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Abstract: Small nucleolar RNAs (snoRNAs) constitute a prevalent class of noncoding RNAs localized
within the nucleoli of eukaryotic cells. Their involvement in diverse diseases underscores the significance of
forecasting associations between snoRNAs and diseases. However, conventional experimental techniques
for such predictions suffer limitations in scalability, protracted timelines, and suboptimal success rates.
Consequently, efficient computational methodologies are imperative to realize the accurate predictions
of snoRNA–disease associations. Herein, we introduce GCLSDA—graph Convolutional Network and
contrastive learning predict snoRNA disease associations. GCLSDA is an innovative framework that
combines graph convolution networks and self-supervised learning for snoRNA–disease association
prediction. Leveraging the repository of MNDR v4.0 and ncRPheno databases, we construct a robust
snoRNA–disease association dataset, which serves as the foundation to create bipartite graphs. The
computational prowess of the light graph convolutional network (LightGCN) is harnessed to acquire
nuanced embedded representations of both snoRNAs and diseases. With careful consideration,
GCLSDA intelligently incorporates contrast learning to address the challenging issues of sparsity
and over-smoothing inside correlation matrices. This combination not only ensures the precision of
predictions but also amplifies the model’s robustness. Moreover, we introduce the augmentation
technique of random noise to refine the embedded snoRNA representations, consequently enhancing
the precision of predictions. Within the domain of contrast learning, we unite the tasks of contrast
and recommendation. This harmonization streamlines the cross-layer contrast process, simplifying
the information propagation and concurrently curtailing computational complexity. In the area
of snoRNA–disease associations, GCLSDA constantly shows its promising capacity for prediction
through extensive research. This success not only contributes valuable insights into the functional
roles of snoRNAs in disease etiology, but also plays an instrumental role in identifying potential drug
targets and catalyzing innovative treatment modalities.

Keywords: snoRNA–disease association; graph convolutional network; contrastive learning; bipartite
graph

1. Introduction

The investigation into small nuclear RNAs (snoRNAs) and their correlation with
diseases has gained substantial momentum in recent years. snoRNAs, a class of small
noncoding RNAs, are widely distributed within the nucleus of eukaryotic cells [1]. In ver-
tebrates, the genes encoding snoRNAs predominantly inhabit the intronic regions of both
protein-coding and non-protein-coding genes, undergoing subsequent post-transcriptional
processing to culminate in mature snoRNAs [2]. These snoRNAs are characterized by
conserved structural motifs. In earlier studies, snoRNAs were broadly categorized into
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C/D box snoRNAs and H/ACA box snoRNAs [3], predominantly associated with the mod-
ulation of 2′-O-ribose methylation and pseudouridylation of ribosomal RNA. Nevertheless,
recent decades have unveiled a growing subset of snoRNAs devoid of specific targets or
well defined cellular functions, hinting at the untapped potential of snoRNAs in disease
control [4]. Their active involvement in nucleoside modifications emphasizes their role in
various human diseases. Notably, host genes harboring snoRNA coding sequences within
their introns exhibit differential expression patterns in disease contexts [5]. The perturba-
tion of the snoRNA expression or function correlates with diverse ailments, encompassing
cancers, neurological disorders, immune conditions, and genetic anomalies [4–6].

Deciphering the intricate interplay between snoRNAs and diseases holds immense
potential for groundbreaking advancements in diagnostic modalities and therapeutic
strategies. For instance, snoRNAs may emerge as promising biomarkers for early disease
detection and promising targets for innovative therapeutic interventions. Profound shifts
in snoRNA expression within tumor cells, tissues, and bodily fluids could yield novel
biomarkers for cancer diagnosis and therapeutic exploration. Furthermore, delving into
the interplay between snoRNAs and diseases can furnish invaluable insights into the
fundamental mechanisms underpinning disease onset and progression. By discerning
the role of snoRNAs in healthy cellular contexts and deciphering their dysregulation’s
contributions to disease states, researchers can identify novel avenues and targets for
therapeutic intervention, thereby enriching our arsenal against various ailments.

Currently, prediction methods for RNA–disease associations can be broadly classi-
fied into three categories: machine learning-based, network analysis-based, and deep
learning-based approaches. Machine learning-based methods: This category encompasses
techniques that utilize known snoRNA–disease association data to construct prediction
models through various machine learning algorithms, enabling the prediction of novel
associations. For instance, PSnoD [7] proposes a method based on bounded kernel norm reg-
ularization to predict the association between snoRNA and disease. This method constructs
an association matrix between snoRNA and disease, in which each element represents
the similarity or degree of association between snoRNA and disease. SnoDi-LSGT [8]
proposes a method based on local similarity constraints and global topology constraints
to predict the association between snoRNA and diseases. This method combines local
similarities and global topological features of snoRNAs and diseases to improve prediction
accuracy and interpretability. Similarly, iSnoDi-MDRF [9] proposes a method based on mul-
tiple biological data and a ranking framework to predict the association between snoRNA
and disease. By integrating multiple biological data such as gene expression data, gene
function annotations, protein interaction networks, etc., and using a ranking framework
to rank features.

Network analysis-based approach: This approach leverages bioinformatics and net-
work analysis tools to investigate the functional interplay between RNA and diseases,
often employing co-expression networks and protein interaction networks. For example,
Sun et al. [10] proposed a global network-based calculation method RWRlncD based on
lncRNA functional similarity network. In the study, after successively constructing the
lncRNA-disease association network, disease similarity network and lncRNA functional
similarity network, RWRlncD predicted potential lncRNA-disease relationships by per-
forming random walk restart (RWR) on the lncRNA functional similarity network. In
addition to single-layer networks, some researchers have tried to construct lncRNA-disease
multi-level networks, and based on this multi-level network to study and identify new
disease-related lncRNAs. Yao et al. [11] proposed the algorithm LncPriCNet based on a
multi-layer composite network to predict disease-related lncRNA. The study constructed
a composite network by combining phenotype-phenotype interactions, lncRNA-lncRNA
interactions, and gene-gene interactions with disease-ncRNA relationships, and then used
the random walk restart algorithm (RWR) to predict related lncRNAs.

Deep learning-based approach: This class of methods harnesses the power of deep
learning algorithms to acquire the embedded representations of RNA and diseases for
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predicting new associations. For example, GANCDA [12] proposes a method based on deep
generative adversarial networks to predict the association between circRNA and diseases.
This method learns the potential association between circRNA and disease by converting
circRNA and disease data into feature representations and conducting adversarial training
through a generator network and a discriminator network.

The aforementioned prediction models offer various perspectives and avenues for
researching the relationship between snoRNAs and diseases, providing informative ref-
erences for understanding disease mechanisms and snoRNA functions. However, these
methods encounter certain challenges. Machine learning-based approaches may face
difficulties in feature selection, overfitting, and adapting to complex datasets. Network
analysis-based methods might not adequately account for higher-order associations within
intricate networks. Deep learning-based techniques could encounter issues related to over-
fitting and limited interpretability. Consequently, there is a need to refine these methods to
enhance the prediction accuracy and interpretability.

In recent years, contrastive learning and graph neural networks have gained significant
traction across various research domains. The former entails learning data representations
by juxtaposing the similarities and differences between samples, while the latter effectively
models interactions between nodes and edges in graphs, enabling both representation
learning and prediction tasks. However, certain challenges persist within these methods.
Notably, perturbations in the graph structure can lead to the loss of crucial information,
thereby causing deviations in the results. To address these issues, we introduce a novel
framework named GCLSDA in this study. In our previous study from 2021, we intro-
duced GCNSDA [13], a pioneering framework utilizing graph convolutional networks
for predicting associations between snoRNAs and diseases. This work marked a crucial
milestone by showcasing the potential of computational methodologies to address the
challenges of snoRNA–disease association predictions. Building upon this foundation,
our latest research presents GCLSDA, an advanced framework that represents the natu-
ral evolution of our efforts. While GCNSDA laid the groundwork for employing GCNs
in this context, GCLSDA extends this approach by integrating contrastive learning, ran-
dom noise augmentation, and harmonizing contrast and recommendation tasks. These
enhancements substantially bolster prediction precision and model robustness, further
advancing our quest to unlock the potential of computational methodologies in predicting
snoRNA–disease associations.

GCLSDA adopts a self-supervised approach for predicting snoRNA–disease associa-
tions, harnessing the capabilities of the light graph convolutional network (LightGCN) [14].
LightGCN is a renowned graph-based recommendation model celebrated for its simplicity
and effectiveness within recommendation systems. Its primary goal is to address the
scaling and model complexity issues that collaborative filtering-based recommendation
frequently faces. Neighborhood aggregation, a key method used in graph convolution
networks, is at the core of LightGCN’s success in producing reliable suggestions. The
central objective of the GCLSDA framework is to overcome the challenges posed by data
sparsity and noise within correlation matrices. This is achieved through the incorporation
of contrast learning, which not only enhances prediction accuracy but also fortifies model
robustness. For the construction of a dependable snoRNA–disease association dataset, we
leverage two key databases, namely MNDR v4.0 [15] and ncRPheno [16]. The LightGCN
is then harnessed to acquire embedded representations of both snoRNAs and diseases.
In a bid to enhance the dataset, we introduce random noise to the embedded snoRNA
representations, deviating from conventional edge and node-dropping techniques. Within
the realm of contrast learning, we unify the contrast and recommendation tasks, employing
consistent noise perturbations for cross-layer contrast. This strategic approach simplifies
the propagation mechanism and concurrently reduces computational complexity.
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2. Results and Discussions

In this section, we outline the outcomes of our experimental endeavors utilizing the
GCLSDA method for the prediction of snoRNA–disease associations.

2.1. Experimental Setup

To rigorously assess the predictive prowess of our experimental methodology, we em-
ployed a systematic and unbiased approach by conducting performance evaluations using
both five-fold cross-validation and ten-fold cross-validation techniques [17]. These methods
allowed us to comprehensively gauge the predictive capability of the GCLSDA model.

The dataset under consideration contains verified or established associations, which
we randomly divided into k distinct subsets. For each iteration of cross-validation, one of
these subsets was designated as the test set, while the remaining k-1 subsets were amalga-
mated to compose the training set. In order to ensure equitable evaluation conditions, we
generated an equal number of negative samples at random for the test set. Notably, during
the utilization of the training set, the negative sample generation process was omitted, as
the algorithm itself encompasses this procedure.

Regarding the potential presence of latent associations within the negative samples,
their impact is deemed negligible due to their limited proportion within the overall un-
verified sample pool. Consequently, their influence on the experimental outcomes can be
safely disregarded.

2.2. Evaluation Criteria

To assess the predictive ability of our model in a more intuitive and understandable
manner, we utilize widely adopted metrics in the industry, including the area under the
curve (AUC) and area under the precision–recall curve (AUPR). These metrics provide a
comprehensive measure of the model’s performance.

The calculation formulas for the evaluation metrics are as follows:

FPR =
FP

FP + TN
(1)

TPR =
TP

TP + FN
(2)

Recall =
TP

TP + FN
(3)

Precision =
TP

TP + FP
(4)

TP and FP represent the correct and incorrect classification results on the existing
snoRNA–disease adversarial samples, respectively. TN and FN represent the correct and
incorrect classification results on unrelated sample sets, respectively. The true positive
rate (TPR), representing the proportion of correctly identified positive cases, and the false
positive rate (FPR), indicating the proportion of incorrectly identified negative cases, are
calculated. By adjusting the decision threshold, we can construct the ROC curve [18] and
PR curve [19], with FPR as the x axis and TPR as the y axis. The AUC and AUPR values are
then calculated from these curves, providing quantitative measures of the model’s accuracy.
A higher AUC value indicates a better prediction performance of the model.

2.3. Performance Evaluation for GCLSDA

To ensure the robustness and reliability of our performance evaluation and to miti-
gate the influence of random fluctuations, we employed both five-fold cross-validation
and ten-fold cross-validation methodologies to comprehensively appraise the predictive
performance of the GCLSDA model in the domain of snoRNA–disease association predic-
tion. The results of the 5-fold cross-validation are summarized in Table 1, encompassing
the computed AUC and AUPR values. Additionally, the visual representations of the
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corresponding receiver operating characteristic (ROC) and precision–recall (PR) curves
are depicted in Figure 1A,B, respectively. Correspondingly, the outcomes of the ten-fold
cross-validation are provided in Table 2, while Figure 1C,D portray the associated ROC
and PR curves.

Table 1. Five-fold cross-validation prediction results of GCLSDA.

K AUC AUPR

0 0.9151 0.9471
1 0.9224 0.9508
2 0.9322 0.9267
3 0.9166 0.9197
4 0.8928 0.9262

AVG 0.9148 0.9354

Table 2. Ten-fold cross-validation prediction results of GCLSDA.

K AUC AUPR

0 0.9296 0.9540
1 0.9667 0.9756
2 0.9192 0.8946
3 0.9365 0.9264
4 0.9266 0.9507
5 0.9099 0.9398
6 0.9568 0.9581
7 0.9129 0.9379
8 0.9395 0.9489
9 0.8699 0.8997

AVG 0.9260 0.9383

By conducting cross-validation and subsequently assessing the AUC and AUPR met-
rics, we can effectively gauge the performance of the model in predicting snoRNA–disease
associations. These evaluation metrics offer valuable insights into the model’s predictive
prowess, shedding light on its capacity to reliably discriminate between positive and nega-
tive samples and affording a comprehensive overview of its overall predictive performance.

2.4. Comparison with Other Models

In the context of snoRNA–disease association prediction, given its relative novelty,
there exists a dearth of established prediction methodologies. Consequently, we turned to
analogous prediction methods from related biological domains—namely
lncRNA–disease, circRNA–disease, and miRNA–disease associations—as a benchmark for
assessing the efficacy of our proposed GCLSDA model .

In this comparative analysis, we juxtaposed our GCLSDA model against six closely
related methods: KATZHMDA [20], DMFMDA [21], NTSHMDA [22], SDLDA [23], DM-
FCDA [24], and GCNMDA [25]. KATZHMDA operates on the KATZ algorithm for pre-
dicting microbe–disease associations, whereas DMFMDA leverages neural networks to
predict these associations after mapping one-hot encoded microbe and disease IDs to
low-dimensional vectors. SDLDA combines the SVD algorithm with a deep neural network
for lncRNA–disease association prediction, while DMFCDA employs deep neural networks
to derive nonlinear features from circRNA–disease association matrices. GCNMDA lever-
ages graph neural networks and conditional random fields for drug-disease association
inference, while NTSHMDA employs a random walk with a restart-based approach to
predict microbe–disease associations.
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(A) (B)

(D)(C)

Figure 1. ROC and PR curves yielded by GCLSDA in five-fold and ten-fold. (A) ROC curve in
five-fold. (B) PR curve in five-fold. (C) ROC curve in ten-fold. (D) PR curve in ten-fold.

The results of our experiments in Table 3, conducted using five-fold cross-validation,
revealed that GCLSDA exhibited superior performance, achieving an average AUC of
0.9148 and an average AUPR of 0.9354. Notably, these metrics outperformed the second-
best method, GCNMDA, by 4.87% and 6.28%, respectively.

Table 3. Performance comparison of GCLSDA and six benchmarked methods.

Methods AUC AUPR

KARZHMDA 0.7737 0.8066
DMFMDA 0.7975 0.8183

NTSHMDA 0.8252 0.8228
SDLDA 0.8119 0.8201

DMFCDA 0.8527 0.8401
GCNMDA 0.8723 0.8801
GCLSDA 0.9148 0.9354

For the sake of enhanced visual clarity in facilitating comparisons, we presented the
corresponding ROC curves in Figure 2. The discernible trend highlighted by these results
is the efficacy of GCLSDA in prognosticating novel snoRNA–disease associations. This
robust performance is underpinned by the fundamental disparity in methodology between
GCLSDA and traditional approaches. The conventional methods often generate similar
features for both snoRNAs and diseases, inadvertently incorporating noise attributed to
the scarcity of biological data. This noise, in turn, hampers prediction accuracy. In stark
contrast, our model circumvents the need for similarity calculations and instead capitalizes
on the learning capabilities of graph neural networks. This approach fully accounts for the
influence of neighboring nodes within the bipartite graph encompassing snoRNAs and
diseases. Additionally, it explicitly integrates the impact of high-order neighbor features on
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the present node within the network. This innovative approach substantially contributes to
GCLSDA’s superior predictive performance.
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KARZHMDA (AUC=0.7737)
DMFMDA (AUC=0.7975)
NTSHMDA (AUC=0.8119)
SDLDA (AUC=0.8252)
DMFCDA (AUC=0.8527)
GCNMDA (AUC=0.8723)
GCLSDA (AUC=0.9148)

Figure 2. ROC curves of GCLSDA compared with six benchmarked methods.

2.5. Ablation Study

In the context of the ablation study conducted on GCLSDA, we initiated our investi-
gation by performing an experiment involving the LightGCN. This particular endeavor
sought to independently evaluate the predictive capabilities of LightGCN in the context of
snoRNA–disease association prediction, unassisted by the comprehensive enhancements
provided by the GCLSDA framework.

Subsequently, our attention shifted towards a meticulous examination of the individual
contributions rendered by the self-supervised graph learning (SGL) graph enhancement
technique. To achieve this, we executed two distinct ablation experiments on the selected
SGL model, aptly termed SGL with edge-dropout (SGL(ED)) and SGL with node-dropout
(SGL(ND)).

In the SGL(ED) ablation experiment, an intentional removal of edges from the SGL
model was executed, performed with a specified probability. The objective was to ascertain
the influence of this edge-removal strategy on the prediction of snoRNA–disease associa-
tions. Conversely, the SGL(ND) ablation experiment entailed the elimination of specific
nodes alongside the edges connected to those nodes. This elimination process was executed
with a particular probability, enabling a comprehensive assessment of how the removal of
nodes and their associated edges impacted the predictive performance.

A carefully thought-out five-fold cross-validation methodology was used to objec-
tively evaluate each ablation experiment. The results of these ablation experiments were
compared to those of the thorough GCLSDA model, and this allowed us to gain an im-
portant understanding of the substantive relevance and unique contributions included
inside the SGL graph enhancement method. Additionally, this enabled us to draw broad
conclusions about the GCLSDA framework’s general effectiveness in terms of predicting
snoRNA–disease connections. The intricate details of these experimental outcomes are
diligently presented in Table 4. According to the experimental results, we observe that the
comprehensive GCLSDA model outperformed the individual components, attaining an
AUC of 0.9148 and an AUPR of 0.9354. These results highlight the effectiveness of the SGL
enhancements and the synergistic benefits they bring when integrated into the GCLSDA
framework.



Int. J. Mol. Sci. 2023, 24, 14429 8 of 17

Table 4. Ablation study of GCLSDA.

Methods AUC AUPR

LightGCN 0.8040 0.8497
SGL(ND) 0.8635 0.9115
SGL(ED) 0.8540 0.9047
GCLSDA 0.9148 0.9354

Effects of Parameters

During our experimentation, we embarked on a systematic exploration of the influence
of two pivotal parameters on the predictive performance of our model: the number of layers
within the graph neural network (referred to as K) and the dimension of the embedded
representation (represented as S). To comprehensively understand the distinct impact of
each parameter, we meticulously conducted individual single-variable control experiments,
maintaining all other parameters at a constant level.

We commenced our investigation by scrutinizing the number of layers, denoted as
K, within the graph neural network. Through a deliberate manipulation of K ranging
from 1 to 5, we meticulously conducted five-fold cross-validation to meticulously assess
the resulting prediction outcomes. The specific empirical data and corresponding trend
chart are meticulously documented in Table 5 and Figure 3A, respectively. Upon careful
analysis, a prominent observation emerged: the model achieved the optimal performance
when K was designated as 3. This discerning finding suggests that a judicious choice of the
number of layers engenders a harmonious equilibrium between the model complexity and
prediction accuracy.

Table 5. Prediction results of GCLSDA with different depth K.

Layer AUC AUPR

1 0.8157 0.8720
2 0.8905 0.9158
3 0.9159 0.9341
4 0.8976 0.9210
5 0.8689 0.9135

Subsequently, our investigation sought to comprehend the effect of the dimension of
the embedded representation, designated as S. Through a meticulous process involving a
five-fold cross-validation, we methodically evaluated the model’s predictive efficacy across
an array of dimension values: 8, 16, 32, 64, 128, and 256. The empirical data pertinent to this
investigation, along with the corresponding trend depiction, are meticulously documented
in Table 6 and Figure 3B, respectively. The outcome of this exploration substantiated that
the model exhibited its optimal performance at an S value of 64.

Table 6. Prediction results of GCLSDA with different embedding size S.

EM AUC AUPR

8 0.8073 0.8720
16 0.8709 0.9123
32 0.9081 0.9374
64 0.9159 0.9341

128 0.8505 0.8928
256 0.8695 0.9083
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Figure 3. Effects of depth K and embedding size S on the performance of GCLSDA. (A) The effect of
layer depth K. (B) The effect of embedding size S.

2.6. Case Studies

This study incorporated comprehensive case studies to substantiate the efficacy of our
prediction model, GCLSDA, in forecasting plausible snoRNA–disease associations. The fo-
cus was directed towards two specific case studies: colorectal carcinoma and osteosarcoma.

For the colorectal carcinoma [26] case study, a meticulous approach was adopted.
We conducted a meticulous selection process based on the association matrix predicted
by our model, focusing on prevalent and representative diseases. Initially, we ranked
the top 15 snoRNAs according to their association scores as predicted by our model and
cross-verified them using the PubMed Identifier (PMID) database. To ensure the credibility
of our results, snoRNAs with established associations were deliberately excluded, leaving a
pool of candidate snoRNAs for prediction by the GCLSDA model. Subsequently, we sorted
these candidate snoRNAs in descending order based on their prediction scores and selected
the top 15 for further scrutiny. This rigorous validation process involved an exhaustive
examination of the latest literature, encompassing the PubMed dataset, as well as insights
gleaned from clinical trials. The outcome of this validation effort, including the number of
confirmed snoRNAs, is summarized in Table 7. Remarkably, out of the top 15 candidate
snoRNAs, 12 were confirmed and validated. This underscores the robustness of GCLSDA
in predicting potential associations between snoRNAs and colorectal carcinoma.

The osteosarcoma [27] case study closely mirrored this methodology. By excluding
the snoRNAs with established links, the GCLSDA model was empowered to predict
uncharted associations. Similarly, the top 15 candidates derived from these predictions
underwent rigorous validation against a backdrop of PubMed literature and clinical trial
data. The validation outcomes, encapsulated in Table 7, chronicle the count of validated
snoRNAs. Notably, within the elite cohort of top 15 candidates, an impressive 12 snoRNAs
were substantiated, further accentuating the predictive potency of GCLSDA in discerning
potential snoRNA–osteosarcoma associations.

To further assess the ability of different methods to express biological associations
between snoRNAs and diseases, we conducted comparative experiments based on the
outcomes of our ablation experiments. Firstly, we trained models using the same dataset as
the validation set (with the snoRNA–disease pairs associated in the training set removed)
to generate correlation prediction score matrices. Subsequently, we focused on two classic
and representative diseases, colorectal carcinoma and osteosarcoma, and extracted the top
15, 20, 25, and 35 snoRNAs with the highest predicted scores for each method. We then
verified them in PubMed Identifier database to determine whether publicly available data
had verified their correlations. The results are presented in Table 8.
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Table 7. The top 15 snoRNAs related to colorectal carcinoma and osteosarcoma resistance predicted
by GCLSDA.

SnoRNAs
(Colorectal Carcinoma) Evidence (PMID) SnoRNAs

(Osteosarcoma) Evidence (PMID)

SNHG12 32606771 TERC 27207662
SNHG20 35915794 SNHG16 33823834
SNHG5 35166647 SNHG7 35422168
SNHG4 34717631 SNHG15 35261804
RNU1-1 36973786 SNHG20 30120876

SNORD50 Unconfirmed SNORD50 Unconfirmed
SNORD68 Unconfirmed SNHG12 35422168
SNHG14 31799655 SNHG4 36004691

SNORD115-21 36973786 SNHG8 36388161
SNORD42B Unconfirmed SNHG14 36599973

SNORD115-33 36973786 SNHG3 33292213
SNORD115-8 36973786 SNORD24 Unconfirmed

SNORD116-15 36973786 SNHG1 35130629
SNORD93 36973786 SNORD3A 32599901

SNORD115-40 36973786 SNORD43 Unconfirmed

Notably, our method, GCLSDA, not only demonstrated a superior AUC performance
in absolute quantitative terms but also proved to be highly adept at identifying biologically
significant associations.

It should be noted that, in our experiment, it is found that the prediction results of
various methods are small when the top 12 or less than 12 are selected, so 15 is selected
as the smallest set. When the top 35 or greater than 35 were selected, the score of the
association prediction was too low and considered to be of no research significance.

Table 8. Confirming the biological relevance of snoRNAs associated with colorectal carcinoma and
osteosarcoma through ablation study.

Methods
Colorectal Carcinoma Osteosarcoma

15 20 25 35 15 20 25 35

LightGCN 6 7 7 7 6 8 12 15
SGL(ND) 9 12 15 16 7 7 7 14
SGL(ED) 12 16 18 25 7 8 9 10
GCLSDA 12 16 21 26 12 14 15 18

The case studies conducted underscore the significance of GCLSDA as a valuable tool
in pinpointing noteworthy snoRNA candidates warranting deeper investigation within
specific disease contexts. The substantial validation rates accentuate the credibility of
our approach in expediting the identification of potential snoRNA–disease associations.
These findings not only serve as a catalyst for future research endeavors but also hold the
potential for clinical applications in the realm of precision medicine.

3. Materials and Methods

In this work, we propose GCLSDA, a novel method that combines graph convolution
networks and self-supervised learning to predict potential associations between snoRNAs
and diseases. GCLSDA takes the snoRNA–disease bipartite graph as input and produces
association scores for specific snoRNAs and diseases. Initially, we initialize the embeddings
of snoRNAs and diseases randomly. To enhance the data, we introduce random noise to
each feature space, facilitating efficient data augmentation. Moreover, we utilize LightGCN
to effectively aggregate information from neighboring nodes and refine the uniformity
of feature representations through an improved loss function. This approach enables the
model to learn more informative and accurate feature representations of snoRNAs and
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diseases. To address issues of data sparsity and similarity noise, we employ self-supervised
learning with cross-layer comparisons in small batches. This strategy ensures the simplicity
of single propagation calculations. Finally, we employ the inner product to compute the
association scores between specific snoRNAs and diseases. The complete workflow of
GCLSDA is illustrated in Figure 4.
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Figure 4. Workflow of GCLSDA. The process initiates with the collection of established associations
between viruses and drugs, sourced from the MNDR v4.0 and ncRPheno databases. Subsequently,
a bipartite graph is meticulously constructed, delineating the interrelationships between snoRNAs
and diseases, based on these gathered associations. GCLSDA operates through two pivotal tasks: the
main task and the contrastive task. The main task involves the introduction of the bipartite graph into
the LightGCN framework. Within this context, the aim is to acquire meaningful representations of the
distinct snoRNA and disease nodes. These acquired representations are then harnessed in conjunction
with the inner product to prognosticate associations between snoRNAs and diseases. Owing to the
sparse nature of the supervised signals within the dataset, coupled with the presence of similarity
noise, the efficacy of the learned snoRNA and disease representations is further augmented. This is
accomplished by incorporating cross-layer comparisons within limited batches, thereby fostering
self-supervised learning. Ultimately, the main and contrastive tasks are harmoniously integrated,
culminating in enhanced predictive capabilities pertaining to the associations between snoRNAs
and diseases.

3.1. Datasets

For known snoRNA–disease associations, we utilized two distinct datasets:
MNDR v4.0 [28] and ncRPheno [29]. MNDR v4.0 is a comprehensive and concise resource
for RNA disease-associated data, encompassing 3,428,058 RNA disease entries spanning
18 RNA types, 117 types, and 4090 diseases. After eliminating redundant information, we
extracted 1441 associations involving 453 snoRNAs and 119 diseases from MNDR v4.0.
On the other hand, ncRPheno provides a diverse collection of noncoding RNA and dis-
ease associations, encompassing miRNAs, lncRNAs, circRNAs, snoRNAs, and piRNAs.
Following the removal of duplicate data, we retrieved 362 snoRNA–disease associations
from ncRPheno, consisting of 6 snoRNAs and 119 diseases. In total, our experimental
dataset comprised 1538 snoRNA–disease associations, encompassing 456 snoRNAs and
194 diseases.

3.2. Problem Description

To achieve the prediction of the relationship between snoRNA and disease, we consider
a given set of snoRNAs, denoted by S = {s1, s2, . . . , sm}, and a set of diseases, denoted
by D = {d1, d2, . . . , dn}. We represent the association between snoRNA and disease using
the association matrix R ∈ Rm×n. This matrix captures the known associations between
snoRNAs and diseases.

By utilizing the snoRNA–disease association matrix, we construct a bipartite graph
denoted by G(S, D, E). In this graph, each edge e = (s, d) ∈ E represents a known
association between the snoRNA s and the disease d. The presence of an edge indicates
that a relationship exists between the snoRNA and the disease.
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By representing the data in the form of a bipartite graph, we can employ graph-based
methods to analyze and predict the relationships between snoRNAs and diseases.

3.3. Initialize Embedding

To learn embedding representations of snoRNA and disease, we utilize a bipartite
graph as input and perform the feature aggregation of neighboring nodes. At this stage, we
initialize the ID embedding matrices for snoRNA and disease. By conducting an embedding
search based on the ID of each snoRNA or disease, we map them into vector representations.
By initializing the embedding matrices, we establish a 0-order representation for each
snoRNA and disease. These initial embeddings serve as a starting point for subsequent
propagation layers, where we prepare to embed them further. In mathematical terms, the
ID embedding matrix for snoRNAs and disease can be abstracted as:{

Es = [es1 , es2 , . . . , esn ]
Ed =

[
ed1 , ed2 , . . . , edm

] (5)

The feature matrices for snoRNA and disease, denoted by Es and Ed, respectively,
represent the initial embeddings for snoRNA and disease. The ID embedding vector
esi ∈ RT represents the embedding of the i-th snoRNA, while edj ∈ RT represents the
embedding of the j-th disease. Here, T denotes the dimensionality of the feature vectors,
determining the size of the embeddings. These feature matrices and ID embedding vectors
form the foundation for further embedding propagation and the subsequent analysis of
snoRNA and disease relationships.

3.4. Graph Convolutional Network for GCLSDA

Once the graph is constructed, preprocessing and feature extraction steps are per-
formed to extract relevant features from the data. Graph convolutional networks
(GCNs) [30] aim to learn node representations by smoothing features across the graph. This
is achieved through iterative convolutions on the graph, where the features of neighbor-
ing nodes are aggregated to create new representations of target nodes. In GCN, feature
transformation, domain aggregation, and nonlinear activation are common operations.
However, studies [28,31] have shown that the two common designs of feature transforma-
tion and nonlinear activation have a limited impact on the effectiveness of collaborative
filtering and can increase the complexity of model training. Therefore, in our model, we
solely focus on neighborhood aggregation. We utilize a simplified GCN-based embedding
propagation layer that employs a weighted-sum aggregator to capture key collaborative
filtering signals based on the graph structure. This approach optimizes the embedding
representation of snoRNA and disease. Specifically, LightGCN [14] aggregates neighbor
nodes at each layer, resulting in the k-layer propagated embeddings for snoRNA s and
disease d, which can be expressed using the following formula:

e(k)s = ∑
d∈Ns

1√
|Ns||Nd|

e(k−1)
d

e(k)d = ∑
s∈Nd

1√
|Ns||Nd|

e(k−1)
s

(6)

where e(k)s and e(k)d represent the embeddings of snoRNA s and disease d, respectively,
at layer k. The sets Ns and Nd represent the diseases directly interacting with snoRNAs
and the snoRNAs directly interacting with disease d, respectively. The term 1√

|Ns ||Nd |
serves as the normalization coefficient or discount coefficient. It accounts for the decay of
information as the propagation path length increases. After K-layer graph convolutions,
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the embedded representations of each layer are weighted and summed to obtain the final
embedded representations of snoRNA s and disease d:

es =
K

∑
k=0

αke(k)s

ed =
K

∑
k=0

αke(k)d

(7)

In Equation (7), αk represents the importance of the k-th layer embedding in the final
embedding representation. It can be manually adjusted or automatically optimized as a
parameter. In this experiment, we set αk to 1

K+1 to ensure good performance.

3.5. Contrastive Learning

Traditional unsupervised learning methods, particularly those rooted in graph con-
volutional neural networks, encounter certain constraints when applied to the prediction
of associations in recommender systems [32]. This is particularly evident in the context of
the long-tail problem [33,34]. In this scenario, conventional models tend to exhibit a bias
towards nodes with higher degrees, a tendency that promotes more effective representation
learning for such nodes. However, nodes with lower degrees, often referred to as long-tail
nodes, present a more intricate challenge for effective representation learning. Additionally,
the conventional practice of aggregating neighborhood nodes exacerbates the impact of
noise present in interaction data, potentially compromising the model’s robustness.

When addressing the prediction of snoRNA–disease associations, the prevailing su-
pervised learning signals continue to grapple with issues of data sparsity, impeding the
acquisition of refined representations. To mitigate this, we embraced self-supervised con-
trastive learning [35,36] as our preferred training approach. Contrastive learning stands as
an alternative methodology that circumvents the limitations encountered in conventional
self-supervised learning paradigms. By doing so, it furnishes a comprehensive framework
to enhance both the efficacy and robustness of the model concerning the prediction task.

In the scope of our experiment, in pursuit of fostering greater distinction between
diverse node representations and ensuring the discernibility of individual nodes, we
adopted a straightforward strategy. Specifically, we introduce random noise directly into
the representations to induce a higher level of dissimilarity. For a given node i and its
associated representation ei within a d-dimensional embedding space, this approach of
representation-level augmentation is formulated as follows:{

e′i = ei + ∆′i
e′′i = ei + ∆′′i

(8)

The noise vectors ∆i′ and ∆i′′ are randomly generated with ‖∆‖2 = ε, where ε is
a small constant. This noise augmentation strategy aims to promote diversity among
node representations by introducing small perturbations into their original embeddings.
By doing so, we encourage distinctiveness and discourage similarity between different
nodes in the embedding space. To ensure that ∆ is numerically equivalent to a point on a
hypersphere of radius ε, the following constraint is imposed:

∆ = Y� sign(ei), Y ∈ Rd ∼ U (0, 1) (9)

In this equation, Y is a vector of the same dimensionality d as the embedding vector ei.
Each element of Y is independently and uniformly sampled from the interval [0, 1] using
the uniform distribution U (0, 1). The � symbol represents the element-wise multiplication
operation between Y and the sign function applied element-wise to the original embedding
vector ei.

The sign function, denoted as sign(ei), computes the sign (+1, 0, or−1) of each element
in ei. By element-wise multiplying Y with the sign of ei, the resulting noise vector ∆ inherits
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the signs of ei. This constraint ensures that ∆ lies within the same hyperoctant (super
octant) as the original embedding vector ei. By constraining ∆ in this manner, excessive
bias introduced by the noise is prevented, and the augmentation of ei remains informative.

From a geometric standpoint, adding the scaled noise vector to ei corresponds to
rotating it by two small angles. Each rotation deviates from ei and generates an augmented
representation. These augmented representations preserve most of the information from the
original representation while introducing some differences. Furthermore, to fully exploit
the expressive power of the embedding space, we aim to spread the learned representations
across the entire space. This property is demonstrated by the uniform distribution. There-
fore, we choose to generate noise from a uniform distribution. Although it is technically
challenging to make the learned distribution approximately uniform, generating noise from
a uniform distribution consistently provides hints for augmentation in a statistical manner.

In the contrastive learning framework, our objective is to minimize the feature repre-
sentation augmented by the same embedding and maximize the feature representation of
the different embedding with its added noise. In this experiment, we adopted the classical
contrastive learning approach by utilizing the same perturbed representation for both tasks.
Cross-layer contrast is employed to simplify the learning process. To facilitate contrastive
learning, we incorporate the InfoNCE loss as an auxiliary task. The InfoNCE loss is defined
as follows:

Lcl = ∑
i∈β

log
exp(z′i

T)zl
i/τ

∑i∈β exp(z′i
T)zl

i/τ
(10)

where l denotes the layer compared to the final layer. In the training batch, i and j represent
the samples of snoRNA and disease, respectively. z′i and zl

i represent the feature representa-
tions of snoRNA after adding random noise, while zl

j represents the feature representation
of disease. The constant τ > 0 is the temperature parameter that controls the strength of
the sample penalty. The InfoNCE loss encourages consistency between z′i and zl

i , which are
positive samples of each other, while minimizing the consistency between z′i and zl

j, which
are negative samples of each other. Optimizing the InfoNCE loss effectively minimizes the
mutual information between the representations.

3.6. Prediction

Finally, we utilize the embedded representation of snoRNA si and the embedded
representation of disease dj to obtain the final prediction score using the inner product
operation:

ŷsidj
= eT

si
edj

(11)

This equation computes the inner product between the embeddings esi and edj
, re-

sulting in the predicted score for the association between snoRNA si and disease dj. The
resulting prediction score represents the likelihood or strength of the association between
the snoRNA and disease. Higher scores indicate a higher probability of association. By
calculating the inner product between the snoRNA and disease embeddings, we capture
the compatibility and similarity between their respective representations, enabling us to
make predictions about their potential association.

3.7. Model Optimization

During training, we employ the pairwise Bayesian personalized ranking (BPR) loss [37]
as the loss function. BPR is a sorting algorithm based on matrix factorization that aims to
maximize the gap between the scores of positive and negative samples. The BPR loss is
calculated as follows:

LBPR = ∑
(s,d+ ,d−)∈B

− log(ŷsd+ − ŷsd−) (12)
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Among them, B represents the training set consisting of triplets (s, d+, d−), where s
is a snoRNA, d+ denotes a positively associated disease, and d− represents a randomly
sampled negatively associated disease. The objective of the BPR loss is to ensure that the
predicted score ŷsd+ for the positive association is greater than or equal to the predicted
score ŷsd− for the negative association.

To incorporate the contrastive learning objective, we combine the BPR loss with the
contrastive learning loss using a regularization parameter λ. The overall loss function is
given by:

L = LBPR + λLcl (13)

This expression combines the BPR loss and the contrastive learning loss, allowing the
model to optimize both the ranking performance and the feature representation learning
through self-supervised contrastive learning.

4. Conclusions

In conclusion, our self-supervised framework, GCLSDA, represents a significant ad-
vancement in predicting snoRNA–disease associations. By harnessing graph convolutional
neural networks and incorporating contrast learning, GCLSDA adeptly addresses chal-
lenges related to data sparsity and noise, resulting in enhanced prediction precision and
model robustness. The comprehensive evaluation of GCLSDA reaffirms its superiority over
existing methodologies, highlighting its potential as a valuable and reliable resource for
unraveling the functional underpinnings of snoRNAs in disease contexts.

The promising performance of GCLSDA holds profound implications for disease un-
derstanding, drug exploration, and therapeutic strategies. Through precise predictions of
potential snoRNA–disease associations, GCLSDA opens new avenues for deciphering the
intricate pathogenic mechanisms of complex human ailments. This knowledge facilitates
the development of refined, individualized diagnostic tools and therapeutic interventions,
ultimately improving patient outcomes. As we continue to refine and expand computa-
tional tools like GCLSDA, we anticipate transformative impacts on precision medicine.
Exploring higher-order associations within the bipartite graph structure and integrating di-
verse data sources, such as gene expression data, bodes well for future exploration. Further
enhancements to snoRNA and disease embeddings through self-supervised learning will
continue to amplify GCLSDA’s predictive potency and real-world applicability.

However, it is worth noting that our current method has limitations, particularly
in terms of database scale. While our approach performs efficiently on relatively small
databases, its scalability to larger datasets may present challenges in terms of computational
resources and optimization. Addressing these limitations will be a key focus of our future
work, as we strive to extend the applicability of GCLSDA to more extensive datasets and
further advance the field of computational snoRNA–disease association prediction.
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