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Abstract: We have developed a new method for promoter sequence classification based on a genetic
algorithm and the MAHDS sequence alignment method. We have created four classes of human
promoters, combining 17,310 sequences out of the 29,598 present in the EPD database. We searched the
human genome for potential promoter sequences (PPSs) using dynamic programming and position
weight matrices representing each of the promoter sequence classes. A total of 3,065,317 potential
promoter sequences were found. Only 1,241,206 of them were located in unannotated parts of the
human genome. Every other PPS found intersected with either true promoters, transposable elements,
or interspersed repeats. We found a strong intersection between PPSs and Alu elements as well as
transcript start sites. The number of false positive PPSs is estimated to be 3 × 10−8 per nucleotide,
which is several orders of magnitude lower than for any other promoter prediction method. The
developed method can be used to search for PPSs in various eukaryotic genomes.
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1. Introduction

Promoter regions are important for RNA transcription [1]. Such regions are located
upstream of DNA coding regions and serve to bind RNA polymerase and several other
proteins involved in transcriptional regulation [2]. Eukaryotic promoters can contain
highly conserved motifs such as the initiator (Inr), TATA box, DPE, and the bridge, a
bipartite core promoter element [3]. These motifs are located in the region −499 to
+100, with the +1 position being the transcript start site (TSS). For the positioning of
the TSS, sequencing technologies are used that allow for rather precise positioning [4].
The use of OligoCap, CAGE, and deepCAGE makes it possible to find TSSs in in vivo
experiments [5,6]. However, the use of experimental methods is still expensive. There-
fore, it is easier to use bioinformatics methods for promoter search in sequenced genomes
instead [7]. Mathematical methods for promoter search have developed significantly in
the last 20 years. Promoter sequence search can greatly improve the accuracy of predict-
ing genes and DNA coding regions [8], as well as accurately locate TSS positions. TSS
coordinates are particularly important for genetic engineering and personal medicine
because gene expression is regulated by promoter activation and inhibition by various
proteins [9,10].

Promoter sequence recognition can be performed using neural networks trained on
the existing set of promoters [11], such as the EPD database [12,13], because all promoters
in it have been experimentally verified. If the structure and relative positions of individual
promoter motifs are known, mathematical tools such as Context Free Grammar can also
be used for promoter search [14]. However, promoter sequences are very diverse, which
makes their prediction difficult. To overcome this diversity, prokaryotic promoters were
divided into several classes based on the sigma factor. Promoter classification allowed us
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to reduce the number or false positives for promoter prediction by adjusting the search
methods for each class [15,16].

However, all of these methods have a common flaw. They produce a large number of
false positives that can interfere with true promoter identification. Even the best of them
will make a false positive prediction every few tens of thousands of nucleotides [17–23].
This would result in more than 3 × 105 false positive predictions for the human genome.
There are approximately 3 × 104 known promoters in the human genome [12], so such a
number of false positives would be an order of magnitude higher than for true promoter
sequences. Due to the difficulty in identifying true promoters from the false positives, there
is a need for other promoter prediction methods with higher sensitivity for the analysis of
complete eukaryotic genomes.

To solve the promoter diversity problem, we used the MAHDS method [24] for the
multiple alignment of promoter sequences, which is based on the genetic algorithm and
dynamic programming [24]. Its main advantage is the ability to compute a statistically sig-
nificant multiple alignment for nucleotide sequences that have accumulated a large number
of nucleotide substitutions relative to each other. Other methods such as ClustalW [25],
Clustal Omega [26], MAFFT [27], T-Coffee [28], and Muscle [29] can only produce statis-
tically significant multiple alignments for sequences with x < 2.4, where x is the average
number of substitutions per nucleotide [30] among the aligned sequences. This is due to the
fact that these methods generate multiple alignments using pairwise alignments in one way
or another. When x > 2.4, pairwise alignments become statistically insignificant and there
is no way to generate statistically significant multiple alignments from them. However,
statistically significant multiple alignments can exist for x > 2.4 and can be generated for a
number of sequences greater than 2. This topic has been discussed in detail in [24].

Unlike other methods, MAHDS is able to generate multiple alignments for sequences
with x < 4.4 [24,30]. The reason is that MAHDS uses multiple alignment patterns instead
of generating multiple alignments from pairwise alignments. For promoter sequences,
x ≈ 3.6 [24]; so, statistically significant multiple alignments cannot be obtained with any
method other than MAHDS.

The MAHDS method has previously been used for promoter prediction in the Ara-
bidopsis thaliana and Oryza sativa genomes [24,31]. The number of false positives was
estimated to be ~10−8 per nucleotide. While promoters have on average x ≈ 3.6 substitu-
tions per nucleotide, for some of them this number can be much higher. Therefore, even
with the MAHDS method, there is a need for promoter classification. In studies [24,31],
500 sequences were randomly selected from the promoter database for a given organism.
Multiple alignment was performed on these sequences and a position weight matrix (PWM)
was calculated. Such a PWM was used as a class matrix. A promoter class consisted of
sequences that had a significant alignment with this PWM. Already-classified sequences
were removed from the database and the process was repeated until the class size was less
than 100 sequences. This resulted in 25 classes combining 17,787 promoter sequences for
the A. thaliana genome [24] and 5 classes combining 2458 promoter sequences for the O.
sativa genome [31]. While this method works, it produces a large number of non-optimized
classes. Each set of 500 promoters could contain sequences with x > 4.4, which would
reduce the promoter class specificity of the PWM. Promoter regions from −499 to +100
were used for PWM generation. However, there is a strong triplet periodicity in the +1 to
+100 region [32], which may affect the classification of the promoter sequence and thus the
accuracy of promoter prediction.

In this study, we describe a new method for promoter sequence classification based
on a genetic algorithm and the MAHDS method [24]. It allowed us to divide the human
promoters into four classes, containing more than half of the promoters from the EPD
database [12]. Then, using dynamic programming in the same way as in [31], we performed
a potential promoter sequence (PPS) search in the human genome. A total of 3,065,317 PPSs
were found. We analyzed the PPS intersections with known interspersed repeats, genes,
introns, and transposable elements from the human genome. It turns out that there is a
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high probability of PPS intersections with all types of ALU sequences, LTR sequences, and
transcript start sites (TSSs).

2. Results
2.1. Human Genome Promoter Sequence Classes Creation

We shuffled each of the human promoter sequences (29,598 in total). We then created
classes from this set of sequences using an algorithm described in Section 4.2. The maximum
size of a class was 121 sequences. Since shuffled sequences should not contain common
information, we considered such classes as false positives. In order for the promoter classes
to contain no more than 20% false positives by volume, we set the minimum promoter class
volume to 605 sequences.

Then, we divided 29,598 human genome promoter sequences into classes. We created
four promoter classes that met the minimum size requirement. In total, these four classes
contained 17,310 promoter sequences, or 58% of the original set. The volume of each class
is shown in Table 1.

Table 1. The table shows the volumes N of the promoter sequence classes created for the human
genome. If the volume of a class is less than 605 sequences, the false positive rate would be higher
than 20%. Therefore, we stopped at the 4th class of promoter sequences. R is a ratio of the probability
of finding an alignment with a promoter sequence from the test sample to the probability of finding
an alignment with a promoter sequence from the training sample.

Class N R

1 11,780 1.077

2 3139 1.063

3 1624 0.748

4 767 0.648

5 464 0.447

6 161 0.267

For each of the created classes, we calculated R, a measure of class scalability. R is the
ratio between the probabilities of finding a promoter sequence in the test sample and in
the training sample. The lower R is, the more the class is tuned to the specific sequences
from the training set. As we can see, the R value for the first two classes is close to 1, which
means that there is no overfitting. As for the other classes, the higher the class number, the
less scalable it becomes. This is probably due to the fact that most of the common features
of the promoter sequences were already present in the previous classes.

Fasta files and PWMs for the four created promoter classes are available as Supple-
mentary Material.

2.2. PPS Search in Human Genome

We then searched the human genome for the PPS. We searched each chromosome
independently for + and − strands. We also searched inverted and shuffled chromosomes
for the PPS. Such sequences have the same nucleotide content as the original chromosomes.
The PPS search on randomly shuffled chromosomes was performed to estimate the number
of false positives for our search method. The PPS search on inverted chromosomes was
essential to estimate the number of symmetric PPSs.

In total, we found 3,065,317 non-intersecting PPSs with Z > 6 in the human genome.
We also found 76,656 sequences with Z > 6 on inverted chromosomes. The number of
false positives was 186 for the whole genome. The length of the human genome was
approximately 3 × 109 nucleotides. The estimation of the number of false positives was
performed for shuffled chromosomes for both + and – strands; thus, the number of false
positives for the method used was estimated to be 186/6 × 109 ≈ 3 × 10−8 per nucleotide.
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The number of PPSs for human genome chromosomes, shuffled chromosomes, and inverted
chromosomes are shown in Table 2.

Table 2. Number of potential promoter sequences (PPSs) found in different chromosomes of the
human genome. + and − are DNA strands.

Chr.№
Number of PPSs Inverted Chromosome Random

+ − + − + −
1 133,073 133,437 3374 3252 8 8

2 126,853 128,025 3113 3122 8 9

3 94,729 94,889 2218 2182 3 7

4 81,690 82,344 2125 2049 4 6

5 84,473 84,996 1886 1814 5 7

6 84,193 84,668 2308 2310 6 2

7 82,033 82,165 2242 2152 3 4

8 72,840 72,414 1763 1794 7 5

9 63,751 63,647 1511 1573 2 2

10 73,439 73,275 1739 1724 2 4

11 72,425 72,705 1623 1567 2 4

12 72,578 72,840 1952 2008 9 9

13 45,296 45,786 1133 1131 7 3

14 47,289 47,762 1099 1126 2 3

15 47,703 47,644 1024 987 0 3

16 47,886 47,962 1133 1177 4 1

17 52,660 54,031 1194 1289 3 1

18 39,048 39,345 1031 986 3 5

19 40,174 40,246 1603 1592 1 2

20 39,638 39,855 930 939 2 2

21 20,795 20,958 724 711 0 1

22 25,307 25,335 515 507 0 3

X 69,891 71,404 1987 1837 3 8

Y 10,767 10,767 295 305 2 1

Total 3,065,317 76,656 186

We also calculated Z value distributions for alignments of non-intersecting sequences
from the 19th chromosome + strand, the shuffled 19th chromosome + strand, and the Pr
set with first and second class matrices to select the minimum Z value for positive PPS
prediction. Such distributions are shown in Figures 1 and 2.

We chose the minimum level Z > 6 for positive PPS prediction as the closest integer to
the upper limit of the Z value distribution for alignments of sequences from the shuffled
19th chromosome with the class matrices (Figures 1 and 2). It can be seen that the Z
value distribution for alignments of sequences from the 19th chromosome and the Z value
distribution for alignments of promoter sequences from the Pr set are not offset. Z value
distributions for other chromosomes and other class matrices are similar to these, with
minor changes.
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Figure 1. The blue graph is a Z value distribution for alignments of non-intersecting sequences from
the 19th chromosome + strand with the first class matrix W1(i, j) that are at least 490 nucleotides
long. The orange graph is a Z value distribution for alignments of sequences from the inverted 19th
chromosome + strand, the green graph is a Z value distribution for alignments of sequences from the
shuffled 19th chromosome + strand, and the red graph is a Z value distribution for alignments of
sequences from the Pr set (Section 4.1), which contains 29,598 human promoter sequences.

Figure 2. The blue graph is a Z value distribution for alignments of non-intersecting sequences from
the 19th chromosome + strand with the second class matrix W2(i, j) that are at least 490 nucleotides
long. The orange graph is a Z value distribution for alignments of sequences from the inverted 19th
chromosome + strand, the green graph is a Z value distribution for alignments of sequences from the
shuffled 19th chromosome + strand, and the red graph is a Z value distribution for alignments of
sequences from the Pr set (Section 4.1), which contains 29,598 human promoter sequences.
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2.3. PPS Intersection with Annotated Sequences from the Human Genome

We studied the intersection of human genome PPS coordinates with different types
of annotated sequences. For PPS intersections with a j-type of annotated sequences, the
Zr(j) coefficient represents the deviation from an expected number of intersections with
randomly distributed PPSs in the human genome. Near-zero Zr(j) values are indicative
of a random intersection that does not have statistical significance. Large positive values
indicate a positive correlation between PPSs and j-type sequence positions. Large negative
values indicate a negative correlation between the positions of PPSs and j-type sequences.

Coordinates of true promoters and promoters for non-coding genes were obtained
from the EPD database [12,13,33]. Annotated exon and intron coordinates for the human
genome were obtained from the Ensembl database [34,35]. Repeat and transposable element
coordinates were obtained from the Dfam database [36,37]. TSS coordinates were obtained
from the refTSS v3.3 database [38,39]. This database contains TSS coordinates from several
sources, including NCBI Genes, GENCODE, and ENSEMBL.

The results of the PPS intersection with various annotated sequences are shown in
Table 3.

Table 3. Number of PPS intersections with different annotated sequences from the human genome.
The calculation of Zr(j) is described in Section 4.7. Promoters ++/−− mean intersection of PPSs with
−499:20 promoter regions for genes from the same strand. Promoters +−/−+ mean intersection of
PPSs with −499:20 promoter regions for genes from the opposite strand (e.g., PPSs from + strand
with promoters from − strand). NC promoters mean the intersection with the −499:20 promoter
region for non-coding genes.

j Annotated Sequences Zr(j) Number of PPSs

1 Promoters ++/−− 57 10,755

2 Promoters +−/−+ −12 4458

3 NC promoters 8 673

4 TSS 58 50,895

5 Exons 39 120,285

6 Introns 60 856,456

7 MIR −93 66,542

8 AluS 286 196,167

9 AluY 135 38,734

10 AluJ 151 66,919

11 MER −31 53,258

12 LTR 58 41,789

13 MLT 3 42,846

14 SVA 94 31,567

15 Charlie −34 6403

16 Tigger −61 6047

17 MamRep −16 2885

18 HERV 43 10,963

19 THE 20 12,186

20 L1 −176 111,531

21 L2 −36 70,368

22 L3 −13 4313

23 L4 −22 1313
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Table 3. Cont.

j Annotated Sequences Zr(j) Number of PPSs

24 FLAM 21 5604

25 FRAM 12 2526

26 UCON −12 1502

27 MST 9 7126

The intersection of PPSs with the promoter set has a rather large value of Zr = 57,
indicating its high statistical significance. However, the predicted PPSs only intersect with
10,755 true promoters, while it is possible to predict 17,310 true promoters using four PWM
matrices for promoter classes. We assume that the reason is that the sites with higher
alignment weights were found in close proximity to some of the true promoters. The
presence of such sites may indicate the existence of multiple promoters for a gene [40]
or alternative reading frames [41]. As a control, we intersected PPSs with a set of true
promoters from the alternative strand. Such an intersection has a negative value of Zr = −12,
indicating a lack of positive correlation, as it should do.

We also intersected PPSs with a set of promoters for non-coding RNA genes. Such
genes can use different RNA polymerases for transcription. This intersection has a rather
low positive value of Zr = 8, despite the fact that a large proportion of RNA genes use
RNA polymerase II for transcription. We assume that this is due to the difference in use of
regulatory elements.

The intersection of PPSs with TSSs has a value of Zr = 58, which is close to that of true
promoters. At the same time, we found intersections with only 50,895 out of 223,949 TSSs
from the refTSS database [39]. The reason for this is that the promoter classes we created
do not include 42% of the promoters for protein-coding genes. Also, some of the TSSs may
be related to RNA polymerase III activity, and for such promoters the search method is not
effective because PWMs were created for RNA polymerase II promoters.

Among the PPS intersections with different types of repetitive sequences, the highest
Zr values were obtained for intersections with Alu elements. This may seem surprising
since Alu elements contain the RNA polymerase III promoter [42]. However, we found
that more than 75% of the PPSs intersecting with AluS, AluY, or AluJ do not contain their
promoter region. Therefore, such high Zr values are not due to the promoter structure, but
to the structure of the rest of the Alu elements. Alu elements are relatively rich in CpG
residues [42], while about 70% of human proximal promoters contain a CpG island [43]. Alu
elements have also been found to host a number of transcription factor binding sites [44]
and may contain even more. In several cases, Alu elements have been found to influence the
expression of nearby genes [44]. At the same time, Alu elements prefer gene-rich regions of
the genome [45] and therefore have a high chance of random prediction. Located within
genes, Alu elements have been implicated in alternative splicing, translation regulation,
and RNA editing [46].

A large value of Zr = 53 was also obtained for long terminal repeats (LTRs), which
have also been found to be involved in gene expression regulation [47]. All other types of
repetitive sequences with high positive Zr values are related to either Alu or LTR.

2.4. Comparison with Existing Methods

We compared our method with several existing promoter prediction methods:
FPROM [48], TSSW [49], and NNPP [50]. For each method, we generated three sets
of sequences. Set1 contained randomly selected promoter sequences with coordinates
−499:20 from the EPD database [33]. Set2 consisted of random 520 nucleotide sequences
with the same nucleotide distribution as the human genome. Set3 consisted of randomly
selected PPSs obtained in this study. Volumes of these sets were denoted as Ns. The results
of applying the FPROM, TSSW, and NNPP methods to these sets are shown in Table 4.
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Table 4. Ns is the number of sequences in Set1, Set2, and Set3. Set1 contains randomly selected human
promoters from the EPD database. Set2 consists of randomly shuffled promoter sequences. Set3

contains randomly selected PPSs from this study.

Method Ns Set1 Set2 Set3

FPROM 1000 327 11 24

TSSW 400 219 45 75

NNPP 100 47 42 31

Our method 1000 584 0 1000

Here, positive predictions from Set1 represent true positives, positive predictions from
Set2 represent false positives, and the number of positive predictions from Set3 represents
the degree of correlation between the studied method and ours.

FPROM is based on a linear discriminant function including functional motifs and
oligonucleotide composition description. The method includes two independent functions
for TATA and non-TATA promoters. The sensitivity threshold was set at sensitivity = 0.6 for
both types of promoters. Here, Ns = 1000 sequences. This method predicts promoters from
Set1 relatively well, as 327 out of 1000 promoter sequences were found. The number of
found PPSs from Set3 was 24, which is significantly more than the 11 false positives found
in Set2.

TSSW recognizes the PolII promoter region and transcription start site. It does not
require any parameters. This method gave results comparable to FPROM (Table 4).

NNPP is a method for transcription start site search using a neural network trained
on a set of promoters from human and Drosophila melanogaster genomes. The minimum
promoter score was set to 0.9. NNPP appeared to be incapable of promoter prediction, as
the number of true positives and false positives was almost equal (Table 4).

Our method has a higher number of true positives and a lower number of false
positives than both FPROM and TSSW, making it more accurate than both. Both FPROM
and TSSW make significantly more positive predictions for sequences from Set3 than for
sequences from Set2. This suggests a positive correlation between these two methods and
our method. Sequences predicted by both our method and one of these methods have a
much higher chance of being true promoter sequences.

3. Discussion

The previous version of the promoter classification algorithm [24] was started by
randomly selecting 500 promoters from the promoter set Ps for a given organism. An
optimal position weight matrix W(i, j) was then computed using the MAHDS method.
Pairwise alignments were generated for each sequence from the Ps set with the selected
position weight matrix W(i, j), and the Z value was calculated for each of the pairwise
alignments. Promoters whose alignments with the position weight matrix W(i, j) had
Z > 5.0 were grouped into a promoter class and W(i, j) became its class matrix. Then,
all of the promoters of the created class were removed from the Ps set and the proce-
dure was repeated until the size of the created classes became less than 100 sequences.
Such an algorithm was used to classify the promoters from the A. thaliana and O. sativa
genomes [24,31].

Due to the random selection of 500 promoters to be used as seed for each class, such
sets could contain sequences with x > 4.4. This would result in a suboptimal position weight
matrix, as the MAHDS method is only able to generate statistically significant multiple
alignments for sequences with x < 4.4 [24,30], thus reducing the specificity of the PWM.
In this study, we replaced the promoter classification algorithm with a new one based on
a genetic algorithm. Here, we created Ko = 102 seeds for each class. Each seed Or(k) was
considered as an organism. The purpose of using the genetic algorithm was to create a
seed with the largest possible Fm value, meaning that it would contain the most similar
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promoters. To do this, organisms were subjected to crosses, which created a new organism
consisting of sequences from two other organisms, and mutations, which replaced several
sequences in the organism with sequences from the Pr set. The best-performing organism
became the seed for the promoter class. In this study, the classes contained promoters with
Z > 6.0. In this way, the specificity of the W1(i, j) matrix, which is a promoter class PWM,
was significantly improved.

We created four classes of promoter sequences, covering 17,310 of the 29,598 sequences
in the EPD database. For each of the classes, we calculated the scalability measure R, which
shows the ratio between the probability of finding a promoter sequence in the test set and
in the training set. The R values for the four classes were between 1.077 and 0.648, and for
each class, the R value was lower than for the previous one. This meant that the position
weight matrices for the four promoter classes combined most of the common features of
human promoter sequences.

We compared our method with several existing promoter prediction methods:
FPROM [48], TSSW [49], and NNPP [50]. Our method showed both a lower number
of false positives and a higher number of true positives than any of the methods studied.
However, PPSs that are positively predicted via both our method and one of the other
promoter prediction methods have an increased chance of being true promoters.

We searched 24 chromosomes from the human genome and found 3,065,317 PPSs, with
an estimated number of false positives at 3 × 10−8 per nucleotide, which is several orders
of magnitude lower than any other existing promoter search method [51]. We analyzed
the PPSs by intersecting their positions with the positions of different types of annotated
sequences from the human genome. For each such intersection, we calculated the Zr value,
which indicated the deviation from an expected number of intersections if the PPSs were
randomly distributed in the genome. The intersections of PPSs with true promoters had a
value of Zr = 5, indicating their high statistical significance. Such an intersection confirms
the effectiveness of our promoter prediction method. The intersection with TSSs had a
similar value of Zr = 58. Those PPSs that intersect with TSSs have a high probability of
being true promoters. Thus, an experimental verification of some selected PPSs can be
suggested as future work.

The intersection of PPSs with intron sequences had a value of Zr = 60, and that with
exon sequences was Zr = 39. This distribution of PPSs across genes suggests the presence
of unknown regulatory pathways related to alternative splicing [52] or alternative reading
frames [41]. High Zr values for intersections with Alu elements are also evidence for the
presence of alternative splicing, referred to as Alu exonization [42]. This phenomenon is
widespread, affecting hundreds of human genes. As a result, there may be many more
promoter sequences in the human genome than previously thought.

Out of a total of 3,065,317 potential promoter sequences that we found, most of them
intersected with known promoters, genes, transposable elements, or dispersed repeats,
but 1,241,206 of them were located in non-annotated regions of the human genome. Such
PPSs located in non-annotated regions may be associated with unknown copies of known
repetitive sequences or transposable elements or unknown genes. They may also indicate
the location of microRNAs [53,54]. In this sense, the study of such 1,241,206 PPSs may be
of interest for the regulation of the genetic activity of human cells [55].

4. Materials and Methods
4.1. Promoter Sequences

We used 29,598 human genome promoter sequences from the EPD database [33]. We
called this set Pr and its elements were denoted as Pr(i), i = 1, 2, . . ., 29,598. The sequences
we used were in the range of −499 to +20, which was chosen to reduce the influence of
triplet periodicity [32] that occurs in coding genomic regions on the PWM. We used the
GRCh38 release 103 human genome assembly [34].
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4.2. Classification of Promoter Sequences from the Human Genome

The task was to include as many promoter sequences from the Pr set as possible in a
single class. At the same time, there needed to be a minimum number of promoters from
other classes in the created class. To solve these tasks and to classify promoter sequences,
we developed a mathematical method based on a genetic algorithm.

To speed up the computation, we created a smaller training set Pr1 containing 104 ran-
domly selected promoter sequences from the Pr set. We also created a second set of
promoter sequences, Pr2, containing sequences from the Pr set that were not selected in the
Pr1 set. This set would be used as a test set to analyze the reproducibility of the promoter
search method.

After that, we created an “organism” for the genetic algorithm. It had Po = 102

randomly selected promoter sequences from Pr1 set. In this way, we created Ko = 102

organisms and named them Or(k), k = 1, 2, . . ., Ko. For each organism Or(k), multiple
alignment Alk(i, j) was performed using the MAHDS method at http://victoria.biengi.ac.
ru/mahds/auth. Here, i is an index of a promoter in the organism Or(k), i = 1, 2, . . ., Po
and j = 1, 2, . . ., L, where L is the length of the multiple alignment. Columns with a number
of bases less than Po/2 were deleted from the multiple alignment Alk(i, j). The result was
a transformed multiple alignment Atk(i, j) with a length of Lt. Lt ≤ L. Then, a frequency
matrix Mk(j,l) with j = 1, . . ., Lt and l = 1, 2, . . ., 16 was calculated for the multiple alignment
Atk(i, j).

Mk(j, f (Atk(i,j)) + 4(f (Atk(i,j + 1)) − 1)) = Mk(j, f (Atk(i,j)) + 4(f (Atk(i,j + 1)) − 1)) + 1 (1)

When filling the Mk(j,l) matrix, i varies from 1 to Po and j varies from 1 to Lt.
f (a) = 1, f (t) = 2, f (c) = 3, and f (g) = 4, where a, t, c and g are DNA bases. If Atk(i, j))
or Atk(i, j + 1) is equal to *, then the Mk(j,l) matrix remains unchanged. Next, we computed
the PWM matrix—Vk(i, j)—using the Mk(i, j) matrix:

Vk(i, j) =
Mk(i, j)− Kp(i, j)√
Kp(i, j)(1− p(i, j))

(2)

Here, i varies from 1 to Lt, j varies from 1 to 16, p(i, j) = x(i)y(j)/K2,x(i) = ∑
j=1,16

Mk(i, j),

y(j) = ∑
i=1,Lt

Mk(i, j), and K = ∑
i=1,Lt

∑
j=1,16

Mk(i, j). Then, we transformed the Vk(i, j) matrix

so that the R2 and Kd parameters were the same for all of the matrices with different k
values. R2 = ∑

i=1,Lt

∑
j=1,16

V2
k (i, j) and Kd = ∑

i=1,Lt

∑
j=1,16

Vk(i, j)p1(i)p2(j). We chose Kd = 0

and R2 = 45,000. Here, p1(i) is 1/Lt for each i;p2(k) = p(l)p(m), where p(l) and p(m)
are the probabilities of l-type or m-type nucleotides in the nucleotide pair (l,m∈{a,t,c,g}):
p(l) = q(l)/LA, where q(l) is the number of l-type nucleotides in Alk, and LA is the length of
all of the sequences in the multiple alignment Alk. The matrix transformation procedure is
described in detail in [56]. The transformed matrix has R2 = 45,000 and Kd = 0. After the
transformation, we obtained the Wk(i, j) matrix. Such a matrix transformation is necessary
so that the similarity function F (Section 4.3) has a similar distribution when different
matrices Wk(i, j) [56] are aligned with nucleotide sequences.

Next, we created local alignments for each of the promoter sequences from the Pr1
set with the Wk(i, j) matrix. The alignment algorithm is described in Section 4.3. Then, we
estimated the statistical significance of the alignment using the Monte Carlo method and
calculated the Z(k) value. This procedure is described in Section 4.4. We calculated the
number of promoter sequences N(k) from the Pr1 set with Z > Z0 and an alignment length
greater than 490 nucleotides. The number N(k) is an objective function for an organism
Or(k). The calculation of N(k) was performed for each k from 1 to Ko.

Then, we ranked N(k) in descending order and reordered Or(k) accordingly. k varied
from 1 to Ko. This meant that N(1) would be the largest of all N(k) and would correspond

http://victoria.biengi.ac.ru/mahds/auth
http://victoria.biengi.ac.ru/mahds/auth
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to an Or(1) organism. For the Or(1) organism, we also created local alignments of each
of the promoter sequences from the Pr set with the W1(i, j) matrix. For these alignments,
the broader promoter region −655:+176 was used to find sequences shifted by up to 30%
of their length, relative to the W1(i, j) matrix. The number of alignments with Z > Z0
and a length greater than 490 nucleotides was called Nf. The same method was used to
determine the number of alignments with a broader promoter region of sequences from
the Pr1 and Pr2 sets. The obtained numbers of alignments with Z > Z0 and a length greater
than 490 nucleotides were designated as N1 and N2, respectively.

Next, we removed 10 organisms Or(k), where k was in the interval from Ko-9 to Ko.
These were the 10 organisms with the lowest N(k). Then, we generated 10 new Or(k). To
generate a pair of new organisms, we selected 2 parent organisms with k = k1 and k = k2,
k1 6= k2. The selection of k1 and k2 was performed randomly and the probability of selecting
k1 and k2 was proportional to the values of N(k1) and N(k2).

Two new organisms (children) Or were created due to the two-point crossover of the
parent organisms. Two coordinates i and j were randomly chosen in the interval from 1
to Po. The first child contained promoter sequences from 1 to i − 1 and from j + 1 to Po of
the organism Or(k1) and promoter sequences from i to j of organism Or(k2). The second
child contained promoter sequences from 1 to i − 1 and from j + 1 to Po of organism Or(k2)
and promoter sequences from i to j of organism Or(k1). Each of the children was subjected
to 5 mutations. Each of the mutations could, with a probability of 50%, either swap the
order of two promoter sequences in the child or replace one of the promoters with a new
one chosen randomly from the Pr1 set. However, each promoter sequence from the Pr1
set cannot be present more than once in any organism Or, including children. Thus, if a
promoter is present more than once in a child, all of its repeats will be replaced by randomly
selected sequences from the Pr1 set.

In total, 5 pairs of parent organisms were selected and 10 children were created. For
each of the 10 children, a position weight matrix Wk(i, j) was created and the N(k) value
was calculated. Then, all organisms were ranked in descending order of N(k), and for the
Or(1) organism, the Nf, N1, and N2 values were calculated. Then, 10 organisms Or(k) with
k in the interval from Ko-9 to Ko were removed and 10 child organisms were created. This
process was repeated until Nf did not increase for 60 cycles.

After the genetic algorithm finished, the W1(i, j) matrix became the promoter sequence
class matrix and the Nf promoter sequences were grouped into one class. The dimension
of the matrix was 16 × Lt. The N1 and N2 values were used to calculate the scalability of
the promoter search with the W1(i, j) matrix. The size of the Pr1 set S1 was 104 sequences
and the size of the Pr2 set S2 was equal to the size of the Pr set minus 104. The scalability
coefficient R = N1 S2

N2 S1
was a ratio of the probability of finding an alignment with a promoter

sequence from the Pr2 set to the probability of finding an alignment with a promoter
sequence from the Pr1 set.

All sequences contained in the created class were removed from the Pr set and the
algorithm was repeated for the next class. New classes were created until the last class size
Nf was smaller than N0. The value of N0 was determined by classifying random sequences.
The exact value is calculated in Section 2.1.

4.3. Alignment of Promoter Sequences with Position Weight Matrix W(i, j)

S1 is a promoter sequence of length L1. We created the sequence S2, which contained
the numbers 1, 2, . . ., Lt. L1 = 520 if the promoter sequence is selected from the Pr or Pr1
sets. If the alignment is made for a wider promoter region from −655 to +176 nucleotides,
then L1 = 832. For the local alignment construction, we calculated the alignment matrix
F(i,k) [57]. Here, the S1 sequence is located along the X axis and the S2 sequence is located
along the Y axis. To calculate the local alignment, we filled the matrix zero column and
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zero row with zeros. F(0,k) = F(i,0) = 0, Fx(0,k) = Fx(i,0) = 0, Fy(0,k) = Fy(i,0) = 0 for each i
from 1 to L1 and k from 0 to Lt. Then, we filled the F matrix first column and first row:

F(1, k) = max


F(0, k− 1) + B(S2(k), S1(1))
Fx(0, k− 1) + B(S2(k), S1(1))
Fy(0, k− 1) + B(S2(k), S1(1))
0

(3)

F(i, 1) = max


F(i− 1, 0) + B(S2(1), S1(i))
Fx(i− 1, 0) + B(S2(1), S1(i))
Fy(i− 1, 0) + B(S2(1), S1(i))
0

(4)

Fx(1, k) = 0 (5)

Fx(i, 1) = 0 (6)

Here, i varies from 1 to L1, and k varies from 0 to Lt. Such filling of the first column and
the first row is caused by the fact that we need to consider correlations between neighboring
nucleotides when creating the alignment. It was impossible to do this for the first row
and column, and so they were filled without the W(i,j) matrix and nucleotide correlation.
Therefore, we used the B(i,k) matrix instead of the W(i,j) matrix:

B(i, k) = 0.25
4

∑
j=1,4

W(i, j + (k− 1) ∗ 4) (7)

The other rows of the F matrix were filled, as shown below:

F(i, k) = max


F(i− 1, k− 1) + W(S2(k), n) if t= 1
Fx(i− 1, k− 1) + W(S2(k), n) if t> 1
Fy(i− 1, k− 1) + B(S2(k), S1(i)) if t= 0
0

(8)

Fx(i, k) = max
{

F(i− 1, k)− d
Fx(i− 1, k)− e

(9)

Fx(i, k) = max
{

F(i− 1, k− 1)− d
Fx(i− 1, k− 1)− e

(10)

Here, i varies from 1 to L1 and k varies from 0 to Lt; d = 25; e = 6. At the same time,
for each (i,k), we calculated n = S1(j) + 4(S1(i) − 1)) and t. We considered the pairwise
correlation of bases when searching for an alignment in the W matrix, and so we introduced
the parameter n. To calculate n, we needed to determine the last base added to the alignment
before (i,k). If the last base from the S1 sequence (the one already added to the alignment)
was s(k − t), then j = k − t and n = S1(k − t) + (S1(i) − 1) * 4. If t = 1, it corresponded to
a diagonal shift in the F matrix and there was no deletion in the S1 sequence. If t > 1, it
corresponded to a t − 1 base deletion in the S1 sequence. Here, t was a parameter that
characterized the presence or absence of deletions and their length.

Instead of deletions in the S1 sequence, there may be deletions in the S2 sequence. In
this case, t = 0 and the alignment will skip several columns of the W(i, j) matrix. Since the
W(i, j) matrix was created for pairs of nucleotides from adjacent columns, its use is incorrect
in the case of deletions in the S2 sequence. Therefore, for such situations, instead of the
W(i, j) matrix, the B(i, k) matrix is used, which lacks correlations between pairs of nucleotides.

After filling the F(i,k) matrix, we found the maximum value of its cells and denoted it
as Fm and its coordinates as im and km. Simultaneously with the F(i,k) matrix, we filled the
reverse transition matrix [57]. This allowed us to find the local alignment between the S1
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and S2 sequences. The start and end coordinates of the local alignment were denoted as i0,
k0, and im, km, respectively.

4.4. Estimation of the Statistical Significance of a Local Alignment

We estimated the statistical significance of an alignment using the Monte Carlo method.
For the Monte Carlo method, we used the W(i, j) matrix, the S1 and S2 sequences, the
alignment start coordinates i0 and k0, the alignment end coordinates im and km, and the
similarity function value Fm. We also created a Q set with 13,000 shuffled S1 sequences. We
then created a global alignment of each sequence from the Q set with the S2 sequence. To
create the global alignment, we removed 0 from the fourth row in Equations (3), (4) and (8).
We also changed the initial conditions for F, Fx, and Fy. F(0,k) = −kd; F(i,0) = −id; Fx(0,k)
= −kd; Fx(i,0) = −id; Fy(0,k) = −kd; and Fy(i,0) = −id for each i from 1 to L1 and k from 0
to Lt. Then, we created a vector Fr(i) = FQ(i)(im,km) − FQ(i)(i0,k0). Here, FQ(i) is a similarity
function between S1 and Q(i) sequences, where i varies from 1 to 13,000. Next, the mean
Fr of Fr(i) and its variance D(Fr) were determined. Then, the statistical significance was
estimated as Z = (Fm − Fr)/

√
D(Fr). The use of such a statistical significance estimate Z

allowed us to minimize the influence of the alignment length. It also allowed us to compare
alignments of sequences with different position weight matrices Wk(i, j).

4.5. Potential Promoter Sequence (PPS) Search in Human Genome

Matrices for classes W1(i, j) created in Section 4.2 were used for the PPS search in all
of the chromosomes of the human genome. The PPS search was performed separately
for each chromosome for + and − strands. When searching for PPSs, we chose a window
of 700 nucleotides in length and created local alignments of such window with each of
the position weight matrices. In this case, the window was the S1 sequence with length
L1 = 700. After creating the alignment, we calculated its statistical significance. But, this
time, the number of random sequences in the set was 103 and the length of each sequence
was 700 nucleotides. Then, the alignment window was moved by 73 nucleotides and all
calculations were repeated. We only considered alignments whose length was not less than
490 nucleotides. If the alignment length was less than this, its Z = 0.0. Only alignments
with Z > Z0 were considered.

A PPS search was performed for each of the created classes. As a result, we obtained
vectors Zpk(i) and Zmk(i) for each chromosome, where i was the local alignment start
coordinate in the chromosome and k was the promoter class number. Zpk(i) is a vector for
the + chromosome strand, Zmk(i) is a vector for the—chromosome strand. For each vector
Zpk(i) and Zmk(i), we found the local maximum coordinate i. Here, the local maximum
coordinate was im, whereby Zpk(im) > Zpk(i) for each i from im − Lt to im + Lt. We denoted
the local maximum im vectors as Lpk and Lmk for the + and − DNA strands, respectively.
Priority was given to alignments with the largest Z value, regardless of the matrix index.

A PPS search was also performed for inverted chromosome sequences Cpi and Cni
(the sequences were written from the end to the beginning) and for shuffled chromosome
sequences Cpr and Cnr. The PPS search within the Cpr and Cnr sequences allowed us
to estimate the number of false positives for the PPS search within the human genome.
The calculation results showed that the number of false positives was about 3 × 10−8

per nucleotide.
As a result, we created lists of PPSs for each chromosome. For each PPS found, we

show its level of statistical significance Z, the coordinates on the chromosome, the DNA
strand (+ or −), the position weight matrix W1(i, j), and the promoter class represented by
this matrix.

4.6. Z0 Value Selection

We performed a PPS search without a Z0 threshold on promoter sequences from the
Pr set and on the shuffled 19th chromosome + strand. We then calculated the number of
predictions with different Z values and plotted them on a bar graph (Figure 1). Here, predic-
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tions from the Pr set represent true positives and predictions from the shuffled chromosome
represent false positives. The goal in choosing the Z0 value was to minimize the number of
false positives while keeping the number of true positives as high as possible. Z0 = 6 was
chosen as the minimum integer value, providing a near-zero number of false positives.

4.7. Intersection of PPSs with Annotated Sequences from Human Genome

We studied the intersection of the found PPSs with known annotated sequences from
the human genome. Such sequences included promoters, exons, introns, transposable
elements, tandem and interspersed repeats, and others. We compared the coordinates of
the PPSs with the coordinates of the annotated sequences. We considered two sequences to
be intersecting if they contained at least 70% of the shorter sequence.

For each annotated sequence type, we also estimated the statistical significance of
its intersection with PPSs using the Monte Carlo method. We created 100 sets of random
PPS coordinates (Kor(i), i = 1, 2, . . ., 100) with a distance between them greater than
520 nucleotides. Each set Kor(i) was intersected with each of the annotated sequence
types. Pr(i,j) is the number of intersections between the j-type annotated sequences and the
sequence set Kor(i). We then calculated the mean Pr(j) and variance D(Pr(j)). The estimate
of statistical significance was calculated as Zr(j) = (Pr(i, j)− Pr(j))/

√
D(Pr(j). If Zr(j) >

6.0, then there was a high probability of a positive correlation between the PPSs and the
j-type annotated sequence locations. If Zr(j) < −6.0, then there was a high probability that
the PPSs would avoid the type j annotated sequences. In other cases, there was only a
random intersection between the PPSs and certain annotated sequences.

4.8. Comparison with Other Methods for Promoter Prediction

We compared our promoter search method with three different methods for promoter
prediction in the human genome. These methods were FPROM, TSSW, and NNPP. Each
method was tested on three datasets: Set1, Set2, and Set3. Set1 contained randomly selected
human promoters from the EPD database and the number of positive predictions from Set1
represents the number of true positives. Set2 consisted of shuffled promoter sequences. The
number of predictions from Set2 represents the number of false positives. Set3 contained
randomly selected PPSs obtained in this study. The number of positive predictions from
Set3 indicates the degree of agreement with our method.

4.9. Computational Resources

All computations were conducted on a system with 4xIntel Xeon Platinum 8270
(104 cores in total). It took about 2 weeks to create the promoter classes and about 4 weeks
to scan all 24 chromosomes.

5. Conclusions

We have developed a new method for the classification of promoter sequences based
on a genetic algorithm. This method was applied to the classification of promoters of
protein-coding genes from the human genome. For each of the four classes created, we
calculated PWMs using the MAHDS method [24]. We then searched for potential promoter
sequences on 24 chromosomes of the human genome by performing pairwise alignments
of chromosome sections with position weight matrices. We found a total of 3,065,317 PPSs.
The number of false positives was estimated to be 3× 10−8 per nucleotide. This method was
compared with three other methods for predicting promoter sequences within the human
genome: FPROM [48], TSSW [49], and NNPP [50]. Our method produced the highest
number of true positives and the lowest number of false positives of all the methods
studied. The number of false positives for our method is several orders of magnitude lower
than for any of the existing methods [51].
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