channels are in the soma and processes, instead of the perisy-
naptic domains, they limit their influence on post-synaptic receptors, namely metabotropic
glutamate receptors (mGluRs) [293]. Several factors activating G protein-coupled recep-
tors can cause fast astrocytic Ca2+-independent glutamate release from astrocytes through
TREK-1; thus, this mechanism could enhance glutamate levels at the extracellular space,
but further evidence is needed.

Similarly, volume-regulated anion channels (VRACs) release massive amounts of glu-
tamate from swollen astrocytes, which could increase the extracellular amino acid level and
overstimulate glutamate receptors in surrounding cells [294]. VRAC activity induces vol-
ume alteration in astrocytes, triggering NLRP3 activation and causing inflammation [295],
and its activity is also upregulated in the presence of ROS [296]. Based on the role of these
channels in contributing to glutamate excitotoxicity [297], it is reasonable to suppose their
implication in ALS progression. However, to the best of our knowledge, no information
is available.

4.7. Other Mechanisms Triggering Astrocytic Glutamate Excitotoxicity

A direct link between neuroinflammation and astrocyte-fostered glutamate excitotoxic-
ity has been demonstrated [298]. In astroglia, the TNF-α interaction with its receptor TNFR1
induces a cascade of intracellular events leading to the generation of prostaglandin E2 that,
in turn, activates intracellular Ca2+ elevation followed by glutamate exocytosis [223,299].
Moreover, TNF-α has a detrimental effect on astroglial glutamate uptake [300], down-
regulating EAAT2/GLT1 mRNA [301,302], thus inducing higher extracellular glutamate
levels. TNF-α can also potentiate glutamate-mediated cytotoxicity by rapidly triggering
the surface expression of Ca2+ permeable-AMPA and NMDA receptors while decreasing
inhibitory GABAA receptors on neurons. Thus, the net effect of TNF-α is to alter the balance
of excitation and inhibition, resulting in a higher synaptic excitatory/inhibitory ratio [298].

Similarly, interleukin (IL)-1β and TNF-α dose-dependently inhibited astrocyte gluta-
mate uptake by a mechanism involving nitric oxide, whereas interferon (IFN)-gamma alone
stimulated this activity [303]. Moreover, an IL-1β, TNF-α, and IFN-γ cytokine mixture
enhanced the calcium-dependent glutamate release from astrocytes induced by NO [304].

Inward rectifying Kir4.1 channels in astrocytes mediate spatial potassium (K+) buffer-
ing, a clearance mechanism for excessive extracellular K+, in tripartite synapses, and it is
also essential for glutamate and water homeostasis in synapses [305]. Kir4.1 channels are
functionally coupled to the glutamate transporters and the water transporter aquaporin-
4 [306–309]. Although it is known that the astrocyte Kir4.1 channels regulate excitability
and synaptic plasticity by controlling extracellular K+, glutamate clearance, and BDNF
level in tripartite synapse, and are consequently involved in different brain diseases, less
has been emerged in the ALS field. A reduction of Kir4.1 was observed in the brain and
ventral spinal cord of asymptomatic animals [310] and altered Kir currents were observed
in cultured SOD1G96A astrocytes [311,312]. Thus, the dysregulation of the Kir4.1 channels
in astrocytes might contribute to glutamate excitotoxicity and is considered a novel and
promising therapeutic astrocyte link [313].

These mechanisms have not been fully evaluated in ALS; however, they are likely to
have a role in disease progression where inflammation is a significant actor.

5. Astrocytes as Target of Glutamate Excitotoxicity in ALS

Glutamate toxicity is highly relevant in ALS since it may contribute to disease pro-
gression via multiple pathways, including a direct effect on the MNs and a modulation of
the astrocytic reactive phenotype and their secretome, thus providing paracrine signals to
neighboring cells. As described above, astrocytes can contribute to elevating glutamate
excitotoxicity by several mechanisms and can sense glutamate becoming targets of their
own released excitatory amino acid (Figure 3).
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Neuronal NMDA receptors mainly mediate glutamate-induced excitotoxicity; how-
ever, it is unclear whether astrocytes are involved in this phenomenon. To our knowledge,
there is no evidence of a direct contribution of astrocytic NMDA receptors as glutamate
targets affecting the astrocytes’ phenotype during ALS progression [314]. Also, no direct
evidence exists for the other ionotropic glutamate receptors expressed by astrocytes in
ALS [315].

Focusing on astrocytes as glutamate targets in ALS, it is fundamental to understand
how excessive extracellular glutamate can change the astrocyte phenotype and reactivity,
either by itself or with the contribution of other toxic molecules. It has been reported that
extracellular glutamate can trigger astrocyte depolarization [316,317], which leads to the
secretion of soluble factors, including glutamate itself [318].

Supporting the crucial role of astrocytes as a target of glutamate, Zuo and colleagues
recently showed that excessive extracellular glutamate can activate astrocyte C3 expression
and promote the release of pro-inflammatory factors, such as TNF-α and IL-1β [319].
However, the pathways responsible for this activation have not been elucidated. ALS
can exacerbate this scenario due to the presence of high extracellular glutamate levels
and mutant astrocytes, which are more reactive to toxic stimuli. Rossi and colleagues
corroborated the above hypotheses, showing that in vitro exposure to glutamate resulted in
focal degeneration of astrocytes cultured from the spinal cord of SOD1G93A mice and not in
WT-SOD1 mouse astrocytes [320]. The selective toxicity was triggered by activating specific
astrocytic mGluRs [320], suggesting a possible mechanism for the glutamate-induced
excitotoxicity in astrocytes. This evidence has also been recently confirmed by our research
group [78].

In the paragraph below, we report the most relevant evidence of the involvement of
astrocytic mGluR in ALS and the implications for potential therapeutic intervention.

Metabotropic Glutamate Receptors

We know more about the altered expression and function of astrocytic mGluRs in
ALS. In general, the stimulation of Group I, including mGluR1 and mGluR5, or Group II,
including mGluR2 and mGluR3, expressed on reactive astrocytes leads to the release of
harmful or protective substances, such as glutamate [321–324], BDNF [325], GDNF [326],
and TGF-β [327,328]. Both Groups I and II mGluRs (mGluR1/5; mGluR2/3) are overex-
pressed in the astrocytes of ALS animal models and patients [199,329–331], thus being
considered good pharmacological targets in ALS [332].

Of note, Group I mGluRs (mGluR1 and mGluR5) expressed on glutamatergic synapses
localized in the spinal cord of SOD1G93A ALS mice resulted in overexpression and enhanced
sensitivity to the agonist present in the synaptic cleft; this phenomenon triggers increased
activation of these receptors, mobilization of Ca2+ from the intracellular stores and further
glutamate release [201]. These effects started at 90 days of life, an early symptomatic
stage of the disease, and increased during the late phase. The over-expression of mGluR1
and mGluR5 at neuronal presynaptic sites paralleled the abnormal glutamate release
described above in SOD1G93A mice [195,196]. These receptors were also over-expressed at
pre-symptomatic stages of the disease in the spinal cord tissue, embracing post-synaptic
neuronal sites and non-neuronal cells, including astrocytes [199,201]. Accordingly, in vivo
downregulation of mGluR1 or mGluR5 in the SOD1G93A mouse model of ALS delayed
the disease onset, slowed the disease progression, and prolonged survival. The increase
in surviving MN numbers, together with a reduction of mitochondrial damage, down-
regulation of oxidative markers, normalization of abnormal glutamate release, and decrease
in astrocyte and microglia activation in the spinal cord, accompanied the slowing down
of the disease progression [197,198,200]. Previous studies have revealed that mGluRs
modulate excitatory synaptic transmission through various transduction pathways, i.e., by
influencing the glutamate transporter expression in cultured astrocytes [333]. Astrocytes
derived from an animal model of ALS carrying mutant SOD1 evidenced altered expressions
and functions of mGluR5, which is involved in the activity and proliferation of astrocytes



Int. J. Mol. Sci. 2023, 24, 15430 22 of 37

following damaging insults [333]. In accordance, primary astrocyte cultured from the brain
cortex of SOD1G93A rats showed a higher expression of mGluR5 than wild-type rats and
dysregulation of the cross-talk between mGluR5 and EAAT2, leading to a lower number of
Ca2+ oscillations and reduced glutamate clearance in the synapses [320,334,335]. The altered
mGluR5 function derives from the downregulation of protein kinase C epsilon isoform
(PKCε). Indeed, the restoration of PKCε in mutant SOD1G93A astrocytes determined the
normalization of Ca2+ oscillation and restoration of the dynamic mGluR5-dependent control
of glutamate clearance by these cells. As a further proof-of-concept, PKCε silencing in
wild-type astrocytes recapitulated the decreased Ca2+ oscillation observed in SOD1G93A

astrocytes [335].
The mGluRs strictly link excitotoxicity and neuroinflammation. Indeed, Berger and

colleagues demonstrated that the expression of mGluR3 and mGluR5, the more expressed
mGluRs in astrocytes, was affected by TNF-α and IL-1β in wild-type and mutant SOD1
astrocytes. Exposure to these proinflammatory cytokines down-regulated mGluR5 while up-
regulating mGluR3, suggesting the presence of neuroprotective mechanisms [336]. Indeed,
mGluR5 induced the synthesis of BDNF in astrocytes, which determines the sensitization
of MNs to excitotoxic insults [325,337,338]. Conversely, mGluR3 promotes the release of
TGF-β, thus protecting MNs from NMDA-induced excitotoxicity, and up-regulates the
expression of glutamate transporters [326]. However, this regulatory mechanism could
undergo alteration in ALS, at least at a late stage of the disease. Recently, it has been
demonstrated that high extracellular glutamate levels increase the Lipocalin-2 (Lcn-2)
concentration in the astrocyte cytoplasm by inducing a dose-dependent release of the
protein via mGluR3 activation [339]. Since Lcn-2 is a key regulator of neuroinflammation,
this mechanism could also be important in ALS.

In ALS, the elevated expression of mGluR5 makes astrocytes highly vulnerable to glu-
tamate, causing aberrant and persistent elevations of intracellular Ca2+ concentrations [340]
and inducing cells death [320]. On this basis, mGluR5 promises to be an excellent target to
counteract disease progression. Genetic and pharmacological in vivo approaches have con-
firmed this hypothesis [198,200,320,337,341,342]. The beneficial effect of mGluR5 blockade
was also confirmed in vitro since the genetic reduction or the pharmacological negative
modulation of the receptor in late symptomatic SOD1G93A mouse-derived spinal cord astro-
cytes ameliorates their reactive, inflammatory, bioenergetic, and neurotoxic phenotype [78].
These data support glutamate as an enhancer of the astrocyte reactive, proinflammatory,
and neurotoxic phenotype in ALS in response to extracellular glutamate via mGluR5.

Other mechanisms could exacerbate the aspects described above. For instance, even if
not confirmed in ALS, mGluR5 up-regulation contributed selectively to the apoptosis of
astrocytes via the activation of phospholipase C and the release of calcium from intracellular
stores as well as via the association with Homer proteins [343]. Further studies are needed to
clarify better the molecular factors linking mGluR activation and the resulting reactive and
toxic astrocytic phenotype, thus highlighting new potential targets in ALS. However, based
on the literature, mGluRs, particularly mGluR3 and mGluR5, are undoubtedly primary
mediators of the direct effects of glutamate excitotoxicity on astrocytes in ALS. This is why
their pharmacological or genetic modulation is still considered a promising approach to
disease treatment.

6. Concluding Remarks

Research on ALS has progressively shown a peculiar turning point in the approach to
the disease. Attempts to gain a deeper understanding of the molecular mechanisms and
cellular processes underlying the disease redirect the focus to MNs and have focused the
attention of scientists on glial cells and their impact on MN degeneration. It soon became
evident that all glial cells (astrocytes, microglia, and oligodendrocytes) are prone to the
disease and can foster the progression of ALS.

Astrocytes substantially affect MN wellbeing and survival since they can damage
MNs by non-cellular autonomous processes. In ALS, astrocytes undergo molecular and
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cellular changes that are harmful to MNs, leading to irreversible neurodegenerative pro-
cesses. The mechanisms of a non-neuronal cell-driven MN death are closely related to the
pathophysiological changes in ALS during disease progression, the characteristics of which
strongly suggest that they differ from the autonomous cellular pathways. In this context,
astrocytes play a fundamental role, intervening directly or indirectly in the modulation of
almost all the mechanisms proposed at the basis of MN death.

This review analyzed how astrocytes regulate excitotoxicity, inflammation, oxidative
stress, mitochondria function, and energy metabolism in ALS and how glutamate con-
tributes to these pathological astrocytic mechanisms. Importantly, we highlighted that
astrocytes may participate in these processes by enhancing glutamate secretion and its
extracellular levels (producers) and abnormally responding to the augmented glutamate
concentration (targets). Indeed, the glutamate excess produced by astrocytes can affect
heterologous cells, including astrocytes that will become, in this way, the target of their
released glutamate, exacerbating, or even triggering, abnormal astrocyte activation during
ALS progression. This aspect, although impacting the disease course, has not been widely
investigated in ALS; therefore, it deserves future studies that are able to unveil alternative
therapeutic strategies that focus on the selective interception of pro-death signals in a
cell-type-specific way.
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