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Abstract: Retinal hemorrhages in pediatric patients can be a diagnostic challenge for ophthalmolo-
gists. These hemorrhages can occur due to various underlying etiologies, including abusive head
trauma, accidental trauma, and medical conditions. Accurate identification of the etiology is crucial
for appropriate management and legal considerations. In recent years, deep learning techniques have
shown promise in assisting healthcare professionals in making more accurate and timely diagnosis
of a variety of disorders. We explore the potential of deep learning approaches for differentiating
etiologies of pediatric retinal hemorrhages. Our study, which spanned multiple centers, analyzed
898 images, resulting in a final dataset of 597 retinal hemorrhage fundus photos categorized into med-
ical (49.9%) and trauma (50.1%) etiologies. Deep learning models, specifically those based on ResNet
and transformer architectures, were applied; FastViT-SA12, a hybrid transformer model, achieved
the highest accuracy (90.55%) and area under the receiver operating characteristic curve (AUC)
of 90.55%, while ResNet18 secured the highest sensitivity value (96.77%) on an independent test
dataset. The study highlighted areas for optimization in artificial intelligence (AI) models specifically
for pediatric retinal hemorrhages. While AI proves valuable in diagnosing these hemorrhages, the
expertise of medical professionals remains irreplaceable. Collaborative efforts between AI specialists
and pediatric ophthalmologists are crucial to fully harness AI’s potential in diagnosing etiologies of
pediatric retinal hemorrhages.

Keywords: artificial intelligence; deep learning; pediatrics; retinal hemorrhage

1. Introduction

Retinal hemorrhages can pose substantial diagnostic challenges due to their association
with various systemic and ocular diseases [1]. The retina comprises a total of 10 layers,
with the outermost layer being the retinal pigmented epithelium (RPE), followed by 9 other
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layers collectively known as the neurosensory retina. The innermost layer is referred to as
the inner limiting membrane (ILM) [2]. Hemorrhages can occur within the layers of the
retina (intraretinal) or above the retina itself (preretinal). Subretinal hemorrhages are an
accumulation of blood between the neurosensory retina and the RPE. If the blood extends
into the vitreous humor, it is referred to as vitreous hemorrhage. Intraretinal hemorrhages
that occur in the superficial layers of the retina exhibit a linear streaking appearance,
following the pattern of the nerve fibers, often referred to as flame or splinter hemorrhages
due to their distinct appearance. On the other hand, intraretinal hemorrhages that occur in
the deeper layers of the retina have a more rounded shape and are referred to as dot or blot
hemorrhages, depending on their size [2–4].

The differential diagnosis of retinal hemorrhages is extensive and includes [3,5] co-
agulopathy, blood dyscrasia, severe anemia, hemolytic uremic syndrome, endocarditis,
vasculitis [2,3], normal birth [6], raised intracranial pressure (ICP), glutaric aciduria type 1,
meningitis and Terson syndrome [7]. Retinal hemorrhages can also be diagnostic indicators
for severe conditions such as abusive head trauma [1,2,8–11]. Common causes of retinal
hemorrhage in adults include diabetic retinopathy, hypertensive retinopathy, retinal vein
occlusion [2,3,12], trauma [9,13], and hematological disorders [2].

Fundus photography increases our ability to visualize, document, and monitor retinal
hemorrhages [14,15]. While the interpretation of these images heavily relies on the trained
eye of an experienced ophthalmologist, there is potential for further improving interpreta-
tion and consistency. This is where artificial intelligence (AI) and machine learning (ML)
technologies can enhance ophthalmologic practice, offering advanced computational tools
that complement, rather than replace, the expert judgment of clinical professionals. This
helps reduce variability and ensure a more standardized approach across observers [15].
By doing so, AI and ML contribute to the ongoing development of improved diagnostic
capabilities in ophthalmology.

Previous research has demonstrated the use of AI and ML to analyze fundus pho-
tographs [14–16]. These papers primarily focused on disease detection [17,18], classification
and grading [18,19], segmentation [20,21] and prediction [22] for retinopathy of prematurity
(ROP) [23,24], diabetic retinopathy [18,25,26], age-related macular degeneration [21,27–30],
glaucoma [31–33], cataracts [34], lacrimal disorders [35], keratoconus [36], amblyopia [37]
and optic nerve diseases [38,39]. Studies have demonstrated that AI and ML algorithms,
including deep learning models such as convolutional neural networks (CNNs), RNNs, and
Transformers, can accurately identify and classify different types of retinal lesions, such as
hemorrhages, exudates, and micro-aneurysms [25,26]. These algorithms can analyze large
datasets of fundus photographs and provide automated assessments of disease severity and
progression. Furthermore, AI and ML have been utilized to predict the risk of developing
certain retinal diseases, such as geographic atrophy, based on fundus image analysis [27,29].
By training algorithms on large datasets of fundus photographs and corresponding patient
data, these technologies can identify patterns and markers that are indicative of disease
progression or future complications [29].

Unlike previous studies that primarily aimed to describe abnormal exams, our study
seeks to develop and validate CNN and transformer models to differentiate between
patients with known retinal hemorrhage. This is an especially challenging task as retinal
hemorrhages can be difficult to interpret even for trained experts. To date, despite the
progress made in applying AI in ophthalmology, there is still a lack of research exploring
the potential of computational tools in differentiating the etiologies of retinal hemorrhages.

2. Results

Our study spanned multiple centers and involved a comprehensive analysis of 898 reti-
nal hemorrhage (RH) fundus images of which 301 images were excluded due to the absence
of retinal hemorrhage, resulting in a final dataset comprising 597 images. The images were
divided into medical (n = 298, 49.9%), and trauma etiologies (n = 299, 50.1%). The detailed
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distribution of the number of photos corresponding to each diagnosis is provided in Table 1.
Figure 1 showcases representative examples of these diagnoses.

Table 1. Dataset diagnosis characteristics.

Diagnosis All (n = 599) Training (n = 343) Validation (n = 127) Test (n = 127)

Medical 298 172 61 65
Retinal Vascular Disease 102 54 20 27
Leukemia 89 46 16 17
Papilledema 19 12 4 3
Coagulopathy 88 60 22 18

Trauma 299 171 66 62
Accidental Trauma 18 11 3 4
Birth Trauma 118 67 25 26
Abusive Head Trauma 163 93 38 32

Int. J. Mol. Sci. 2023, 24, x FOR PEER REVIEW 3 of 11 
 

 

The detailed distribution of the number of photos corresponding to each diagnosis is pro-
vided in Table 1. Figure 1 showcases representative examples of these diagnoses. 

Table 1. Dataset diagnosis characteristics. 
Diagnosis All (n = 599) Training (n = 343) Validation (n = 127) Test (n = 127) 

Medical 298 172 61 65 
Retinal Vascular Disease 102 54 20 27 
Leukemia 89 46 16 17 
Papilledema 19 12 4 3 
Coagulopathy 88 60 22 18 

Trauma 299 171 66 62 
Accidental Trauma 18 11 3 4 
Birth Trauma 118 67 25 26 
Abusive Head Trauma 163 93 38 32 

 
Figure 1. Representative fundus photographs from our pediatric dataset, categorized by diagnosis. 
This diverse collection includes images dichotomized into trauma cases (A) that encompass vaginal 
birth trauma (right), and abusive head trauma (left), and medical cases (B), such as ischemic CRVO 
(top left), coagulopathy (bottom left), BRVO (top right), and CRVO (bottom right). 

Upon completing the pre-processing stage, the dataset was divided at the patient 
level into distinct subsets for training, validation, and testing, representing 60%, 20%, and 
20% of the total dataset, respectively. The training subset (n = 343; 172 medical, 171 
trauma) was used to adapt the model’s parameters and to learn the underlying patterns 
in differentiating medical from traumatic retinal hemorrhages. The validation subset (n = 
127; 61 medical, 66 trauma) played a crucial role in tuning hyperparameters and selecting 
the best-performing model, ensuring the chosen model was robust yet not overfitted to 
the training data. The testing subset (n = 127; 65 medical, 62 trauma) was then used to 
provide an unbiased evaluation of the final model’s performance in unseen data. Dividing 
the data at the patient level ensured that all images from the same patient were contained 
within the same subset, minimizing the risk of data leakage between the subsets and thus 
providing a more rigorous and trustworthy evaluation of the model’s performance. This 
approach aligns with best practices in machine learning and provides a sound basis for 
extrapolating the findings to a broader population. The performance metrics of the models 
based on the ResNet architecture were highly compelling. Among the ResNet models, the 
ResNet18 model exhibited the most remarkable results, with an AUC of 0.9506 and an 
accuracy of 88.98%. It also demonstrated the highest sensitivity of 96.77% and a PPV of 
84.29%. The ResNet101 model achieved an AUC of 0.9449, while attaining the highest ac-
curacy, specificity, and PPV of 89.76%, 90.77%, and 90.16%, respectively out of the five 

Figure 1. Representative fundus photographs from our pediatric dataset, categorized by diagnosis.
This diverse collection includes images dichotomized into trauma cases (A) that encompass vaginal
birth trauma (right), and abusive head trauma (left), and medical cases (B), such as ischemic CRVO
(top left), coagulopathy (bottom left), BRVO (top right), and CRVO (bottom right).

Upon completing the pre-processing stage, the dataset was divided at the patient level
into distinct subsets for training, validation, and testing, representing 60%, 20%, and 20%
of the total dataset, respectively. The training subset (n = 343; 172 medical, 171 trauma)
was used to adapt the model’s parameters and to learn the underlying patterns in dif-
ferentiating medical from traumatic retinal hemorrhages. The validation subset (n = 127;
61 medical, 66 trauma) played a crucial role in tuning hyperparameters and selecting the
best-performing model, ensuring the chosen model was robust yet not overfitted to the
training data. The testing subset (n = 127; 65 medical, 62 trauma) was then used to provide
an unbiased evaluation of the final model’s performance in unseen data. Dividing the data
at the patient level ensured that all images from the same patient were contained within the
same subset, minimizing the risk of data leakage between the subsets and thus providing
a more rigorous and trustworthy evaluation of the model’s performance. This approach
aligns with best practices in machine learning and provides a sound basis for extrapolating
the findings to a broader population. The performance metrics of the models based on the
ResNet architecture were highly compelling. Among the ResNet models, the ResNet18
model exhibited the most remarkable results, with an AUC of 0.9506 and an accuracy
of 88.98%. It also demonstrated the highest sensitivity of 96.77% and a PPV of 84.29%.
The ResNet101 model achieved an AUC of 0.9449, while attaining the highest accuracy,
specificity, and PPV of 89.76%, 90.77%, and 90.16%, respectively out of the five models. Com-
prehensive performance metrics are presented in Table 2. AUC graphs (Figures S1 and S2)
and confusion matrices (Figure S3) are included in the supplementary materials.
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Table 2. Performance metrics of the models.

Model Accuracy AUC Specificity Sensitivity PPV NPV

ResNet18 88.98% 0.9506 83.08% 96.77% 84.29% 94.74%
ResNet34 86.61% 0.9437 87.69% 87.10% 86.89% 86.36%
ResNet50 87.40% 0.9467 84.62% 91.94% 84.85% 90.16%

ResNet101 89.76% 0.9449 90.77% 90.32% 90.16% 89.39%
ResNet152 88.19% 0.9365 84.62% 93.55% 85.07% 91.67%

ResAttNet56 87.40% 0.9400 83.08% 93.55% 83.82% 91.53%
ViT-Small 79.53% 0.8945 78.46% 82.26% 78.12% 80.95%

FastViT-SA12 90.55% 0.9628 96.92% 85.48% 96.30% 86.30%
FastViT-SA24 88.19% 0.9462 87.69% 90.32% 87.30% 89.06%

AUC: Area under the receiver operating characteristic curve, PPV: Positive predictive value, NPV: Negative
predictive value. Specificity, Sensitivity, PPV, and NPV were calculated at the Youden Index. Bolded values
indicate the highest performance among the models.

The FastViT-SA12 model with the highest accuracy misclassified 2 medical and
10 trauma cases, while the ResNet18 model with the highest sensitivity misclassified
8 medical and 6 trauma cases. ViT-Small with the lowest accuracy misclassified 12 medical
and 14 trauma cases. The misclassifications by diagnosis are presented in Tables S1 and S2.
It should be noted that the errors made by all models exhibited a discernible pattern.
Specifically, cases of acute myeloid leukemia (AML) and acute lymphoblastic leukemia
(ALL), as well as other hematologic disorders and coagulopathies that caused significant
retinal hemorrhaging, were often misclassified by all models as traumatic. This confusion
likely arose due to the similarity in the number and extent of hemorrhaging between these
medical conditions and trauma-related cases. Conversely, two instances of accidental
and abusive head trauma, characterized by minimal retinal hemorrhage, were incorrectly
identified as medical in origin. On the other hand, cases of papilledema and birth trauma
were all classified correctly. Examples of these misclassifications are provided in Figure 2.
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3. Discussion

The findings of this study illustrate the potential of deep learning models, particularly
transformer models with attention mechanisms, in differentiating medical versus traumatic
pediatric retinal hemorrhages (RH). This study is unique in that it focuses specifically
on differentiating traumatic from medical retinal hemorrhages, rather than comparing
normal and abnormal images. This distinction has significant medicolegal implications,
particularly for cases involving abusive head trauma.

Although this is the first study that investigates distinguishing etiologies of retinal
hemorrhages from fundus photos, there have been previous studies focused on detecting
the presence, segmentation, or identifying the layer of retinal hemorrhages from fundus
images [40–43].

The superior performance of FastVit-SA12 and ResNet18 in our experiments, as high-
lighted by the two highest AUCs among the evaluated models, underscores the importance
of carefully selecting model architecture in accordance with the size of the available dataset.
Both ResNet18’s and FastVit-SA12’s relatively streamlined architectures demonstrated
a notable advantage in adapting to our limited dataset, potentially due to their smaller
parameter count compared to the more intricate designs of larger ResNet and transformer
models (Table 3). The relatively fewer parameters in FastVit-SA12 and ResNet18, in com-
parison to the larger models, may have conferred an advantage in curtailing overfitting
on the limited data, consequently enhancing their ability to generalize effectively on both
the validation set and the test set. Models characterized by heightened complexity, such as
ResNet101, ResNet152, ViT-Small, and FastVit-SA24, while beneficial for larger datasets,
might exhibit diminished efficiency on smaller datasets and increased susceptibility to
overfitting to the training data. This aligns with the principle of Occam’s razor in model
selection, which suggests that simpler models are often preferable when they perform as
well, or better than, more complex models on the same task [44].

Table 3. Model characteristics of the models.

Model Number of Layers Trainable Parameters (in Millions)

ResNet18 18 11.4
ResNet34 32 21.5
ResNet50 50 24.0

ResNet101 101 43.1
ResNet152 152 58.7

ResAttNet56 56 29.8
ViT-Small 12 22.5

FastVit-SA12 12 10.5
FastVit-SA24 24 20.5

These results highlight the potential of transformers and CNNs as robust tools for
distinguishing the medical versus traumatic RH in pediatric patients, even in scenarios
involving relatively limited datasets. This finding is a testament to the need for striking a
balance between model complexity and the risk of overfitting when working with limited
datasets. Additional research using larger datasets would be advantageous in validating
these findings and exploring the performance of more complex models.

The observed patterns of misclassification within our study provide valuable insights
into areas for model optimization. Instances where extensive hemorrhages due to leukemia
were identified as trauma, and a few accidental head trauma cases were predicted as
medical. With an extensive RH, it may hide the underlying cotton wool spots, hard exudates
that may help AI to make the correct diagnosis of medical induced RH. Also, if mild
traumas are present in localized areas, AI may mistakenly interpret the image as sectoral
RH. These findings present an opportunity for targeted refinements that could effectively
enhance model performance. Furthermore, these subtle distinctions between medical and
traumatic cases offer an avenue to deepen our comprehension of various pathophysiological
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presentations, potentially leading to the integration of supplementary clinical features or
fine-tuned training strategies. Overall, the results accentuate the potential of the model
to be a valuable diagnostic tool for differentiating retinal hemorrhages, while continually
striving for enhancement and adaptation to the multifaceted nature of these conditions.

While our study aims to explore the potential of computational tools in differentiating
the etiologies of retinal hemorrhages, it is important to acknowledge the expertise of
experienced ophthalmologists as a benchmark in this field. The goal is to complement their
expertise with AI and ML technologies, rather than replace it.

Despite the encouraging findings, our study is not without limitations. While our
dataset encompasses a diverse range of RH etiologies, it is relatively small and constrained
by factors such as photo quality, reliance on expert judgment, and historical chart informa-
tion. The inconsistency in technologies employed to capture the images, coupled with the
lack of standardization in luminance, magnification, and field, further contributes to these
limitations. Additionally, some cases presented with mixed diagnoses, such as increased
intracranial pressure with optic disc edema and trauma, adding complexity to classification.
Our study also acted by proxy, with diagnoses predetermined based on medical history,
laboratory and radiologic findings, physical examination, and multidisciplinary assess-
ments. To address these limitations in future research, efforts should focus on acquiring a
larger, higher-quality dataset that encompasses a more diverse set of retinal hemorrhage eti-
ologies, while adhering to standardized image acquisition protocols to ensure consistency
and reliability.

We conclude AI technology may be a helpful tool for assisting medical professionals
in accurately distinguishing between medical and trauma-induced retinal hemorrhages. Of
course, careful attention must always be paid to medical history, laboratory and radiologic
findings, physical examination, and multidisciplinary assessments.

AI systems might not determine the precise biomechanism and degree of force respon-
sible for the trauma that induced the RH. In cases where distinguishing between abusive
and accidental physical trauma is crucial for legal or investigational purposes, the expertise
of skilled medical professionals remains essential [10,11].

As the field of AI in medicine continues to advance, further research and refinement
of algorithms may improve its capacity to gather additional contextual information and aid
in unraveling the specific details surrounding traumatic events. Collaborations between
AI experts and medical professionals will be pivotal in obtaining the full potential of AI
while ensuring responsible and ethical implementation in the domain of medical diagnosis.
Despite its current limitations, AI remains a promising and invaluable tool in the realm of
healthcare, contributing significantly to improved diagnostic accuracy and patient care.

4. Methods and Materials
4.1. Study Population

Pediatric fundus photographs were collected from Soonchunhyang University Cheo-
nan Hospital in Korea, Children’s Hospital of Philadelphia, Wills Eye Hospital, The Hospi-
tal for Sick Children (Toronto), Golisano Children’s Hospital and Flaum Eye Institute in
Rochester, New York, NY, USA, and Queensland Children’s Hospital in Brisbane, Australia.
The data collection period spanned from 2015 to 2023. These images were captured using
either handheld portable devices (e.g., RetCam (RetCam 3, Natus Medical Inc., Pleasan-
ton, CA, USA), ICON (Phoenix Clinical, Inc., Pleasanton, CA, USA), or Nonmyd7 (Kowa,
Torrance, CA, USA)) or by upright standard fundus photography. We included cases that
were confirmed abusive head trauma (AHT), a determination that was made through mul-
tidisciplinary child abuse team evaluation. We also included medically validated cases that
were correlated with laboratory results as well as cases of accidental trauma as validated
by witness, scene investigation and/or consistent physical findings. We excluded cases
with uncertain etiology. The utilization of unrecognizable, anonymous images negated the
requirement for Institutional Review Board (IRB) approval, given the absence of any identi-
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fiable personal information associated with the participants. Photographs were provided
from the personal collections of the authors.

4.2. Annotation

Image labels were assigned based on the underlying case diagnosis. These labels
were categorized as either traumatic or medical conditions based on medical records from
the input of multi-specialists including the child abuse experts. The determination of
hemorrhage presence or absence was entrusted to a panel of pediatric ophthalmologists
(D.W.S., G.B., A.V.L., B.J.F.). In situations where there were varying interpretations of the
image, a consensus was achieved through thoughtful deliberation until agreement was
reached on the final classification.

4.3. Data Preprocessing

Prior to analysis, all images were subjected to standardized preprocessing procedures
in order to ensure uniformity and enhance variability across images from different sources
and devices. This involved resizing all images to a consistent shape of 256 × 256 pixels using
bilinear interpolation, with zero-padding as necessary. Bilinear interpolation provided a
reliable method for resizing images without introducing significant artifacts or distortions.
Additionally, each image was normalized per channel based on the mean and standard
deviation derived from the ImageNet training set [45]. During the training process, the
augmentation steps included resizing the images to 224 × 224 to use transfer learning,
applying random contrast ranging from 0.5 to 1.5, introducing Gaussian noise with a kernel
size of 11 × 11 and sigma ranging from 0.1 to 2, randomly flipping the images horizontally
with a 50% probability, and applying cropping with a scale range of 0.08 to 1. A minimum
scale range of 0.08 ensures that even smaller details within the images are considered
during training, potentially capturing subtle patterns that may be diagnostically relevant.
Furthermore, an additional augmentation technique known as cutout [46], involving the
placement of 4 randomly positioned obscuring boxes each measuring 44 × 44 (Figure 3),
was employed. The comprehensive combination of these data augmentation methods
aimed to prevent overfitting and promote the generalizability of the dataset. During the
validation and testing phases, the images were resized to a matrix shape of 224 × 224 and
underwent per-channel normalization, mirroring the preprocessing steps implemented
during training.
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Figure 3. Depiction of the ‘cutout’ technique, which obscures random square regions to enhance the
model’s focus diversity.

4.4. Algorithm Development

In this study, our focus was the training of CNN and Transformer architectures to
effectively discern between retinal hemorrhages of traumatic and medical origins. To
achieve this, all experiments are derived from standard ResNet-based architectures [47]
(ResNet34 shown in Figure 4), Residual Attention Networks (ResAttNet56) [48] using
attention residual learning, a vision Transformer (ViT) image classification model [49], and
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FastViT [50], a hybrid vision transformer architecture (Table 3). Each model was fine-tuned
after initialization with pretrained ImageNet weights from the PyTorch repository (torchvi-
sion 0.15.0; IMAGENET1K_V1) [51] for ResNet models and PyTorch Image Models [52,53]
for ResAttNet56, ViT-small, and FastViT models.
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Figure 4. Visualization of the ResNet convolutional neural network (ResNet34) architecture and its
application in our study. The flow diagram illustrates the journey from input fundus photos through
the complex, multi-layered structure of the ResNet model, ending with the final task output.

For model fine-tuning, the default last fully connected layer is replaced with two
custom fully connected hidden layers before projection to a two-element SoftMax activated
logit score. The fully connected hidden layers are of dimensions 256 and 128, respectively,
and employ a Rectified Linear Unit (ReLU) activation function. Additionally, the fully
connected hidden layers are each implemented with batch normalization prior to ReLU
activation and a dropout rate of 50%. During the fine-tuning phase, all layers of the network
were unfrozen. This strategic approach enhances our models’ adaptability and enables
them to effectively accommodate the unique characteristics of our dataset.

Each model was trained for a total of 50 epochs, except for ViT-Small, which was
trained for 250 epochs. The model was optimized using Adam optimizer [54] with a stan-
dard binary cross-entropy loss function. We employed Hyperopt [55] for hyperparameter
tuning and determined that a learning rate of 0.001 and a batch size of 32 consistently
yielded the best performance across all ResNet and transformer models used in our study.
Optimal model selection was determined based on validation data performance. Only after
this stringent evaluation did we set forth to apply the chosen model to the test dataset for
final assessment.

4.5. Statistics

For the purpose of this research, the dataset was randomly partitioned into training,
validation, and test cohorts at a ratio of 60:20:20, respectively, on a per-patient basis (i.e., all
images from the same patient were used in the same cohort). Rigorous evaluation of the
model’s performance was conducted using the area under the receiver operating charac-
teristic curve (AUC) on the independent test dataset. Furthermore, sensitivity, specificity,
positive predictive values (PPV), and negative predictive values (NPV) were calculated at
the Youden Index threshold, which effectively distinguishes cases with traumatic causes
from medical causes. The Youden Index facilitates a comprehensive assessment of the ROC
curve by pinpointing an optimal cutoff value that maximizes the difference between the
true positive rate (sensitivity) and the false positive rate (1-specificity).
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