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Abstract: The pursuit of superhydrophilic materials with hierarchical structures has garnered signifi-
cant attention across diverse application domains. In this study, we have successfully crafted Ni-Mn
LDHs@CuC,0O4 nanosheet arrays on a copper mesh (CM) through a synergistic process involving
chemical oxidation and hydrothermal deposition. Initially, CuC,O4 nanosheets were synthesized
on the copper mesh, closely followed by the growth of Ni-Mn LDHSs nanosheets, culminating in
the establishment of a multi-tiered surface architecture with exceptional superhydrophilicity and
remarkable underwater superoleophobicity. The resultant Ni-Mn LDHs@CuC,;04 CM membrane
showcased an unparalleled amalgamation of traits, including superhydrophilicity, underwater super-
oleophobicity, and the ability to harness photocatalytic forces for self-cleaning actions, making it an
advanced oil-water separation membrane. The membrane’s performance was impressive, manifest-
ing in a remarkable water flux range (70 kL-m~2'h~!) and an efficient oil separation capability for
both oil/water mixture and surfactant-stabilized emulsions (below 60 ppm). Moreover, the innate
superhydrophilic characteristics of the membrane rendered it a prime candidate for deployment as a
supercapacitor cathode material. Evidenced by a capacitance of 5080 mF-cm~2 at a current density of

6 mA cm 2

in a 6 M KOH electrolyte, the membrane’s potential extended beyond oil-water separation.
This work not only introduces a cutting-edge oil-water separation membrane and supercapacitor
electrode but also offers a promising blueprint for the deliberate engineering of hierarchical structure

arrays to cater to a spectrum of related applications.
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1. Introduction

The rapid advancement of industrialization worldwide has led to detrimental con-
sequences for the ecological environment, such as the discharge of oily wastewater and
greenhouse gas emissions [1,2]. Consequently, efficient water treatment and energy stor-
age systems have gained increasing significance. Superwetting membranes, created by
controlling the chemical composition and microstructure of the membrane surface, have
become a popular approach for treating oily wastewater due to their cost-effectiveness
and high flow flux [3]. The deliberate design of a vertically arranged nanosheet structure
can maintain water stability and form a stable three-phase interface of oil/water/solid,
resulting in excellent oil rejection performance [4-6]. Moreover, the microstructure design
is crucial for constructing ion diffusion pathways in aqueous alkali-based energy stor-
age devices [6,7]. The construction of electrodes with a hierarchical structure has been
demonstrated to facilitate the reduction of ion diffusion pathways and mitigate the volume
effect during charge/discharge processes [7,8]. This presents a promising opportunity to
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rationally design a hierarchical structured material capable of both oil-water separation
and energy storage applications.

Layered double hydroxides (LDHs) are a family of layered structure materials com-
posed of interlayer balancing anions and positively charged lamellar cations such as AI**,
Mn3*, and Fe3* [9]. These cations partially replace bivalent metal cations such as Ni?*,
Co?*, and Fe?*, which are coordinated octahedrally by hydroxyl groups [10]. Anions such
as CI, NO3~, SO42~, CO32~, and RCO?~ balance the positive charge of the cations [10-12].
Combining LDHs with high porosity membrane substrates is an attractive strategy for
constructing functionalized membranes with hierarchical structures [13-15]. The good
catalytic reduction performance of LDHs endows the membrane with excellent antifouling
and self-cleaning properties, enabling it to remove surfactant-stabilized emulsions and
dyes from the residue on the membrane [16-18]. Yin et al. [15] reported the successful
fabrication of a Ni-Co LDH on the surface of a stainless-steel mesh, displaying a robust self-
cleaning oil-repellent ability without hydration. Sun et al. [19] proposed a dual-functional
mesh with Zn-Ni-Co LDHs@NiMoO, heterojunction nanoarrays, which could efficiently
separate various oil/water mixtures with high flux and also exhibited good photocat-
alytic performance for the degradation of organic dyes. The large interlayer spacing of
LDHs makes it favorable for the diffusion of ions and water molecules, thereby promoting
electrochemical reaction kinetics in aqueous supercapacitors (SCs) [20]. Ruan et al. [21]
prepared Ni(OH), /CuyO/CuO nanoclusters on a nickel foam, which had a capacitance of
1474 F g1 at 15 mA cm 2 and could retain a capacitance of 82% after 1500 cycles. Zhang
et al. [22] reported that core-shell structured NiMn-LDHs@CuO on copper foam delivered
a capacitance of 2430 Fg~ ' at 0.8 A g~ 1.

Accordingly, we hypothesized that a substrate with a nanosheet array structure could
serve as an advanced functionalized material with efficient oil-water separation and good
supercapacitor performance. The aim of this study was to fabricate a novel dual-functional
membrane for simultaneously enhancing oil/water separation and supercapacitors. As
illustrated schematically in Figure 1, the growth of CuC,0O4 nanosheet arrays was accom-
plished on the surface of a copper mesh (CuC,O4 CM) by a chemical etching method.
Subsequently, Ni-Mn LDHs were deposited on the CuC,O4 CM by a hydrothermal method,
forming a hierarchically structured Ni-Mn LDHs@CuC,;0O4 CM. The introduction of Ni-
Mn LDHs increased the surface roughness of the membrane and improved its emulsion-
breaking performance. The Ni-Mn LDHs@CuC,0O4 CM showed a photo-catalytically driven
self-cleaning function for degrading oil pollution while maintaining its superhydrophilicity.
This material showed an ultrahigh separation flux (up to 7.0 x 10* L m~2 h~ 1) with residual
oil contents in filtrates below 60 mg-L! for oil/water mixtures and a flux of 2000 L-m~2-h~!
with that below 100 mg L~! for surfactant-stabilized oil-in-water emulsions. As a cathode
for SCs, the LDHs@CuC,;04 CM delivered a capacitance of 5080 mF cm 2 at a current
density of 6 mA cm~2 and still exhibited a capacitance retention of 80.25% after 800 cycles
at a current density of 15 mA cm~2. Our study unveils a pioneering oil-water separation
membrane and supercapacitor electrode, embodying the forefront of innovation. Beyond
this, we present a compelling blueprint for the intentional design of hierarchical structure
arrays poised to serve an array of interconnected applications.
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Figure 1. Schematic diagram of a two-step process for preparing Ni-Mn LDHs@CuC,0, CM by
chemical oxidation and hydrothermal deposition.

2. Results and Discussion
2.1. Characterization of the Ni-Mn LDHs@CuC,04 CM

Figure 1 schematically illustrates the two-step synthesis process to obtain a hierarchical
Ni-Mn LDHs@CuC,04 CM sample. First, CuC,0O4 nanosheet arrays are fabricated by
chemical etching, providing a larger specific surface area and more sites to grow Ni-Mn
LDHs on the mesh framework. Then, the CuC,O4 nanosheet array-coated copper mesh is
transported to a hydrothermal reactor for Ni-Mn LDHs growth. The CuC,0O4 nanosheets
function as the core for in-situ growth of Ni-Mn LDHs@ CuC,0y4, and all as-prepared
products maintain a sheets-like array throughout the reaction process.

The representative SEM images of the as-prepared Ni-Mn LDHs@CuC,04 CM at
different hydrothermal times are shown in Figure 2. Compared with Figure S1, it is clearly
observed that Ni-Mn LDHs nanosheets grow in situ on the CuC,O4 nanosheets and cover
the CuC,0,4 CM substrates completely after 8 h of hydrothermal reaction (Figure 2d). As
the hydrothermal process proceeded for a specific time (i.e., 2, 4, 6, and 8 h) (Figure 2a—d),
these Ni-Mn LDHs continuously grew to give rise to dense nanosheets with a height and
a width not exceeding 10 um. At a reaction time of 2 h, a delicate layer of Ni-Mn LDHs
nanosheets forms on the CuC,0; CM substrates (Figure 2a), signifying the successful
construction of hierarchical nanostructures. With progressive increments in reaction time,
a noticeable proliferation of Ni-Mn LDHs nanosheets becomes apparent on the mesh
membrane, culminating in a more compact and comprehensive hierarchical arrangement
(Figure 2b,c). Remarkably, at an 8-h reaction time, distinct particles comprised of Ni-Mn
LDHs nanosheets densely populate the mesh membrane substrates (Figure 2d), thereby
amplifying superhydrophilicity through increased membrane surface area and heightened
surface roughness (Cassie Model). Furthermore, these nanosheets grow vertically, form-
ing a grid-like staggered structure, which provides abundant reaction sites for reversible
Faraday redox reactions and a solid backbone for charge/electrolyte ion transport [23,24].
At the same time, due to the low height (about 1-2 um) and the interconnected structure
of the nanosheet, the contact between the electrode material on the surface and the collec-
tor is closer, which is conducive to improving the charge transport and electrochemical
performance of the nanosheet.

Figure 3 shows that the Ni-Mn LDHs@CuC,04 CM after 8 h hydrothermal reaction
has 22.2%, 3.3%, 22.1%, 47.8%, and 4.5% for Ni, Mn, C, O, and Cu, respectively, indicating
that Ni-Mn LDHs is uniformly loaded on CuC;O4 CM in the hydrothermal reaction.
Additionally, the contents of Ni and Mn elements are higher than the contents of reaction
time 6 h shown in Figure S2, confirming that the nanosheet structure is denser and more
homogeneous as the hydrothermal reaction time increases.
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Figure 2. (a-d) SEM images of different magnifications of Ni-Mn LDHs@CuC,04 CM after hydrother-
mal reaction for 2, 4, 6, or 8 h.
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Figure 3. (a) The SEM image and corresponding element content, as well as (b) EDS mapping of
Ni-Mn LDHs@CuC,04 CM after 8 h hydrothermal reaction.

Figure 4a shows that the XRD pattern of oxalic acid-treated copper mesh has the
characteristic peaks of CuC,04 (PDF: 21-0297), demonstrating the successful synthesis
of CuCy0O4 micro-nano sheets. After the hydrothermal reaction, new diffraction peaks
located at 11.3° were observed, which should be attributed to the (0 0 3) planes of Ni-Mn
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LDHs. The surface chemical composition of Ni-Mn LDHs@CuC,04 CM can be further
determined by XPS. The peaks of Cu, Ni, Mn, O, and C shown in the wide scan spectrum
indicate the presence of these elements in the Ni-Mn LDHs@CuC,04 CM (Figure 4b). The
Cu 2p core level spectra in Figure 4c and Cu (0) and Cu (II) with binding energy (i.e., BE) at
933.1 and 935.3 eV, respectively, correspond to Cu substrate and CuC,O4 nanosheets [25].
The Ni?* 2p3/2 and Ni?* 2p1/2 peaks accompanied bands are located at 855.6 eV and
873.2 eV, respectively, which indicate the presence of Ni?* in Ni-Mn LDHs@CuC,0, CM
(Figure 4d) [22,23]. In addition, the Mn 2p1/2 and Mn 2p3/2 are located at 641.9 and
653.1 eV, respectively, suggesting that the main oxidation state of the Mn cation in the
Ni-Mn LDHs is Mn3* ions (Figure 4e) [22,23]. In the O 1s spectrum, the dominating peak
with BE at 531.1 eV is associated with the -OH, and the other small component peak with
BE at 532.4 eV corresponds to the oxalate ions CpO42 (Figure 4f) [25]. In C 1s core level
spectra (Figure S3), the peak component with BE at 284.7 eV is assigned as adventitious
carbon and is used as a correction for the other peak components. The peak component
with the BE at 286.3 eV is attributed to the C-O bond, consistent with the characteristic
bonding of the oxalate ion during the transformation process. The peak with the BE at
289.1 eV corresponds to the carboxyl group in C;04%~ [26].
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Figure 4. (a) XRD patterns of copper oxalate mesh after chemical oxidation reaction and Ni-Mn
LDHs@CuC,04 CM after hydrothermal reaction for 2, 4, 6, or 8 h. XPS spectrums of (b) wide scan,
(c) Cu 2p, (d) Ni 2p, (e) Mn 2p, and (f) O 1s of Ni-Mn LDHs@CuC,0O4 CM after 8-h hydrothermal

reaction.

2.2. Surface Wettability Characterization

The selective wettability of the novel mesh membrane plays a vital role in efficient
oil/water separation [26,27]. A hierarchical micro-nano rough structure with high surface
energy was constructed on the mesh surface. Hence, a superhydrophilic/ underwater
superhydrophobic surface was successfully formed. The wettability of the membrane was
tested by the measurement of static (or dynamic) WCAs. Figure 5a shows that a water
droplet can quickly spreading-wetting within 80 ms with a static WCA at 0° on the Ni-Mn
LDHs@CuC,04 CM surface. By contrast, the static WCA of pure CM was 90°, as shown in
Figure S4. Similarly, Figure 5b shows that the underwater oil contact angles (UWOCAs)
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of all kinds of oil species are greater than 150°. Among them, the underwater OCAs of
1,2-dichloroethane, kerosene, cyclohexane, and isooctane are 157 & 3°, 156 + 4°, 158 £ 1°,
and 155 =+ 1°, respectively, indicating the superior underwater superoleophobicity of the
Ni-Mn LDHs@CuC,04 CM for general applicability. Additionally, an ultralow underwater
oil sliding angle (UWOSA) (8°) can be realized on the surface of Ni-Mn LDHs@CuC,04
CM (Figure 6a), which may imply an extreme underwater oil anti-adhesion property of the
mesh. Thus, the oil anti-adhesion test was conducted. When red dichloroethane oil drops
and kerosene oil drops were dropped onto the membrane under underwater conditions,
the oil droplets bounced back quickly and fell off without adhering to the membrane
(Figure 6b,c), which resulted from the low adhesion of oil droplets on the underwater
superoleophobic surface of the Ni-Mn LDHs@CuC,04 CM. All these phenomena directly
confirm the excellent underwater oil anti-adhesion property of Ni-Mn LDHs@CuC,04 CM.
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Figure 5. (a) Dynamic WCA snapshot of water droplets in the air on the surface of Ni-Mn
LDHs@CuCy04 CM. (b) Underwater oil contact angle of Ni-Mn LDHs@CuC,04 CM for differ-
ent oil types.
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Figure 6. (a) Underwater dynamic oil adhesion angle test of Ni-Mn LDHs@CuC,04 CM. (b,c) Under-
water oil pollution resistance test, using dichloroethane and kerosene as oil pollution, respectively.

2.3. Oil-Water Separation Performance

The specific separation performance was tested by a series of confirmatory experiments
(Figure 7). The separation experiments for oil/ water mixtures were conducted by a vertical
tubular device (Figure 7a). The feed column height was always maintained at about 15.5 cm,
which is equivalent to a static pressure of about 1.5 kPa. The membrane was pre-wetted by
water to ensure the formation of a stable water film on the membrane surface to isolate oil.
The separation result is shown in Figure 7a,b. When the oil/water mixture is added from
above the tube, due to the limited contact between the oil and the membrane surface, the
oil is confined in the upper separation tube, while the water phase passes rapidly through
the membrane and is collected in the beaker below the separating tube. Figure 7b shows
that the collected water is clear and transparent, and almost all of the oil phase is retained
by the membrane and stays in the upper separation tube (Figure 7a). The CTAB-stabilized
oil-in-water emulsions (SSEs) prepared by different oil types were used for the separation,
and the results are shown in Figure 7c—f. As expected, the numerous sub-micrometer and
micrometer oil droplets in all milky feeds are completely removed (Figure 7d—f), indicating
that Ni-Mn LDHs@CuC,0O4 CM can separate the SSEs efficiently.

To further determine the separation performance, the water permeation flux and the
COD value in the filtrate were measured. Figure 8a shows that the permeate fluxes of the cy-
clohexane, kerosene, and isooctane are 98.22, 76.39, and 85.94 x 103 L m 2h 1, respectively.
Residual oil concentrations (expressed as COD values) in the filtrate of the cyclohexane,
kerosene, and isooctane are as low as approximately 51.15, 12.03, and 7.52 mg L~!, respec-
tively. Furthermore, the difference in the flux and the COD value in filtrate can be observed
among the SSEs derived from different oil types due to the different physicochemical prop-
erties of different oil (Figure 8b). Specifically, the permeate fluxes of cyclohexane, kerosene,
and isooctane emulsions are 2291.83, 1909.86, and 1762.95 L m~2 h™!, respectively. The
corresponding COD value in the filtrate is 96.29, 91.77, and 76.73 mg L !, respectively. Com-
pared to the separation of oil/water mixtures, the permeate fluxes for the separation of the
surfactant-stabilized emulsion decrease sharply, and the residual oil concentrations in the
filtrate increase greatly. The reason for this is probably that the pores of the mesh membrane
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are blocked by the filter cake consisting of difficult-to-gather oil droplets. To comprehen-
sively evaluate the oil/water separation capabilities of our Ni-Mn LDHs@CuC,04 CM,
we present a succinct performance analysis encompassing permeation flux and separation
efficiency, as compared to previously documented separation membranes (Table 1) [27-30].
Evidently, the Ni-Mn LDHs@CuC,0,4 CM exhibits a comparable efficiency in separating
oil/water mixtures while significantly outpacing numerous reported membranes in terms
of water permeation flux. This underscores the exceptional oil-water separation proficiency
of the Ni-Mn LDHs@CuC,04 CM, a feat further magnified by the strategic integration of

hierarchical Ni-Mn LDH structures.

Figure 7. Photographs of the separation devices and results: (a) oil-water mixture; (c) oil-in-water
emulsion; comparison before and after separation of (b) oil-water mixture and (d) emulsion, and

(e,f) the corresponding optical micrograph of emulsion and filtrate.

Table 1. Performance comparison of Ni-Mn LDHs@CuC,0O4 and various membranes for separating

O/W emulsions.

No. Separation Membrane

Flux (L-m—2-h—1)

Separation Efficiency = Reference

g-C3Ny/Ti(OH)4/PFOA
Ti3C, Tx MXene-PAN
CL-LPDA-SiO,@PDA-CM
ZnO/WO3.H,O

Zn-Ni-Co LDHs@NiMoQOy4
CuC,04@ Cu-MOFs
Ni-Mn LDHS@CLICQO4

N OO WD -

317.2
1573
109.76
431
1981
1800
2292

95%
98.6%
97%
96%
>98%
>99.0%
>99.0%

[27]
[28]
[29]
[30]
[19]
[31]
This work
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Figure 8. Ni-Mn LDHs@CuC,04 CM separation of (a) oil-water mixtures and (b) surfactant stabilized
emulsions: variation in flux and residual oil content (COD value) with different oil types. (c) A
Xenon lamp emitter was used. (d) The effect of visible light irradiation time on WCA after oil-water
separation with Ni-Mn LDHs@CuC,04 CM. The stability test: underwater oil contact angle changes
in Ni-Mn LDHs@CuC,0O4 CM after being immersed into (e) deionized water and (f) NaCl solution
with different concentrations.

2.4. Photocatalytic Self-Cleaning and Stability

The photocatalytic self-cleaning capability of the separation membrane surface is
particularly important for a separation system with long-term oil/water separation [32].
The photocatalysis self-cleaning performance of the Ni-Mn LDHs@CuC,04 CM is shown
in Figure 8c,d. The membrane was immersed in kerosene to construct a membrane surface
contaminated with oil, and the contaminated membrane has lost its superhydrophilic
surface properties with a WCA of 133.8°. After 80 min of UV light illumination, the
superhydrophilicity of the fouling membrane can be completely restored, demonstrating
the good photocatalytic self-cleaning performance of the membrane.

In practical applications, the stability of the membrane is very important for the
separation system. Based on water and salt resistance, this study explores the long-term
useability of the novel membrane in freshwater and saltwater environments. The mem-
brane was placed in deionized water, and the underwater oil contact angle was tested
every day. Furthermore, the membrane was immersed in 1% to 5% NaCl solution to test
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the salt tolerance. Comfortingly, whether in a water environment (Figure 8e) or a high-salt
environment (Figure 8f), the meshes always maintained relatively stable underwater super-
oleophobicity (all UWOCAs > 150°), indicating a favorable chemical tolerance of Ni-Mn
LDHs@CuC,04 CM.

2.5. Electrochemical Performance

Figure 9a shows a pair of peaks in CV curves within the potential range of —0.3-0.7 V,
indicating the battery-like charge storage mechanism. This is consistence with the previous
reports [33,34]. With an increase in scanning rate, a faster redox rate occurs on the electrode
materials, gradually increasing the redox peak current. The anode peak shifts slightly to
the high potential region, while the cathode peak shifts slightly to the low potential region,
implying that electrochemical polarization occurs as the scan rate increases. GCD measure-
ments were carried out on the Ni-Mn LDHs@CuC,0O4 CM at different current densities.
Figure 9b shows that the shape of the GCD curve is an approximately symmetrical triangle,
implying good columbic efficiency and faradaic pseudo capacitance performance [35,36].
Based on the GCD data, the area-specific capacitance of Ni-Mn LDHs@CuC,04 CM at
different current densities is illustrated in Figure 9c. Clearly, a specific capacitance of
5080, 4711, 4376, and 3753 mF cm 2 can be achieved at current densities of 6, 8, 10, and
15 mA cm~2. Figure 9d shows the Nyquist plot of the Ni-Mn LDHs@CuC,04 CM electrode,
and the result is fitted by an equivalent electrical circuit (Figure 9d inset). The Nyquist
plot consists of a small semicircle in the high-frequency region and a straight line in the
low-frequency region, reflecting the transfer of changes at the electrode/electrolyte in-
terface and the ion diffusion process in the electrode, respectively [37,38]. The internal
resistance (Rs) and the charge transfer resistance (R¢t) were calculated to be 0.7 and 1.7 (),
respectively, indicating the good electron transfer stability of the Ni-Mn LDHs@CuC,0O4
CM electrode. The long cycling test was also carried out, and the specific capacitance of
each cycle was collected based on the GCD data. Notably, Figure 9e shows that at a current
density of 15 mA cm™2, a capacitance retention of 80.25% was achieved after 800 cycles,
indicating the good electrochemical stability of the Ni-Mn LDHs@CuC,0,4 CM electrode.
For comparison, Table 2 outlines the capacitive performance of the as-prepared Ni-Mn
LDHs@CuC,;04 CM electrodes alongside other electrodes documented in the existing liter-
ature [39-43]. The data clearly illustrate that the Ni-Mn LDHs@CuC,O; electrode holds its
own against the capacitive benchmarks set by recently reported supercapacitors. This out-
come underscores the exceptional energy storage capabilities of our Ni-Mn LDHs@CuCyO4
CM electrode, affirming that the adept assembly of hydrotalcite significantly enhances its
energy storage prowess.
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Figure 9. The electrochemical performance of Ni-Mn LDHs@CuC,04 CM: (a) CV curves at different
scan rates; (b) GCD curves at different current densities; (c) the specific capacitance based on GCD
data; (d) Nyquist plots; and (e) long cycling test at 15 mA cm~2 for 800 cycles.
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Table 2. Performance Comparison of Ni-Mn LDHs@CuC,0,4 and various supercapacitors for capaci-

tive performance.

No. Separation Membrane Capacitive Performance Reference
1 NiMn LDH@NiCo,0,/CC 240 F cm~2 at 20 mA cm 2 [39]
2 CoNiyS,/CC 3.16 Fem 2 at 10 mA cm 2 [40]
3 Fe-Co-S/P 5.06 F cem~2 at 20 mA cm 2 [41]
4 CuMoP 52Fcm2 at 3 mA cm 2 [42]
5 Ni;Sg/CoNiyS,@CF 2.84 Fcem =2 at 20 mA cm 2 [43]
6 Ni-Mn LDHs@CuC,0y4 508 Fcm™2 at 6 mA cm 2 This work

3. Materials and Methods
3.1. Materials

The commercial copper mesh (>99.9% purity, 500 meshes) was purchased from
Shengzhuo Wire Mesh Co. (Hebei, China). Chemical reagents of reagent grade, such as ox-
alic acid (H,C»04.2H,0), manganese chloride (MnCl,.4H,0), nickel chloride (NiCly.6H,0),
hexamethylenetetramine, acetone, isopropanol, ethanol, hydrochloric acid (36 wt%), and
hexadecyl trimethyl ammonium bromide (CTAB), were procured from Kelong Chemical
Co. (Chengdu, China). Oil samples, including kerosene, isooctane, 1,2-dichloroethane, and
cyclohexane, were obtained from Aladdin Reagent Co. (Shanghai, China). Deionized water
(18.25 MQ)-cm) was generated using a commercial reverse osmosis (RO) workstation.

3.2. Preparation of CuC,0O4 Nanosheet Arrays

The well-defined CuC,;0O4 nanosheet arrays were prepared by a previously reported
chemical etching method [25]. The copper mesh was firstly pretreated to remove grease
and oxide layers by immersing the copper mesh into a solution (containing each acetone,
isopropyl alcohol, anhydrous ethanol, and deionized water) followed by ultrasonic treat-
ment (energy level = 40 kHz, 240 W) for 10 min each. The mesh was then placed in 1 M
HCl for 15 min to remove the oxide layer on the mesh surface. Finally, the mesh was placed
in 1 M HpC,0Oy4 solution for chemical etching for 7 days at 70 °C. Afterward, it was rinsed
with a copious amount of deionized water and dried in a vacuum oven at 60 °C overnight.

3.3. Preparation of Ni-Mn LDHs@CuC,04 CM

The growth of Ni-Mn LDHs on the surfaces of CuC,0O4 CM was achieved via a well-
established hydrothermal reaction [44]. Typically, 3 mmol of NiCl,, 1 mmol of MnCl,,
and 5 mmol of hexamethylenetetramine were dissolved in 30 mL of deionized water and
stirred evenly for 30 min. The solution was then transferred into a 50 mL Teflon-lined
stainless-steel reactor with the prepared CuC,04 CM and subjected to a hydrothermal
reaction at 90 °C for (predetermined) 2, 4, 6, or 8 h. After the reaction, the collected Ni-Mn
LDHs@ CuC,04 CM was washed with deionized water and dried in a vacuum oven at
60 °C for 24 h.

3.4. Characterization

Scanning electron microscopy (SEM, Regulus 8230, Hitachi, Japan), a matched energy
dispersive spectrometer (EDS), and X-ray diffraction (XRD, DX2700, Haoyuan Instru-
ments Co., China) were used to assess the surface morphology, chemical composition, and
crystalline structure of Ni-Mn LDHs@CuC,04 CM, respectively. The XRD analysis was
conducted using Cu K« radiation with a wavelength of 1.5418 A. The surface chemical
compositions and valence states were characterized by X-ray photoelectron spectroscopy
(XPS) with an Axis Ultra Has XPS spectrometer (Kratos Analytical Co., Wharfside, Manch-
ester, UK). A contact angle measuring instrument (JC2000, Shanghai Zhongchen Digital
Equipment Co., Shanghai, China) was used, with a 3 puL droplet of liquid applied to the
mesh membrane surface, to obtain the contact angle values by averaging the results from
three measurements at different positions.
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3.5. Determination of Oil/Water Separation Performance

The test experiment to assess the oil and water separation performance of Ni-Mn
LDHs@CuC,04 CM was conducted in four steps. First, the material was fixed in a tubular
oil/water separation device for oil/water mixtures or a pump oil/water separation device
for emulsions. Second, the material was pre-moistened with deionized water. Third,
different samples were poured from the upper end of the device into the (pump) device,
from which water samples were collected. Finally, the chemical oxygen demand (COD)
of those samples was measured using a COD spectrophotometer. The gravity-driven
separation performance of the as-prepared Ni-Mn LDHs@CuC,04 CM was evaluated on
various oil-water mixtures and oil-in-water emulsions. 30 mL of cyclohexane dyed with
Sudan ITI was mixed with 30 mL of deionized water, and 2 mL of kerosene was mixed with
198 mL of deionized water to create an oil-water mixture and an oil-in-water emulsion,
respectively. To stabilize the emulsion, an aliquot of 300 mg of CTAB was added to the
mixture and then stirred for 2 h. The emulsion separation flux was calculated using the
following Equation:

F=V/( xt) 1)

where V is the filtrate volume per unit time (kL), S is the area of the flange port of the
separation device (m?), and t is the separation time (h).

3.6. Photocatalytic-Driven Self-Cleaning Ability and Stability Testing

To measure the photocatalytic-driven self-cleaning ability of Ni-Mn LDHs@CuC,O4
CM under visible light irradiation, the as-prepared mesh membrane was immersed in
the kerosene solution for a while (10 min) to obtain an oil-contaminated copper mesh,
which was then placed on a glass sheet and transferred to a photocatalytic reactor for
photodegradation using a 500 W Z]B 380 xenon lamp with a 400 nm cut-off filter as the
visible light source. The photocatalytic degradation ability was determined by measuring
the change in water contact angles (WCAs) as a function of irradiation time. The chemical
stability of the resulting Ni-Mn LDHs@CuC,04 CM was evaluated by monitoring its
change in the underwater oil contact angle over time when it was immersed in a 1%, 2%,
3%, 4% or 5% NaCl solution and deionized water for 6 and 7 days, respectively.

3.7. Electrochemical Energy Storage Performance Testing

The electrochemical energy storage performance of the Ni-Mn LDHs@CuC,04 CM
was investigated using cyclic voltammetry (CV), galvanostatic charge-discharge (GCD),
and electrochemical impedance spectroscopy (EIS). The Ni-Mn LDHs@CuC,0,4 CM sample
with a dimension of 1 x 1 cm was used as the working electrode, the Ag/AgCl electrode
as the reference electrode, and the Pt electrode as the counter electrode, with a 6 M KOH
solution as the electrolyte. The EIS measurement was performed at open-circuit voltage
and an AC voltage amplitude of 5 mV in a frequency range of 0.01-100 kHz on a CHI-660E
electrochemical workstation. On the basis of the GCD curves, the specific capacitance of
the sample was calculated by the following Equation:

C=(I x A)/(S x AV) @)

where I is the discharging current (mA), At is the discharging time (s), AV denotes the
voltage range, and S corresponds to the area of active material in the working electrode
(cm?). The three parameters I, At, and AV were obtained from GCD curves.

4. Conclusions

This study presented a novel approach to fabricating Ni-Mn LDHs@CuC,0O4 nanosheet
arrays on a copper mesh, achieved through a combination of chemical oxidation and hy-
drothermal deposition. The resulting structure served dual purposes as an oil-water
separation membrane and a supercapacitor (SC) cathode. The Ni-Mn LDHs@CuC,04 CM,
acting as an advanced oil-water separation membrane, exhibited an impressive array of
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properties, including superhydrophilicity, underwater superoleophobicity, and photocat-
alytic self-cleaning capabilities. Remarkably, the membrane demonstrated a separation flux
for oil /water mixtures reaching up to 70 kL m~2 h~! while effectively reducing residual
oil contents in the filtrate to below 60 mg L~!. When faced with surfactant-stabilized
oil-in-water emulsions, the Ni-Mn LDHs@CuC,;04 CM maintained a separation flux of
approximately 2 kL m~2 h™!, ensuring residual oil content remains below 100 mg L.
Moreover, the Ni-Mn LDHs@CuC,04 CM showcased robust chemical stability during ex-
tensive testing. When employed as an SC cathode, it achieved a remarkable capacitance of
5080 mF cm~2 at a current density of 6 mA cm2. Impressively, even at a current density of
15 mA cm~2, noteworthy capacitance retention of 80.25% was maintained after 800 cycles.
This work not only introduces a groundbreaking oil-water separation membrane and SC
cathode but also proposes an innovative strategy for designing hierarchical structure arrays,
thereby enriching the landscape of relevant applications.
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