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Abstract: Pancreatic ductal adenocarcinoma (PDAC) is a devastating tumor type where a very high
proportion of people diagnosed end up dying from cancer. Surgical resection is an option for only
about 20% of patients, where the 5-year survival increase ranges from 10 to 25%. In addition to surgical
resection, there are adjuvant chemotherapy schemes, such as FOLFIRINOX (a mix of Irinotecan,
oxaliplatin, 5-Fluorouraci and leucovorin) or gemcitabine-based treatment. These last two drugs have
been compared in the NAPOLI-3 clinical trial, and the NALIRIFOX arm was found to have a higher
overall survival (OS) (11.1 months vs. 9.2 months). Despite these exciting improvements, PDAC still
has no effective treatment. An interesting approach would be to drive ferroptosis in PDAC cells. A
non-apoptotic reactive oxygen species (ROS)-dependent cell death, ferroptosis was first described
by Dixon et al. in 2012. ROS are constantly produced in the tumor cell due to high cell metabolism,
which is even higher when exposed to chemotherapy. Tumor cells have detoxifying mechanisms, such
as Mn-SOD or the GSH-GPX system. However, when a threshold of ROS is exceeded in the tumor
cell, the cell’s antioxidant systems are overwhelmed, resulting in lipid peroxidation and, ultimately,
ferroptosis. In this review, we point out ferroptosis as an approach to consider in PDAC and propose
that altering the cellular ROS balance by combining oxidizing agents or with inhibitors of the main
cellular detoxifiers triggers ferroptosis in PDAC.

Keywords: pancreatic ductal carcinoma; reactive oxygen species; ferroptosis; apoptosis; antioxidants;
oxidants; FOLFIRINOX; arsenic

1. Introduction

Pancreatic ductal adenocarcinoma (PDAC) is the most common type of pancreatic
cancer and the third cause of cancer death in both sexes. PDAC has almost the same number
of diagnoses (496,000) as deaths (466,000), making it the most lethal type of cancer [1]. To
date, surgical resection is the preferred method to overcome PDAC. On the one hand,
tumors originating in the Vater ampulla, bile duct, or head of the pancreas are managed
with a pancreatoduodenectomy (Whipple procedure). On the other hand, tumors located
in the tail or body of the pancreas are surgically removed by a pancreatectomy performed
distally and some cases require a total pancreatectomy [2]. Regrettably, despite the options
for surgical resection, the 5-year survival rate is 25%. Moreover, this rate remains at 10%
when there are no surgical resection options [3–5].

PDAC has a characteristic mutational profile, where mutations in the genes KRAS,
cyclin-dependent kinase inhibitor 2A (CDKN2A), tumor protein p53 (TP53) and SMAD
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family member 4 (SMAD4) stand out [6,7]. The identification of germline mutations
associated with PDAC may have major implications for treatment and familiar genetic
screening. Up to 20% of patients could harbor germline/somatic mutations in genes
associated with DNA damage repair (DDR), such as BRCA1, BRCA2, PALB2, CHECK2
and ATM [6]. Pathogenic somatic or germline mutations in BRCA1/2 lead to homologous
recombination repair deficit and increase the sensitivity to agents that generate crosslinks
in DNA strands, such as platinum bases therapies [8].

Accumulating molecular data allows the distinction of PDAC according to molecular
subtype. Bailey and colleagues differentiated four molecular subtypes of PDAC, which
could lead to an improvement in the accuracy of possible future treatment [9].

In routine clinical practice, patients are categorized into three groups according to
their prognosis: patients with resectable, borderline resectable or metastatic PDAC [10].
Within the resectable group, patients have to receive adjuvant chemotherapy to avoid
disease relapse, which is very frequent [11,12]. Regarding the metastatic group, the most
effective treatments are FOLFIRINOX and the gemcitabine plus nab-paclitaxel scheme [10].
No current data on clinical trials comparing these two treatments are available. But
the effectiveness of these alternatives has been reported to be similar in a comparative
study [13]. In the recent NAPOLI-3 clinical trial, the combination of liposomal irinotecan,
5-FU/leucovorin and oxaliplatin (NALIRIFOX) has improved survival of patients com-
pared to gemcitabine plus nab-paclitaxel in OS (11.1 months vs. 9.2 months) and PFS
(7.4 months vs. 5.6 months) [14].

PDAC is also characterized by an immunosuppressive tumor microenvironment
(TME). Tumor-associated macrophages can raise the number of myeloid-derived suppres-
sor cells, also known as MDSCs, which subsequently contribute to local immunosup-
pression [15]. Another characteristic of PDAC is that it is surrounded by a dense stroma
(desmoplasia) that constricts the vasculature, limiting oxygen and drug delivery to the
tumor [16,17]. The combination of the genetic profile and the hostile TME make the solid
pancreatic tumor with the lowest 5-year survival rate [1]. Given the immunosuppressive
environment of PDAC, restoring immunogenic capacity is a possible therapeutic target.
One of these immunotherapies is against CD40, a tumor necrosis factor receptor super-
family member in macrophages, which is responsible for modulating the activation of the
T-cell. Activated CD40 has been linked to the orchestration of antitumor responses [18–20].
Another novel approach is the development of vaccines against cancer. The GVAX vaccine
consists of a whole-cell vaccine that has been transfected with the granulocyte–macrophage
colony-stimulating factor acting as a maturation factor for dendritic cells. The GVAX
vaccine in combination with chemoradiotherapy has been used after surgery. The vaccine
showed a disease-free survival benefit of 24.8 months (95% CI, 21.2–31.6) in the GVAX
group compared to 17.3 months (95% CI, 14.6–22.8) in the control group [21]. Both con-
ventional and novel therapies are still not fully effective. Therefore, new approaches must
be developed.

In this context, a new therapeutic outlook is to induce iron-dependent cell death
in combination with conventional chemotherapy. Iron-dependent cell death is a type of
non-apoptotic regulated cell death called ferroptosis. It is characterized by an accumulation
of lipid peroxides in cell membranes [22]. Ferroptosis can occur when the cellular antioxi-
dant systems—such as glutathione peroxidase (GPX)—glutathione (GSH)—that prevent
ferroptosis are surpassed by reactive oxygen species (ROS) [23]. ROS are considered a
by-product of mitochondrial metabolism, which is very active for the production of cel-
lular ATP [24]. It is noteworthy that mitochondrial metabolism is known to play a role
in susceptibility to ferroptosis through the production of ROS [25,26], which are mainly
produced in the mitochondrial respiratory chain during aerobic metabolism [25,27]. Cancer
cells are associated with high proliferation and active metabolism. Therefore, they need
high levels of energy, resulting in an increased metabolism. This high energy demand leads
to excessive ROS generation [28–30]. High ROS concentration has been associated with
increased aggressiveness and reduced survival in the breast cancer scenario [31]. It has also
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been reported that PDACs with lower ROS are more resistant to chemotherapy [32], since
DNA oxidation and double-strand breaks (DSBs) caused by ROS are known to result in the
accumulation of multiple mutations [33]. In cancer cells, the numerous mutations increase
the risk of developing resistance to conventional treatments [34].

In addition, triggering ferroptosis has been shown to be effective in overcoming
chemotherapy resistance, as demonstrated by Sun et al. with ent-Kaurane diterpenoids
suppressing cisplatin resistance [35]. Ferroptosis may also reverse resistance to some
immunotherapies, as it has been shown that inhibition of ferroptosis promotes resistance to
anti-PD-1/PD-L1 therapy [36]. In the context of overcoming resistance, ferroptosis could be
responsible for re-sensitizing cells resistant to radiotherapy. Indeed, in radiotherapy, a large
amount of ROS is produced by the up-regulation of ACSL4 and inactivation of ferroptosis
scavengers, such as GPX4 [37].

Altering the ROS balance is a way to induce cell death by ferroptosis [22], which
would be an effective way to kill cancer cells. Increasing intracellular ROS levels to treat
PDAC is an advantage over conventional treatments as it confers chemosensitivity to
cancer cells [38,39]. Hence, promoting an imbalance between iron-dependent ROS and
cellular detoxification mechanisms subsequently leads to cell death by ferroptosis [23]. To
disrupt the ROS balance in the cell and to cause toxicity, one possible approach would be
to inhibit the GSH-GPX detoxification system. The loss of GSH would result in the loss of
cellular homeostasis and ultimately cellular dysfunction causing cell death by ferroptosis
(Figure 1) [40,41].
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Given its therapeutic potential, here we review the possibilities of ferroptosis as
a therapeutic target in PDAC due to the synergistic effect it has in combination with
conventional chemotherapy.

2. Reactive Oxygen Species Balance in PDAC

Oxygen is an essential component of life. But it can be harmful when it causes
oxidative stress. Oxidative stress is a phenomenon characterized by an imbalance between
the production and detoxification of ROS [42]. These reactive species contain unpaired
electrons, which makes them highly reactive oxygen free radicals. Examples of these species
are superoxide (O2

−) and hydroxyl (OH−) which can be transformed into the more stable
hydrogen peroxide H2O2 [43]. ROS in the cell can act as trigger molecules for cell death,
leading to ferroptosis [22].

2.1. Generators of ROS

ROS are continuously generated during aerobic oxygen metabolism. With approxi-
mately 80% oxygen consumption, mitochondria are the major contributor to ROS produc-
tion [44]. The mitochondria are the organelle responsible for producing ATP by oxidation
of lipids, glucose and amino acids. In the tricarboxylic acid cycle, an electron from these
molecules is donated to the electron transport chain resulting in the oxidation of O2 to
O2
− [45]. More specifically, O2

− is produced at several sites in the mitochondria, including
complex I (sites IQ and IF) and complex III (site IIIQ). In the mitochondrial matrix, the O2

−

is then converted to H2O2 by manganese superoxide dismutase (Mn-SOD). In this manner,
H2O2 can be converted in OH− via the Fenton reaction [25,46,47]. The Fenton reaction is
another source of ROS. This catalytic reaction ends up with ferroptosis, and is dependent
on ROS and ferrous ions (Fe2+), producing ferric ions (Fe3+) [48] (Figure 2A).

Additionally, ROS generated by the nicotinamide adenine dinucleotide phosphate
oxidases (NADPH) family have been reported to be implicated in PDAC growth and
survival (Figure 2B) [49]. These NOX-derived ROS have been reported to transmit cell
survival signals via the AKT-ASK1 pathway and also by inhibiting JAK2 dephosphorylation
by tyrosine phosphatases [50,51]. Within this family, there are seven members: NOX1,
NOX2, NOX3, NOX4, NOX5, dual oxidase 1 (DUOX1) and DUOX2 [52]. NOX enzymes
can transfer electrons throughout the membranes to produce O2

−, which will be converted
to H2O2 [53]. Furthermore, activating NOX can increase intracellular ROS through the
interaction with Toll-like receptors, which eventually leads to the activation of the redox-
sensitive nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) and NRF2,
which is a master regulator of the antioxidant response by controlling the expression of
components from GSH antioxidant system (Figure 2B) [54,55]. More specifically, NOX4
is overexpressed in PDAC [56], and has been identified as a potential therapeutic target
as it can generate high levels of ROS and also trigger several signaling pathways related
to colorectal cancer progression [57]. This NOX-mediated ROS production has been also
related to the progression of PDAC at the mRNA level [57,58].

2.2. Scavengers of ROS

From the aforementioned, high intracellular ROS levels can lead to cell death by
ferroptosis. However, there are cellular control systems mainly made up of antioxidant
enzymes, such as Mn-SOD, catalase (CAT), GPX and thioredoxin (TXN), and other non-
enzymatic antioxidants, including GSH, ascorbic acid and tocopherol (Figure 3) [59–61].
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Figure 2. Different cellular ROS production. (A) ROS generation in the mitochondria. O2
− is

produced in sites IQ, IF and IIIQ and converted in H2O2. Then, Fenton reaction takes place to convert
H2O2 in OH− and lead to oxidation of Fe2+ to Fe3+. (B) Intracellular ROS production in pancreatic
tumor cells by NOX family of proteins and its role in PDAC maintenance. Arrows indicate activation
and T bars denote repression.
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Physiologically, GSH can detoxify a cancer cell in two ways: directly by interacting
with ROS, or indirectly together with GPX. In the latter, GSH acts as a co-substrate of
GPX in order to reduce hydrogen peroxide (H2O2) and lipid peroxide (Lipid-OOH) into
water and lipid hydroxyl (Lipid-OH), respectively [62,63]. GPXs have several isoforms,
of which GPX4 is known to be a central regulator of ferroptosis [23]. It has been shown
that inhibition of GPX4 signaling through thiostrepton (TST) induces ferroptosis in PDAC
cells (Figure 3). Likewise, RAS-selective lethal 3 (RSL3), another GPX4 inhibitor, reduced
proliferation in several PDAC-derived cell lines (Figure 3) [64]. Along the same line, ML-
162 acts as an inhibitor of GPX4 and induces ferroptosis in gastric cell lines (Figure 3) [65].
Similarly, erastin acts as ferroptosis inducer through the inhibition of the glutamate/cystine
antiporter of system Xc− and consequently suppresses the GSH synthesis [66]. These results
open the door to new approaches with GPX4 inhibition as a target to increase therapeutic
efficacy in combination therapies. Within mitochondrial detoxification systems, H2O2 is
converted to oxygen and water by peroxidases like CAT in the cytoplasm (Figure 3) [67]. The
overexpressed SOD2 system, in synergy with PPAR, inhibits mitochondrial ROS-mediated
apoptosis in PDAC cell lines, which promotes PDAC proliferation [68].

2.3. ROS Balance

From the aforementioned research, ferroptosis is a result of missing or insufficient
antioxidant defense systems, such as GPX4 and a high ROS intracellular level leading
to cell death mediated by membrane lipid peroxidation (LPO) [23,69]. In particular, fer-
roptosis consists of iron-mediated peroxidation of polyunsaturated fatty acids (PUFAs)
(Figure 4). Thus, PUFA production is mainly mediated by two enzymes—acyl-coenzyme A
(acyl-CoA) synthetase long-chain family member 4 (ACSL4) and lysophosphatidylcholine
acyltransferase 3 (LPCAT3) in the endoplasmic reticulum (ER)—which, in the end, causes
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LPO mediated by the lipoxygenase (ALOX) [70]. In fact, LPO is a process that occurs in
normal cells [71], but when the GSH-GPX4 system is depleted, lipid peroxides can accu-
mulate in cells [22,71] leading to cell membrane rupture, resulting in ferroptotic cell death.
Contrary to PUFAs, monounsaturated fatty acids (MUFAs) cannot be peroxidized due to
a lack of bis-allylic moieties (Figure 4) [72]. These MUFAs are synthesized by acyl-CoA
synthetase long-chain family member 3 (ACSL3) or stearoyl-CoA desaturase (SCD/SCD1).
Interestingly, SCD1 is overexpressed in PDAC and correlates with aggressive phenotype by
increased tumor size, poor tumor differentiation and short overall survival [73]. Moreover,
SCD1 together with MUFAs can compete functionally to inhibit PUFA-related ferroptosis
(Figure 4) [72,74].
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Considering the above, altering the ROS balance may be a key therapeutic target by
inhibiting detoxification systems such as GSH-GPX4, which will thereby eliminate PDAC
cells by ferroptosis.

3. ROS Exhibit Specific Biological Functions According to Different Molecular
Subtypes of PDAC

In recent years, several cooperative networks, such as the International Cancer Genome
Consortium and The Cancer Genome Atlas (TCGA) have been able to distinguish different
types of tumors by molecular differences [75,76]. With this knowledge, it is possible to
stratify patients according to their differential molecular profile and offer them a specific
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treatment option to improve their prognosis [77]. Here, we provide an integrated phenotype
on the effect of ferroptosis by ROS according to different PDAC molecular subtypes. The
rationale to set different molecular subtypes of PDAC is based on the need to stratify
patients to perform personalized medicine.

To enhance therapeutic opportunities in PDAC, a molecular taxonomic classification
was established to take advantage of the molecular subtypes of pancreatic cancer [9,78].

As mentioned above, PDAC harbors a variety of genetic mutations that lead to KRAS
activation as well as the loss of TP53, SMAD4 and CDKN2A [6,7,79]. In addition to these
major alterations, there are other molecular mechanisms playing a role in the deregulation
of cellular processes: DNA damage repair, TGF-β signaling or cell cycle regulation [78]. A
better understanding of gene signaling networks may open the door to cluster PDACs with
the goal of developing better therapies.

Bailey and colleagues identified four main molecular subtypes with a whole transcrip-
tomic profile obtained by RNA-seq analysis of 266 primary PDAC samples. These subtypes
were squamous (quasi-mesenchymal), pancreatic progenitor (classical), immunogenic and
aberrantly differentiated endocrine-exocrine (ADEX, exocrine-like) [78]. Subsequently,
Collisson et al. proposed a new stratification based on three different subtypes: quasi-
mesenchymal, which is very similar to the squamous molecular subtype proposed by Bailey;
the classical subtype equivalent to the previous progenitor subtype; and the exocrine-like
subtype previously reported as ADEX [9]. The integration between molecular profiling,
histopathology and their microenvironment has been proposed by our group. This inte-
gration can significantly help in observing ROS sensitivity in different subtypes of PDACs
and could allow us to identify which ones could be more susceptible to cell death by
ferroptosis [80].

3.1. The Squamous Molecular Subtype and ROS

The squamous subtype is characterized by a marked mesenchymal phenotype, con-
ferred by the expression of PDX1, HNF1B and GATA6 (Figure 5A). This subtype is related to
the worst prognosis due to its capacity to drive epithelial-to-mesenchymal transition (EMT),
and therefore, metastases [9,81]. Moreover, the squamous subtype is enriched by TP53
mutations, and presents activation of the TP63∆N associated network (Figure 5A). TP63∆N
underlies the development of an EMT-like program and maintains the core regulatory net-
work responsible for chromatin accessibility, epigenetic modifications and gene expression
patterns (Figure 5A) [9,82]. Normally, P53 can confer antioxidant properties to the cells,
providing antitumoral protective functions [83,84]. More specifically, the Tumor Protein
53-Induced Nuclear Protein 1 (TP53INP1), a target of P53, plays a key role in antioxidant
defense by participating in the elimination of ROS-producing altered mitochondria [85,86].
Moreover, the functions of the key antioxidant regulator NRF2 can be attenuated by P53
mutant proteins (Figure 5A) [87–89].

3.2. The Progenitor Molecular Subtype and ROS

The pancreatic progenitor subtype was equivalent to the classical subtype and featured
the epithelial-like phenotype. It is characterized by high expression levels of epithelial and
adhesion-associated genes, such as CDH1/E-cadherin [9,78]. This subtype has molecular
features of KRASmut-dependent PDAC [90]. In addition, FOXA2/3, PDX2, MNX1 and
GATA6 are highly expressed in the pancreatic progenitor subtype contributing to early pan-
creatic development (Figure 5B) [9]. In fact, ROS are critical in the KRAS-driven PDAC [91].
It has been shown that O2

− is a pro-survival factor in PDAC. Consequently, oncogenic
KRAS can increase ROS by mitochondrial dysfunction and alteration of NADPH oxidase
activities (Figure 5B) [92]. Thus, the mitochondrial ROS can drive essential signaling
routes, such as ERK1/2 from the MAPK signaling pathway by upregulation of epidermal
growth factor receptor (EGFR) and activation of NF-κB, both of which are implicated in
PDAC progression (Figure 5B) [91,93,94]. In this regard, to counteract the high ROS levels
due to cancer progression, oncogenic KRAS can up-regulate the antioxidant defense sys-
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tems. This can occur through NADPH generation by malic enzyme 1 (ME1) and isocitrate
dehydrogenase 1 (IDH1), or by contrast through NRF2 activation (Figure 5B) [95,96].
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Figure 5. ROS involvement according to different molecular subtypes of PDAC. (A) ROS modulation
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(D) ROS generation and molecular features of the immunogenic molecular subtype of PDAC. Arrows
indicate activation and T bars denote inhibition.

3.3. The Aberrantly Differentiated Endocrine-Exocrine (ADEX, Exocrine-Like) Subtype and ROS

ADEX tumor subtype stands out for exhibiting transcriptional programs characteristic
of a more terminally differentiated normal pancreas. This subtype can exhibit both an
exocrine or an endocrine transcriptional profile [9]. On the one hand, the main networks
identified in ADEX involve the transcription factors NR5A2, MIST1 and RBPJL, whose main
role is to drive acinar differentiation, pancreatitis and regeneration (Figure 5C) [78,97,98].
On the other hand, INS, NEUROD1, NKX2-2 and MAFA are associated with endocrine
differentiation and onset diabetes (Figure 5C) [78]. This genetic profile has been linked to
KRAS activation [9,78]. Concerning ROS generation in this subtype, the serine/threonine
kinase Protein Kinase D1 (PKD1) is a major contributor to mitochondrial ROS (mtROS)
generation [99]. Indeed, when activated, PKD1 can increase PDAC cancer cells’ sur-
vival through the inactivation of c-Jun N-terminal kinases (JNK) 1/2 and P38 signaling
(Figure 5C) [100].
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3.4. The Immunogenic Subtype and ROS

The immunogenic subtype has a molecular profile very similar to the pancreatic pro-
genitor subtype. This profile can be differentiated by the pattern of the immune infiltration
resident within the TME, and more specifically, in the stroma. This stroma is comprised
of extracellular matrix proteins, tumor-associated vasculature, fibroblasts and immune
cells, which engender a poor prognosis in PDAC and ultimately hinder drug delivery [101].
From the foregoing, this subtype is associated with a decrease in tumor-like cells, and
consequently, immune cells play a major role in this tumor subtype [9]. Thus, in tumors
where there is a significant infiltration of immune cells, such as M1-like macrophages, there
is a higher survival rate due to greater activation of resident memory cells (Figure 5D) [102].
Nevertheless, this immunogenic PDAC is associated with the classical subtype (previously
described by Collisson et al.), which was, in turn, governed by the oncogenic pheno-
type of KRAS and the oxidative stress it caused conferring a pro-survival factor to PDAC
cells [9,92,95,96]. The oncogenic phenotype of activated KRAS is followed by loss of phos-
phatase and tensin homolog (PTEN), which is a tumor suppressor gene that inhibits the
PI3K/AKT signaling pathway and has a prevalence of 60% in PDAC (Figure 5D) [103].

Considered together, these molecular scenarios bring new rationales for different
possibilities for inducing cell death in PDAC. Thus, recapping the aforementioned, ferrop-
tosis is a type of cell death that has a lot of potential [22,104]. If we can take into account
the molecular subtypes of PDAC, we can enhance its effectiveness, and provide the best
treatment for each patient to solve a personalized medicine challenge. Following this
assumption, all pancreatic progenitor, ADEX and immunogenic patients could be treated
in order to increase intracellular ROS and decrease the levels of antioxidant systems, as
previously described with oncogenic KRAS colorectal cancer (CRC) models treated with
β-elemene (Pterodon emarginatus) and Cetuximab [105]. Also, in these three PDAC subtypes,
it could be interesting to target the NRF2 signaling pathway. Cetuximab is reported to
boost RSL3-induced ferroptosis by inhibiting the NRF2 pathway in KRAS-mutated CRC
cells [106]. Regarding squamous PDAC, it presents a mutated TP53 genetic background,
which offers a divergent model of ROS production and hence ferroptosis [107]. On the one
hand, P53 can decrease intracellular levels of ROS and regulate metabolic intermediates,
such as TIGAR and GLS2, that decrease cellular levels of ROS [108,109]. On the other hand,
P53 has been found to play a major role in inducing ferroptosis by transcriptional repres-
sion of SLC7A11, impairing cysteine import and promoting ferroptosis initiation [107,110].
Therefore, new approaches to studying the role of P53 in ferroptosis are needed.

In that sense, ferroptosis is the final process to which all of these pathways would lead.
Similarly, the activation of caspases by macromolecular processes results in the activation
of procaspases and the proteolytic process that will lead to cell death by apoptosis [111].
Meanwhile, ferroptosis is a caspase-independent cell death that is produced by PUFA
oxidation via intracellular high ROS levels [112]. Lipoxygenases (LOX) activity can cat-
alyze PUFA-containing phospholipids and generate a pool of pro-ferroptotic peroxidized
lipids [113]. Subsequently, iron is an essential component of the Fenton reaction to produce
an intracellular ROS [114]. Free iron in the cell is essential for ferroptosis. However, iron
is not required to trigger apoptosis. Iron chelators can act as control systems for the fer-
roptosis [115,116]. In this regard, GPX4 may act by preventing the toxicity produced by
peroxidized lipids while maintaining the integrity of the lipid bilayer [117].

Given this overview of PDAC molecular subtypes and their involvement in the fer-
roptosis process, we will now analyze the interaction between ROS and chemotherapy
treatments commonly used in routine clinical practice.

4. Reactive Oxygen Species and Commonly Used Chemotherapy in PDAC

From the aforementioned, PDAC can only be resected in a minority of cases, and the
prognosis for survival after surgery is about one year [118–120]. At this point, combined
chemotherapy is the most used option to treat PDAC patients after resection and in unre-
sectable cases to improve disease-free survival and overall survival [121]. ROS production
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is a shared consequence among chemotherapies due to their involvement in triggering cell
death. Therefore, combinatorial therapy based on ROS generation to increase toxicity and
susceptibility to other adjuvant therapies would be a potential therapeutic approach. In
this section, the modulation of ROS by the main chemotherapeutics against PDAC will
be discussed.

Gemcitabine monotherapy has been traditionally the cornerstone of chemotherapy
in PDAC. Now, it is used in frail patients. It is known that gemcitabine induces the
accumulation of ROS during treatment, which is a new cytotoxic effect that has come
under the spotlight in recent years [122]. Some studies have shown mechanisms by which
gemcitabine can cause ROS accumulation through NF-kB activation [123], and thus have a
possible role in favoring ferroptosis. It has also been reported that gemcitabine can induce
GSH synthesis by activation of NRF2. Thus, favoring gemcitabine resistance in the end
(Figure 6) [124].
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While less recommended, capecitabine monotherapy is also useful in selected patients
and in combination with gemcitabine [10]. A study using cardiomyocytes reported that
capecitabine could cause lipid peroxidation and oxidative stress [125]. Thus, it causes
ferroptosis, thereby increasing its cytotoxic effect.

Within polychemotherapies, FOLFIRINOX is used in the first line of treatment for
PDAC [10]. This chemotherapeutic regimen contains 5-FU, which has been shown to
elevate ROS levels and trigger mitochondrial dysfunction by up-regulating BAX/BCL-2.
In a study, it was found that suppressing the generation of ROS abolished the cell growth
inhibition of 5-FU [126]. Irinotecan has been reported to increase intracellular ROS levels
and cause cell death by the activation of JNK and P38 MAPK pathways (Figure 6) [127].
Oxaliplatin can also increase intracellular ROS and cause apoptosis in a dose-dependent
manner in PANC-1 and MIA PaCa-2 [128]. In combination, these drugs that make up
FOLFIRINOX can have a synergistic cytotoxic effect in such a way as to generate elevated
oxidative stress to ultimately cause ferroptosis.



Int. J. Mol. Sci. 2023, 24, 14979 12 of 21

To follow up with polychemotherapies, a common combination to treat metastatic
PDAC is gemcitabine plus albumin-bound paclitaxel [10]. It has been shown that paclitaxel
can increase the amount of intracellular ROS and inhibit the antioxidant action of SOD-2
(Figure 6) [129]. The combination of gemcitabine and paclitaxel can be very interesting
since increasing intracellular ROS levels and inhibiting antioxidant systems can cause cell
death by ferroptosis, enhancing cytotoxicity and improving the efficacy of chemotherapy.

5. Potential Clinical Benefits of Ferroptosis Modulation in PDAC

As previously reported, current cancer treatments have limited clinical efficacy in
PDAC patients. An important reason for therapeutic failure is drug resistance, especially
when cancer cells are able to avoid apoptosis [130]. In this review, we discuss how ROS
and ferroptosis are a potential route to tackle cancer, specifically altering ROS balance to
produce cell death through ferroptosis. This could be a chemotherapeutic option per se
or enhance the effect of other treatments. In this section, the main approaches to alter
ROS and produce ferroptosis in PDAC will be addressed, as well as the possibilities to be
set as a new chemotherapeutic regimen alone or used in combination to enhance current
adjuvant therapies.

5.1. Targeting Oxidants

It is known that tumor cells produce significant amounts of ROS when they grow and
metastasize. Despite the high amount of ROS, tumor cells manage to maintain the redox
balance. This ability is due to the maintenance of a high expression of antioxidant systems,
which ultimately prevents exceeding the ROS threshold that would lead to cell death by
apoptosis or ferroptosis [131,132].

Arsenic trioxide (ATO) is considered an oxidizing agent. It is capable of producing
oxidative damage not only by inhibiting antioxidant systems, such as SOD, GSH or GPX,
but also through the production of ROS (Figure 7) [133]. Regarding the production of ROS
by ATO, it has been shown that its administration can cause overexpression of Caspases
3, 7 and 9 in PDAC cells, which in turn leads to apoptosis [134]. Moreover, ATO has been
reported to cause cell cycle arrest at the G1 or G2-M phase as long as RB is hypophos-
phorylated and CDC25 B/C phosphatases are reduced by the inhibition of CDK2/6 and
CDC2-associated kinases [135]. Another property of ATO is that it can restore the correct
folding of TP53 proteins more efficiently than other TP53 reactivating molecules [136],
which could be an interesting approach in PDAC. ATO is currently approved therapy
for high-risk acute promyelocytic leukemia [137]. But its therapeutic potential for PDAC
patients does not seem as promising in pre-clinical studies. For instance, phase II study did
not show a significant response with a median survival of 3.8 months [138].

Furthermore, vitamin C is among the molecules that have a pro-oxidant effect. Al-
though it has traditionally been identified as an antioxidant, high doses of vitamin C
have antitumor effects by generating large amounts of intracellular ROS. This is due to
the fact that tumor cells are forced to reduce a large amount of dehydroascorbate (DHA),
which is an oxidized form of vitamin C (Figure 7) [139]. Additionally, among the oxidizing
molecules, piperlongumine (PL) and artesunate (ART) have been proven to induce an
increase in ROS causing cell death. It has been reported that in a dose-dependent manner,
PL increases ROS levels intracellularly and inhibits GPX activity by GSH depletion, which
ultimately induce ferroptosis (Figure 7) [140]. ART has been shown to induce iron-triggered
and ROS-mediated cell death in different PDAC cell lines [141]. Along the same line, it
leads to GSH depletion and lipid peroxidation and, finally, triggers ferroptosis. There are
some pharmacological agents that use these pathways to induce cell death through oxida-
tive stress, such as imidazole ketone erastin (IKE) and cyst(e)inase [142,143]. In addition,
antioxidant inhibitors, such as RSL-3 and ML-162 are used to induce oxidative stress. The
mechanism of action of these inhibitors involves the inhibition of GPXs. These inhibitors
have been shown to increase lipid peroxidation and cause ferroptosis in PDAC [144] and
in head and neck cancer-derived cell lines [65]. In another study carried out in PDAC cell
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lines, laminarin, a glucan derived from brown algae, has been tested as a possible inducer
of cell death. In the study, they found that laminarin could increase ROS levels, trigger
apoptosis and inhibit cell proliferation and migration in a dose-dependent manner [145].
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5.2. Targeting Antioxidants

In PDAC development, tumor cells produce large amounts of ROS and other free
radicals that help tumor cells grow, survive and proliferate [92]. ROS have been linked to
the initiation of tumorigenesis and the alteration of cellular processes through their effect
on protein function [146]. Hence, an excessive amount of oxidative stress causes the total
loss of function of some proteins, which are necessary for the adaptation of metabolic and
antioxidant programs involved in the clearance of oxidative stress [147].

Therefore, maintaining the balance of antioxidants is important as there are all types
of enzymes or cofactors that are involved in the elimination of intracellular ROS. There are
two classes of antioxidants: endogenous and exogenous antioxidants. Among endogenous
antioxidants, the main cellular antioxidant system is GSH-dependent in which GSH is
used as a cofactor by GSH S-transferases (GSTs) and GSH peroxidases (GPXs) to eliminate
ROS. Besides the GSH-GPXs axis, there are networks based on peroxiredoxins (PRDXs)
regeneration, which are sulfaredoxin (SRX) and thioredoxin. This enzyme cluster exhibits
high catalytic activity toward H2O2 [23,148]. Furthermore, the antioxidant systems SOD1
and SOD2 stand out and act at the cytosol and mitochondrial level, respectively. They play
a role in the ROS scavenging [60]. It has been shown that the loss of antioxidants, such as
GPX1, GPX3 or SOD2, could increase tumor progression in several mouse models [149,150].
In addition, in a mouse model of PDAC, metastasis was decreased by injection of TIGAR,
an endogenous antioxidant [151].

Many exogenous antioxidants have been evaluated in in vitro models and clinical trials
to test their antitumor efficacy. The rationale for this is based on several studies that have
reported that certain antioxidants ingested in the diet can inhibit tumor cell proliferation,
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and even cause tumor cell apoptosis, particularly in combination with chemotherapy [152].
Several flavonoid compounds, such as genistein, capsaicin and benzyl isothiocyanate,
which are derived from plants, have been tested for their ability to induce apoptosis in
PDAC cell lines [153]. In addition, studies have been reported with δ-Tocotrienol, a natural
form of vitamin E, which acts as an antioxidant. This compound has been shown to inhibit
tumor growth and metastasis in PDAC in mice models [154]. Empowering antioxidant
systems is an interesting strategy in PDAC to decrease DNA damage caused by oxidative
stress and decrease tumor growth potential.

5.3. Combination Approaches

Considering oxidizing agents and antioxidants separately, we have been able to see
that certain compounds exhibit antitumor activity on their own. But the most interesting
approach would be a combination of oxidants or antioxidants together with chemotherapy
schemes. The rationale of these combinations would be to sensitize PDACs to chemothera-
pies by modulating oxidant and antioxidant compounds since resistance to chemotherapy
is still a limiting factor in PDACs.

Among the possible combinations of therapeutic agents, stress-inducing agents stand
out. These agents include the combination of etoposide and trigonelline in in vitro and
in vivo models of PDAC. Trigonelline is a coffee alkaloid that has been shown to cause
lipid oxidation and susceptibility to apoptosis. In combination with the topoisomerase II
inhibitor agent, etoposide potentiates apoptosis in PDAC models [155]. Moreover, a study
has reported that the diterpenoid libertellenone H (LH) is able to inhibit the antioxidant
system Thioredoxin and induce ROS-mediated apoptosis in PDAC cell lines. It has also
been reported that this effect could be reversed by the Mn-SOD enzyme [156]. So, an
interesting approach would be to combine LH with an inhibitor of the antioxidant Mn-SOD
to enhance the oxidative effect that triggers apoptosis.

In line with the combination of oxidizing agents and chemotherapy, a possible combi-
nation of oxaliplatin with a mangiferin, a glucosylxanthone, aims to be effective in inducing
cell death in PDAC. On the one hand, it has been shown in a study with PDAC cell lines
that mangiferin can induce autophagy, mitochondria-triggered apoptosis, cell cycle arrest
and the suppression of tumor migration and invasion [157]. On the other hand, in a pre-
vious study, it has been shown that the combination of mangiferin and oxaliplatin has a
synergistic effect favoring apoptosis and opens the door to the reduction in resistance to
chemotherapy in different cancer cell lines [158]. Meanwhile, some widespread flavonoids,
such as quercetin can produce P-53-independent ferroptosis in cancer cell lines. Quercetin
can increase the amount of intracellular and mitochondrial ROS, as well as increase the
production of ACSL4, which ultimately alters the balance towards ferroptosis through
lipid peroxidation. Contrary to this, it was observed that in quercetin-treated cells, GPX4
expression was decreased, further altering the balance towards ferroptosis (Figure 7) [159].

This approach could be interesting in PDAC since it is a pathway that induces cell
death by ferroptosis and is independent of P53. So, it would be even more interesting to
investigate it in the squamous–P53 deficient PDAC. To support combinatorial therapies
between oxidative compounds, it has been shown that the combination of cotylenin A
(CN-A) and phenethyl isothiocyanate (PEITC) can produce ROS-triggered ferroptosis in
PDAC cells. This joint effect of CN-A and PEITC could be reversed with a ROS scavenger
(N-acetylcysteine) together to a ferroptosis inhibitor (liproxstatin). Thus, demonstrating
the ROS-enhancing effect of this combination of compounds to produce ferroptosis [160].
In line with this, a previous study reported that CN-A showed a synergistic effect on cell
death and reduced invasiveness in breast cancer cells [161].

In addition to the approaches mentioned above, there are other ways to modulate
ferroptosis. Among these is the regulation of molecules essential in the maintenance of
cellular energy balance, such as AMPK. The role of AMPK in ferroptosis resistance was
evaluated in ferroptosis-resistant kidney cell lines (ACHN). This cell line, also characterized
by high basal AMPK expression, was subjected to treatment with compound C, resulting
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in ferroptosis sensitization of cells that were resistant when treated with erastin or cisterna
detection [162].

6. Conclusions

In conclusion, all these different approaches on how to alter the ROS balance to trigger
ferroptosis directly or through the intermediates involved turn out to have great potential
in PDAC, a type of tumor with a poor prognosis where current treatments are not fully
effective. In this review, the possibilities of modulating ferroptosis in the PDAC have
been explored. Numerous ferroptosis activators are currently under development, with a
particular focus on GPX4. However, our approach goes far beyond inhibiting GPX4 and
proposes different alternatives to cause the increase in ROS that triggers lipid peroxidation
and thus ferroptosis. The main idea and future perspectives will focus on therapy based
on combinations of oxidizing agents, to increase ROS and limit the negative effects of
each oxidant separately. Consequently, considering these combinatorial therapies targeting
ROS-dependent ferroptosis, the therapeutic options in the clinic would increase and with
them the outcome of PDAC patients.
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