
Citation: Rietman, E.A.; Siegelmann,

H.T.; Klement, G.L.; Tuszynski, J.A.

Gibbs Energy and Gene Expression

Combined as a New Technique for

Selecting Drug Targets for Inhibiting

Specific Protein–Protein Interactions.

Int. J. Mol. Sci. 2023, 24, 14648.

https://doi.org/10.3390/ijms2419

14648

Academic Editors: Stefano Alcaro

and Isabella Romeo

Received: 31 August 2023

Revised: 22 September 2023

Accepted: 25 September 2023

Published: 27 September 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

 International Journal of 

Molecular Sciences

Communication

Gibbs Energy and Gene Expression Combined as a New
Technique for Selecting Drug Targets for Inhibiting Specific
Protein–Protein Interactions
Edward A. Rietman 1,2, Hava T. Siegelmann 1 , Giannoula Lakka Klement 3 and Jack A. Tuszynski 4,5,6,*

1 Manning College of Information and Computer Science, University of Massachusetts, Amherst, MA 01003,
USA; erietman@gmail.com (E.A.R.); hava.siegelmann@gmail.com (H.T.S.)

2 Applied Physics, 477 Madison Ave., 6th Floor, New York, NY 10022, USA
3 CSTS Healthcare 403 Melita St., Toronto, ON M6G 3X2, Canada; giannoula@aaiomics.com
4 Department of Mechanical and Aerospace Engineering, Politecnico di Torino, I-10129 Turin, Italy
5 Department of Data Science and Engineering, The Silesian University of Technology, 44-100 Gliwice, Poland
6 Department of Physics, University of Alberta, Edmonton, AB T6G 2E9, Canada
* Correspondence: jack.tuszynski@gmail.com

Abstract: One of the most important aspects of successful cancer therapy is the identification of a
target protein for inhibition interaction. Conventionally, this consists of screening a panel of genes
to assess which is mutated and then developing a small molecule to inhibit the interaction of two
proteins or to simply inhibit a specific protein from all interactions. In previous work, we have
proposed computational methods that analyze protein–protein networks using both topological
approaches and thermodynamic quantification provided by Gibbs free energy. In order to make
these approaches both easier to implement and free of arbitrary topological filtration criteria, in the
present paper, we propose a modification of the topological–thermodynamic analysis, which focuses
on the selection of the most thermodynamically stable proteins and their subnetwork interaction
partners with the highest expression levels. We illustrate the implementation of the new approach
with two specific cases, glioblastoma (glioma brain tumors) and chronic lymphatic leukoma (CLL),
based on the publicly available patient-derived datasets. We also discuss how this can be used in
clinical practice in connection with the availability of approved and investigational drugs.

Keywords: protein–protein interaction; PPI; KEGG; TCGA; chronic lymphocytic cancer; glioma

1. Introduction

Cancer is one of the most challenging diseases worldwide because its complexity is
intricately bound to the physiological deregulation of ourselves. Although a significant
improvement in diagnosis and treatment has occurred in the past few years, progress has
been slow, and the rate of death should reach a staggering 13.2 million deaths worldwide
by 2030 [1], a picture that is expected to become worse in the future as a result of the general
trends of population aging [2].

The generally accepted strategy for cancer treatment is to remove the solid tumor by
surgery, if possible, and then to target malignant cells with radiation therapy, focusing on
the tumor site. Additionally, chemotherapeutic approaches with systemic and targeted
modes of delivery are commonly used with the highest possible level of specificity and
selectivity of the pharmacological agent or a combination of drugs. A drug may be designed
to bind to general targets, such as DNA replication mechanisms or nucleotide synthesis
machinery of the cell since malignant cells typically divide faster than normal cells and
abolish pro-apoptotic signaling. Chemotherapy agents also commonly inhibit targets that
belong to metabolic or protein–protein interaction (PPI) networks. The proper identification
of molecular mechanisms that drive tumorigenesis and cancer progression is crucially
important for providing efficacious therapeutics since tumorigenesis can be viewed as the
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dysregulation of protein–protein interaction networks that control the cellular function,
especially growth and division. However, what complicates this approach is the presence
of redundancies and complex feedback loops that provide robustness in this vast network
of interacting proteins. In the language of network theory, this complex architecture
confers the integrity of the entire system in the case of vertex (protein) or edge (interaction)
failure [3]. As a consequence of this built-in stability, malignant cells have a tendency to
resist or evade the effects of a drug by switching to an alternative metabolic or signaling
pathway whenever possible. Therefore, for most PPI networks, the removal of a randomly
chosen vertex by a drug (for example, due to ubiquitination caused by a PROTAC entity)
may not produce the desired result in terms of the performance of the entire PPI network.
Conversely, targeting deliberately chosen vertices functioning as hubs in a network may
cause its break up into fragments, ultimately leading to cell lethality. Thus, targeting vertices
with high connectivity and betweenness centrality is expected to significantly improve the
odds of a successful therapeutic outcome of drug or drug combination effects on malignant
cells [4]. Recently, numerous potential molecular targets for cancer therapy (oncotargets)
have been identified, leading to the design and development of pharmacological agents
with inhibitory properties with respect to these targets. However, most of the currently
available drugs are very expensive and provide modest improvements in objective survival,
which is coupled with significant adverse side effects. Within the above context, new
strategies are needed to carefully and insightfully investigate the pros and cons of specific
molecular targets that may or may not result in beneficial outcomes for the patient from
the administration of drugs. Consequently, the focus should be placed on those targets
that (i) are involved in physiological dysregulation, leading to cancer initiation, (ii) act as
hubs for signaling pathways, leading to proliferation and survival stimuli through positive
feedback loops in the PPI networks [5], and (iii) increase the risk of metastasis development.

Fortunately, at present, the knowledge of the interactions between cellular proteins is
now sufficiently well developed at the molecular level so that modeling complex molecular
processes can be performed at a high level of confidence. Protein interactomes have been
well characterized by the use of refined experimental techniques, such as two-hybrid
yeast, affinity pull-down mass spectrometry, biochemical techniques, and next-generation
sequencing. The massive amount of resultant data have been made available through online
databases. Furthermore, recent progress in data mining, high throughput data generation
relative to gene, protein, and metabolic networks, as well as computer simulations of
protein–protein interactions [4,6], offers a new and very attractive opportunity to identify
those proteins that would have marginal significance in normal cells but would become
signaling hubs in cancer cells. This would be due to the high level of connectivity of the
target proteins with other proteins, such that a significant modification of expression levels
would strongly affect cellular survival.

Complex networks are very common in the life sciences, at the level of system de-
scriptions ranging from genes to proteins to cells and also to organisms and even soci-
eties. Mathematically, a network is typically described by a directed or undirected graph
G = (V, E) with vertex and edge sets V and E, respectively. An edge is allocated to the graph
where there is a known interaction between two elements, each of which corresponds to a
distinct vertex. The corresponding interaction represents either the direct binding of the two
interacting elements, the functional activation of one element by another, or the initiation
of enzymatic catalysis. Real-world networks demonstrate a modular structure whereby
subsets of vertices are organized in clusters when they are tightly connected internally and
loosely connected to other vertices outside the given cluster [7]. This organization leads to
the emergence of symmetric subgraphs, such as trees and complete cliques [5], which often
facilitates the classification of the network’s vertices into its backbone and appendages.

Within the scope of applications of PPI modeling in the context of cancer chemotherapy,
early model development provided a link between the protein level of description and
cancer epidemiology [4,6]. Specifically, it has been shown that the probability of 5-year
patient survival, using the database of Surveillance Epidemiology and End Results—SEER
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for the main types of cancer, is negatively correlated with network entropy [4,6]. As a
measure of the network’s complexity, Shannon entropy derived for each topology of the
corresponding PPI network was used together with the betweenness centrality computed
for each vertex (protein) as an indication of its importance in the network. The following
formula was used to calculate the network entropy for each type of cancer considered

H = −∑n−1
V=1 p(V)logp(V) (1)

CB(V) = ∑s,t∈V σ(s, t|V)/σ(s, t) (2)

where σ(s, t) is the number of shortest paths between two nodes (s, t) and σ(s, t|V) is the
number of those paths passing through nodes other than the (s, t) pair [4].

Typically, cancer patients are treated with the maximum tolerated dose (MTD) of some
chemotherapeutic agent that is designed to target so-called oncogenes and/or microtubule
dynamics. Often, the chemical agent is designed to target genes that are overexpressed.
Usually, there is little regard for the protein coded for by the gene and its biochemical
and/or cellular function. In our previous work, we have been exploring the use of Gibbs
energy and protein–protein interaction (PPI) network topology for selecting protein targets
for inhibition (i.e., inhibiting the activity of a specific protein target). Specifically, PPI
networks involved in the signaling pathways that are over-expressed in a given type of
cancer were analyzed. Briefly, the approach we have used, as described in the literature [8,9],
is to take the complete mRNA expression of biopsied tissue, then overlay it on the complete
human protein–protein interaction network [10], followed by calculation of the Gibbs
energy contribution from each protein. We then performed a so-called topological filtration
on the energy network to generate a subnetwork of important contributors to the Gibbs
energy. After that, we compute the influence of each protein on the overall Betti number
(a topological measure of network complexity). The selected protein target, to inhibit its
reactivity with neighboring proteins, is the one that reduces the Betti number the most and,
thus, the complexity of the energetic subnetwork. This approach became a new method
for personalized medicine [8,9]. Extending that now to PPI inhibitions is the main focus
of this paper. As pointed out by Keskin et al. [11], an important focus in studying and
understanding protein–protein interactions is to predict how proteins interact with each
other. In order to do this, their 3D structure must be known in great detail. Which now is
possible thanks to deep neural networks [12–14]. Of course, the Lipinski “rule of five” will
still be applicable for the discovery of molecules to block specific PPIs [15].

Finding good PPI targets to interrupt is a challenge. For example, [16,17] suggests that
a good cancer target would be the interaction MDM2-p53. However, a recent review [18]
points out that despite the number of clinical trials, none have been approved for clinical use,
and [19] describes the challenges of in silico workflows using, as an example, MDM2-p53.
More recent reviews on the computational discovery of which PPI to interrupt are given
by [20–22]. One would ideally need to computationally explore a superposition of small
protein–molecule interactions. As described by [23], this could be most easily performed
using a quantum reservoir computer [24]. However, we suspect that an approach similar
to the one presented in [25] should prove to be interesting.

In the following sections, we describe a new approach to select specific PPIs based on
Gibbs free energy and subnetwork interaction partners. If our new technique is used with
the human foldome (i.e., the known folded 3D structure of the set of human proteins to
atomic precision), it is now possible to contemplate truly personalized medicine [12–14].
In the following sections, we present some results for glioma and CCL patients. Then we
present the discussion of the results, followed by the materials and method. Lastly, we
present our conclusions.
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2. Results

Now, let us look at a real-world example of 514 brain cancer mRNA samples. The
data are from glioma patients from the TCGA database [26]. After merging the relevant
KEGG networks (described in the Materials and Methods section), the final resulting
network has 144 nodes and 517 edges. By using the mRNA data for computing each
protein’s contribution to Gibbs energy, followed by searching the neighbors for maximum
expression, and doing this for each patient, we obtain the results shown in Figure 1.
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Figure 1. Computed protein–protein interaction targets for glioma cancer patients. The Pareto chart
is read as follows: The chart shows that the best inhibition target for just over 120 patients is the
PDGFRA-PIK3R1 interaction. It also shows that for 50 patients, the best target is KRAS-CAMK2A.
The other bars are interpreted similarly.

Using the same methodology, we constructed Figure 2, which shows the most signifi-
cant protein–protein interaction targets for 1001 patients with chronic lymphatic leukemia
(CLL). The mRNA data for this study were from the GEO database [27]. The KEGG net-
works used to merge for CLL were the Notch signaling pathway, T-cell receptor signaling
pathway, and Wnt signaling pathway.
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Figure 2. Pareto chart showing the interaction targets for CLL. The chart is interpreted similarly to
that shown in Figure 1.
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3. Discussion

Above, we have described the target selection for the inhibition of protein–protein
interactions for patient-specific types of cancer. We have provided two concrete examples:
glioma and CLL. Each of these examples results in a diagram showing the most important
targets based on the number of patients in the database with similar profiles. In general,
the next step in the application of this process is to seek approved or investigational
drugs that are able to inhibit these interactions specifically and selectively. This can be
accomplished by using either DrugBank [28], ChEMBL [29], KEGG Drugs [30], or other
medicinal chemistry databases that are publicly available. In the absence of such inhibitors,
there are more demanding computational drug discovery methods that can be brought
to bear on the problem, which can lead to the identification of putative inhibitors of the
selected protein–protein interactions. These approaches typically require the knowledge of
the crystal structure of the interacting proteins, which can be readily inspected using the
Protein Data Bank (PDB) [31]. Once these structures are found, following their equilibration
using Molecular Dynamics, virtual screening of large medicinal chemistry databases such as
ZINC [32] can be performed for putative inhibitors. The results of such searches are useful
as initial steps in pre-clinical validation experiments using in vitro assays. Recently, a very
accurate machine learning methodology was introduced into the field by DeepMind, which
allows us to predict in silico the crystal structure of any amino acid sequence of a protein.
The use of AlphaFold [33] has revolutionized the field of computational drug discovery by
allowing structure-based drug searches without experimentally known crystal structures
of protein targets. Various additional computational methods can be utilized to further
refine the search for drug candidates for a specific protein–protein interaction inhibitor.
Without attempting an exhaustive review, here we cite some methods, all prior to [12–14].
Mashiach et al. [34] describe a web server tool for the flexible induced fit of the molecular
backbone in molecular docking. Schymkowitz et al. [35] describe an online molecular force
field for studying rapidly the folding dynamics of proteins. Ogman et al. [36] describe a
method for predicting protein–protein interactions. These, and many others, could be cited.
They all have in common the solution to the problem of matching protein folding with
the discovery of a small molecule or peptide that can effectively dock and bind in order to
block some protein–protein interaction. Various docking strategies have been discussed in
the literature [37], and they focus on the draggability of the targets and drug-likeness of
the medicinal chemistry compounds such that the ligand’s specificity against a particular
protein target can be calculated to enable further lead optimization processes. Molecular
docking programs perform search algorithms whereby the conformation of the ligand is
evaluated recursively until the convergence to the minimum energy is reached. In order to
quantify the affinity of the ligand for the target, a scoring function is computed, typically
a Gibbs binding free energy ∆G, which is then used to rank the candidate poses as the
sum of enthalpic contributions, i.e., the electrostatic and van der Waals energies in addition
to the entropic part due to removal of water molecules from the protein–drug interface.
After a docking campaign is completed with a ranked list of the putative inhibitors, their
experimental validation can follow.

4. Materials and Method

As briefly discussed in the Introduction, our proposed approach is to again use mRNA
from blood or biopsied tissue, normalize the values, and instead of overlaying it on the
entire human PPI network, we overlay it on the appropriate KEGG pathway(s) [38]. For
example, for glioma cancer, we merged the glioma network, ErbB signaling pathway, and
EGR tyrosine kinase inhibitor resistance pathway, as shown in Figure 3.
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It should be emphasized here that in spite of some similarities, the current paper uses
a distinct methodology compared to the previously published work. The former approach
involves essentially removing the protein (vertex) from the network, thus removing all the
possible interactions for that protein. This protein is selected by first computing the Gibbs
energy for each protein in the entire human PPI network and then performing a topological
filtration on the energy landscape. In this smaller network, we then computed the Betti
number for the resulting network. We subsequently recomputed the Betti number after
removing each protein and selecting the protein that changed the Betti number the most,
which reduces the complexity of the network the most.

The new approach starts with the merging of the appropriate KEGG pathways and
then computing the Gibbs energy of each protein. The next step in the new algorithm is to
find the protein with the largest Gibbs energy. That protein is not to be removed, but rather
the interaction with that protein and the neighboring protein with the largest expression
value. Consequently, the overall aim is to discover the protein–protein interaction. Accord-
ingly, no Betti number computation is needed in contrast to the previous approach. Below,
we describe in detail each step of the new and improved approach.
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After the adjacency list of protein–protein interactions from the merged network is
obtained (Figure 3), the next step is to find some mRNA relevant to the disease. We down-
loaded the data of 514 glioma patients from the TCGA database [26]. After normalizing
each patient’s mRNA data to be in the range between (0,1), we are ready to calculate the
Gibbs energy attributed to each protein (node in the network) in the PPI network according
to the formula

Gi ← ciln
ci

∑j cj
(3)

When the data are rescaled between 0 and 1, it indicates that the most up-regulated
protein is set to 1 and the most down-regulated protein is set to 0. The rationale for this
is discussed in [8]. In Equation (3), ci represents the concentration of the protein, i under
consideration. Since we usually do not have knowledge of the exact concentration of the
protein, we use the normalized mRNA as a surrogate, which is a good approximation. The
denominator is the sum of all the normalized mRNA data for the proteins connected to
node i and includes the concentration value for i. The argument of the ln function will be
less than 1, so the result is a negative number, representing Gibbs free energy. The more
negative the Gibbs free energy value, the more important the contribution of the selected
protein i to the stability of the PPI network. Technically, Equation (3) is not an equality
because the units do not match on each side. We rescale the concentration to protein I; thus,
the relation is a mapping.

After we have computed the Gibbs energy of each protein, we then select the one that
has the largest absolute value, meaning the most negative. This protein contributes the
most to the overall energy of the tumor cells. Once that protein is identified, we select the
nearest neighbor that has the largest expression or the node that has the individual highest
concentration and is also connected to the identified node with the highest absolute Gibbs
energy. These two nodes, which are certainly connected to each other, comprise the link to
inhibit. In other words, these two proteins are the ones to be targeted for inhibition (to limit
their reactivity). Figure 4 shows a small example. Assume we have identified the node RB1
as representing the protein with the largest absolute Gibbs energy. Then, we need to search
the nearest neighbors of RB1, which are E2F1, E2F2, E2F3, CCND1, CDK6, and CDK4.
Which of those proteins has the largest mRNA expression for this patient? Suppose it is
CCND1. That means we want to inhibit the interaction of RB1 with CCND1 but no others.
We want to leave the other proteins that RB1 interacts with alone, and we want to leave the
other proteins that CCND1 interacts with alone—namely, CDKN1A and CDKN2A.
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Figure 4. For illustrative purposes, consider this piece of the merged network shown in Figure 3. If,
by whatever means, we have identified the RB1 protein to inhibit, that will eliminate its interaction
activity with E2F1, E2F2, E2F3, CCND1, CDK6, and CDK4, whereas if we really only wanted to
eliminate the activity of RB1 with CCND1, we would need to find a specific molecule that binds to
either RB1 or CCND1 in such a way as to block their mutual interaction.

5. Conclusions

In this paper, we have proposed a new method for the optimized, patient-specific
selection of drug targets for cancer and possibly other diseases. The method involves
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the analysis of protein–protein interaction networks and their subsets related to the over-
expressed proteins in cancer cells of interest. It then quantifies the importance of the targets
for inhibition based on their Gibbs free energy. Subsequent proteins interacting with the
target are ranked according to their expression levels. Two specific examples have been
evaluated this way: glioma and CLL. We have also discussed how this approach can be
further applied in the clinical setting by searching for approved and investigational drugs
that inhibit the protein interactions identified in our methodology.

Our results have three major implications for cancer therapy, namely (i) the methodol-
ogy introduced here defines a quantitatively-based strategy to identify potential oncotargets
for any cancer chemotherapy treatment for which PPI networks have been generated; (ii) it
identifies and ranks potential targets of inhibition in combination chemotherapy which
offer the most promising clinical outcomes; and (iii) it provides rapid identification of
molecular targets with existing approved or experimental pharmacological agents in the
context of personalized medicine based on individual tumors types and histological sub-
types. However, we are well aware of the need for experimental validation of this at both
an in vitro and an in vivo level.

With the ever-increasing pace of modern technological development, it is highly prob-
able that in the foreseeable future, a patient diagnosed with cancer will be biopsied, from
which a DNA sequence of both malignant and stromal cells will be performed that will
subsequently be used to inform the treatment plan. This treatment plan will be based
on the generation of a PPI network for both somatic and germline cells, allowing for the
computational identification of ranked oncotargets. Furthermore, combining these results
with the existence and pharmacological profiles of corresponding oncotarget inhibitors will
result in a rationally designed patient-specific combination chemotherapy. This strategy
can be further refined by aiming for minimal side effects for normal cells in cases where
off-target interactions of the selected inhibitors are known or can be computationally pre-
dicted through docking or artificial intelligence approaches. This strategy, when properly
validated by in vitro and in vivo assays, is capable of overcoming drug resistance when
applied in an iterative, time-dependent manner.

Finally, we hope that this strategy may assist in the development of integrated meth-
ods based on a number of fields of science, such as bioinformatics, computational drug
discovery, artificial intelligence, and pharmacokinetics, with applications in medicine and
healthcare. This trend in the introduction of modern and sophisticated medical-research-
related advances will eventually bring tangible clinical benefits to patients, as well as
cost-savings and greater efficiencies to healthcare and medical insurance providers. How-
ever, it must also be kept in mind that associated clinical, societal, and ethical risks are
present when innovation is initially implemented. Therefore, a balanced assessment of
the risks and benefits of such strategies must be carefully investigated before clinical
introduction [40].
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