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Abstract: This work focuses on porous organic polymers (POPs), which have gained significant
global attention for their potential in energy storage and carbon dioxide (CO2) capture. The study
introduces the development of two novel porous organic polymers, namely FEC‑Mel and FEC‑PBDT
POPs, constructedusing a simplemethodbased on the ferrocene unit (FEC) combinedwithmelamine
(Mel) and 6,6′‑(1,4‑phenylene)bis(1,3,5‑triazine‑2,4‑diamine) (PBDT). The synthesis involved the con‑
densation reaction between ferrocenecarboxaldehyde monomer (FEC‑CHO) and the respective aryl
amines. Several analytical methods were employed to investigate the physical characteristics, chem‑
ical structure, morphology, and potential applications of these porous materials. Through thermo‑
gravimetric analysis (TGA), it was observed that both FEC‑Mel and FEC‑PBDT POPs exhibited ex‑
ceptional thermal stability. FEC‑Mel POP displayed a higher surface area and porosity, measuring
556 m2 g−1 and 1.26 cm3 g−1, respectively. These FEC‑POPs possess large surface areas, making
them promising materials for applications such as supercapacitor (SC) electrodes and gas adsorp‑
tion. With 82 F g−1 of specific capacitance at 0.5 A g−1, the FEC‑PBDT POP electrode has exceptional
electrochemical characteristics. In addition, the FEC‑Mel POP showed remarkable CO2 absorption
capabilities, with 1.34 and 1.75 mmol g−1 (determined at 298 and 273 K; respectively). The poten‑
tial of the FEC‑POPs created in this work for CO2 capacity and electrical testing are highlighted by
these results.

Keywords: ferrocene; 6,6′‑(1,4‑phenylene)bis(1,3,5‑triazine‑2,4‑diamine; condensation reaction;
porosity; CO2 capacity; supercapacitor

1. Introduction
Numerous energy‑collecting techniques have been developed as a result of the rising

need for energy that emits no greenhouse gases. Although they are essential, renewable
energy sources cannot provide all of our daily energy needs. Investigating reasonable and
cost‑effectivemethods of energy collection and storage is therefore important. Due to their
excellent qualities including high energy densities, quick charge/discharge rates, and ex‑
tended lifespan, supercapacitors (SCs) have received a lot of interest in this respect [1–3].
SCs are appropriate for a variety of applications, including biological defibrillators and
wind turbines, thanks to their advantageous characteristics [4–6]. A number of factors,
such as (i) reactions occurring at the surfaces of the electrodematerials, (ii) physical charge
separation across the EDLC surfaces, frequently using porous carbons as electrodes, and
(iii) faradaic reactions involving organic molecules with redox activity and electrolytes, all
have an impact on the ability of SCs to store electrical charge. The characteristics of the
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electrode material, including its composition, have a significant influence on howwell SCs
work as a consequence [7,8]. High nitrogen content, large electrolyte‑accessible surface
areas, and hierarchical porous structures are all qualities that electrode materials should
have in order to satisfy the needs of energy storage applications [9,10]. These features
enable enhanced energy storage capacity in supercapacitors. Various compounds, includ‑
ing metal oxide and porous carbonaceous precursors, are frequently utilized as electrode
materials in supercapacitors. Electrode materials used in supercapacitors typically con‑
sist of a diverse range of substances, including metal oxides, porous carbonaceous pre‑
cursors, hydroxides, and sulfides. However, to address concerns regarding hazardous
inorganic chemicals, there is growing interest in exploring organic electroactive materi‑
als as potential alternatives [11–14]. The environmental friendliness, versatility, and ac‑
cessibility to raw resources are key advantages of these organic materials. In the context
of supercapacitors, electrochemical reactions primarily occur on the electrode’s surface,
while the pores within the electrode facilitate ion mitigation. This division of roles al‑
lows for efficient charge storage and rapid charge/discharge rates in the supercapacitor
system. Anthropogenic carbon dioxide (CO2) emissions have significant implications for
human existence and the environment, leading to increased global temperatures and al‑
tered weather patterns [15,16]. Consequently, there is a pressing need to reduce emissions
and CO2 levels through sequestration and capture methods, which has become a critical
focus for both academic research and industry. The conventional wet cleaning technique,
involving the use of aqueous solutions of alkanolamine (known as amine scrubbing), has
been widely employed for CO2 capture and separation. However, this method has sev‑
eral drawbacks. It exhibits high energy consumption, is costly to implement, has lim‑
ited efficiency, poses challenges with solvent renewal, results in solvent loss, and leads to
equipment corrosion due to the presence of amines [17–19]. To address these limitations,
new and efficient strategies are required to enhance CO2 capture in industrial operations
while simultaneously reducing emissions. Over the past decade, due to their exceptional
characteristics, POPs have attracted substantial attention in both the academic and indus‑
trial worlds. These characteristics include high surface areas, suitable pore sizes, excellent
thermal stability, low density, diverse composition, and low regeneration energy require‑
ments [20,21]. Due to POPs’ special properties, a variety of fascinating prospective uses
have become available such as biomedicine, sensors, gas capture and separation, photo‑
voltaics, optical devices, and hydrogen evolution [22–32]. Given the challenges posed by
energy shortages, global warming, and carbon dioxide (CO2) emissions, there is a grow‑
ing need to focus on CO2 capture and supercapacitors (SCs). POPs have become desir‑
able candidates for CO2 uptake and as active electrode materials in SCs because of their
unique characteristics [33–35]. Studies by Jiang et al. have shown that POPs exhibit a
high capacity for absorbing CO2 or I2 [36,37]. Various POP structures incorporating cova‑
lently linked linkages, such as boroxine, triazine, hydrazine, imide, and imine units, have
been synthesized using chemical reactions like Suzuki, Sonogashira, Schiff base formation,
Heck, Yamamoto, and Friedel couplings [38–44]. POPs can be categorized into several ma‑
terials, including COFs, CMPs, PIMs, HCPs, and CTFs [45–48]. These diverse categories
demonstrate the versatility and potential of POPs for various applications, highlighting
their importance in the development of advanced materials for addressing environmental
concerns and energy‑related challenges. FEC has gained significant attention due to its sta‑
ble sandwich‑like structure, high electron density, and redox abilities [49]. There are new
opportunities for enantioselective catalysis, redox batteries, sensing properties, and mag‑
netic switches when a ferrocenyl unit is included in a polymer framework [50–53]. Molec‑
ular techniques utilizing ferrocene‑based polymers have rapidly expanded in fields such
as gas sorption, redox batteries, pollution removal, precursor‑derived ceramics, catalysis,
and memory devices [54–58]. For example, the FcTz‑POP exhibited significantly higher
iodine capture (396 wt% at 348 K) compared to a similar ferrocene‑free BpTz‑POP, with
an increase of 1.8 times [59]. Ma and colleagues developed Fc‑based CMPs with Fc link‑
ages for excellent performance in degrading methylene blue (99%) under visible light [60].
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Additionally, Tan et al. synthesized FcCMP‑1 and FcCMP‑2 for dye removal, which had
good gas storage capacity [61]. Furthermore, Samy et al. successfully synthesized BP‑FC‑
CMPwith a capacitance of 608 F g−1 [62]. In this study, FEC‑Mel POP and FEC‑PBDT POP
were synthesized using a condensation reaction in the presence of DMSO. The polymers
were created by incorporating a unit called FEC with two different aryl amines, namely
Mel and PBDT, without adding any catalysts during their synthesis. Exploring these poly‑
mers’ potential uses in CO2 uptake and supercapacitors were the main goal of their de‑
velopment. Numerous analytical techniques, including BET (Brunauer–Emmett–Teller),
Fourier‑transform infrared spectroscopy (FTIR), solid‑state nuclear magnetic resonance
(ssNMR), powder X‑ray diffraction (XRD), and scanning electron microscopy (SEM), were
used to validate the synthesis, morphology, and porosity of the FEC‑Mel and FEC‑PBDT
POPs. A capacitance of 82 F g−1 was discovered on the FEC‑PBDT POP electrode. This re‑
sult shows that it is feasible to use them in supercapacitors. The FEC‑Mel POP sample also
showed significant CO2 capture capabilities of 1.34 and 1.57 mmol g−1 at 298 and 273 K.
Overall, the findings point to the potential of the FEC‑POPs produced in this work for use
in gas adsorption and energy devices.

2. Results and Discussion
2.1. Synthesis and Molecular Characterization of FEC‑CHO, PBDT, and FEC‑POPs

Two porous organic polymers (POPs) incorporating a ferrocene moiety were synthe‑
sized using a polycondensation reaction. The building unit, FEC‑CHO, was reacted with
Mel and PBDT in DMSO at 180 ◦C to yield FEC‑Mel and FEC‑PBDT POPs, respectively
(see Figure 1a,b). To obtain the FEC‑CHO compound, FEC was reacted with POCl3 in
DMF as a solvent for 16 h, resulting in crimson crystals (Scheme S1a). The FTIR spec‑
trum of FEC‑CHO exhibited peaks at 1243 and 1034 cm−1, corresponding to the presence
of cyclopentadiene rings [Figure S1]. The 1H NMR spectrum of FEC‑CHO displayed sig‑
nals at 4.80, 4.67, 4.28, and 9.90 ppm, which were attributed to the cyclopentadiene rings
and the aldehyde unit’s carbonyl group, respectively [Figure S2]. The 13C NMR analy‑
sis also identified signals at 194.32 ppm for the C=O group and at 69.77 and 73.53 ppm
for the carbons in the FEC moiety [Figure S3]. For the synthesis of the PBDT monomer,
GD‑2CNwas refluxed with BZ‑2CN and KOH in DMF at 130 ◦C, resulting in a white pow‑
der (Scheme S1b). The FTIR spectrum exhibited peaks at 3301 and 3125 cm−1 due to the
NH2 group in PBDT [Figure S4]. The proton signals at 8.35 ppm and 6.90 ppm in the 1H
NMR spectrum [Figure S5a] corresponded to the aromatic protons and the amino group in
the PBDT structure, respectively. Moreover, the 13C NMR analysis of PBDT [Figure S5b]
revealed signals at 170.91, 168.33, 140.24, and 128.20 ppm, indicating the presence of the
carbonyl group, triazine unit, and aromatic ring, respectively. The successful synthesis of
the FEC‑CHO and PBDTmonomers was confirmed through FTIR, 1HNMR, and 13CNMR
analyses. The produced FEC‑POPs exhibited remarkable chemical stability andwere insol‑
uble in commonly used organic solvents such as MeOH, DCM, acetone, DMF, and EtOH,
indicating a high degree of polymerization.

The structures of the obtained FEC POPs (FEC‑Mel and FEC‑PBDT POPs) were con‑
firmed through solid‑state 13C NMR spectra and FT‑IR measurements. The FT‑IR spectra
of FEC POPs displayed absorption peaks at 1023 cm−1, which corresponded to the C=C
stretching of the ferrocene unit. Notably, absorptions at around 1082, 1554, and 3418 cm−1

were attributed to C‑N, C=N and NH units, respectively. Moreover, distinct vibration
bands for the aliphatic C‑H group originating from the ferrocene unit were observed at
2927 cm−1 (Figure 2a). In the 13C NMR profiles of FEC‑Mel and FEC‑PBDT POPs, signals
between 116 and 146 ppm were assigned to carbon atoms in the aromatic rings. Addition‑
ally, a signal at 165 ppm indicated the presence of the C=N group in FEC‑POPs. Signals
ranging from 63 to 76 ppm were assigned to FEC moieties (Figure 2b). Thermogravimet‑
ric analysis (TGA) measurements conducted under a nitrogen environment were used to
evaluate the thermal characteristics of FEC‑POPs (Figure 2c). The TGA profiles of FEC‑
Mel and FEC‑PBDT POPs demonstrated their chemical stability, with decomposition tem‑
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peratures of 281 and 198 ◦C, respectively, at 5 wt%, and 353 and 278 ◦C, respectively, at
10 wt%. Furthermore, the residual weights of FEC‑Mel and FEC‑PBDT POPs at 800 ◦C
were 52% and 55%, respectively. These results confirmed the high thermal stability of the
FEC‑POPs. The elemental compositions of the FEC‑POPs were determined through X‑ray
photoelectron spectroscopy (XPS) (Figure 2d). The XPS spectra exhibited signals at 284,
400, and 532 eV, corresponding to the presence of C, N, and O atoms in the structures of
the FEC‑POPs. Additionally, the peak of the Fe element from the FEC unit appeared at
a binding energy of 710 eV [61], validating the successful incorporation of the ferrocene
unit into the FEC‑POPs networks. Figure S6 illustrates the thermal stability analysis of the
FEC‑Mel POP sample, conducted via FTIR analysis, across a temperature range from 25 to
200 ◦C. The results demonstrated that all absorption peaks corresponding to NH, aliphatic
C‑H, andC=N functionalities remained unchanged. This finding strongly suggests that the
FEC‑Mel POP sample exhibited excellent thermal stability, even at elevated temperatures.
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Additionally, we conducted further research to evaluate the porosity and surface area
of our FEC‑POPs materials. Nitrogen sorption measurements, including adsorption and
desorption isotherms, were performed to check the porous characteristics of FEC‑Mel and
FEC‑PBDT POPs. The BET isotherms and pore size analysis of FEC‑POPs at 77 K are pre‑
sented in Figure 3. The N2 adsorption and desorption curves of both FEC POPs exhibited
a type IV isotherm, indicating the presence of micropores and mesopores. Remarkably,
FEC‑Mel and FEC‑PBDT POPs displayed large SBET of 556 and 428 m2 g−1, respectively
(Figure 3a,b). Based on the NL‑DFT theory, the pore diameters of FEC‑POPs were deter‑
mined to be in the ranges of 0.41–5.85 nm for FEC‑Mel and 0.45–1.85 nm for FEC‑PBDT
POPs (Figure 3c,d).
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SEMwas employed to investigate the shapemorphologies of FEC‑POPs. The SEM im‑
ages revealed irregular spherical particles for both FEC‑Mel and FEC‑PBDT POPs
(Figure 4a–d).
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The SEM‑EDS mapping confirmed the presence of carbon (C), nitrogen (N), and oxy‑
gen (O) atoms in FEC POPs (Figure 5a–h). Overall, the FEC‑Mel and FEC‑PBDT POPs
exhibited N‑heteroatom structures, high surface areas, meso‑ and microporous charac‑
teristics, and significant pore volumes. These findings suggest that these materials hold
promise as potential candidates for applications in energy storage and gas capture [63].
XRDanalysis (Figure S7) indicated the presence of semi‑crystalline peaks and broaddiffrac‑
tion peaks in the XRDprofiles, suggesting the structural characteristics of thematerials [59].

2.2. CO2 Uptake of FEC‑Mel and FEC‑PBDT POPs
To evaluate the CO2 uptake capabilities of FEC‑Mel and FEC‑PBDT POPs, CO2

isotherm measurements were conducted at temperatures of 298 K and 273 K, respectively.
At 298 K, FEC‑Mel and FEC‑PBDT POPs displayed a CO2 capacity of 1.34 and 0. 51 mmol
g−1, respectively. At 273 K, the CO2 uptake capacities increased to 1.57 mmol g−1 for
FEC‑Mel POP and 1.53 mmol g−1 for FEC‑PBDT POP (Figure 6). The superior CO2 up‑
take performance of FEC‑Mel POP can be explained by its high SBET surface area and total
pore volume.
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2.3. Electrochemical Analysis of FEC‑POPs
The electrochemical performance of FEC‑Mel and FEC‑PBDT POPs warrants investi‑

gation owing to their considerable BET surface areas and incorporation of triazinemoieties,
as illustrated in Figure 1. In this study, we examined the cyclic voltammetry (CV) profiles
of FEC‑Mel and FEC‑PBDT POPs at different scan rates ranging from 5 to 200 mV s−1. Ad‑
ditionally, the potential window spanning from−1 to 0V versusHg/HgOwas explored for
both materials. These measurements were conducted using a three‑electrode system with
6MKOH serving as the electrolyte. The obtained results are presented in Figure 7. The CV
curves depicted in Figure 7a,b exhibit rectangular shapes without any redox peak for both
FEC‑Mel and FEC‑PBDT POPs, indicating that the electrochemical properties of these ma‑
terials primarily resemble those of electrical double‑layer capacitors (EDLCs). Moreover,
our findings demonstrate that the CV behavior of the FEC‑Mel and FEC‑PBDT POPs sam‑
ples remains stable and reversible without any distortion across a scanning rate range of
5 to 200 mV s−1. This data signifies that these two FEC‑POPs materials possess favorable
electron transfer rates and ion exchange capabilities. In addition, the capacitance perfor‑
mance of both FEC‑Mel and FEC‑PBDT POPs samples was assessed using galvanostatic
charge–discharge (GCD) measurements at different current densities (ranging from 0.5 to
20 A g−1) and all CGD profiles are approximately in an isosceles triangle shape. The re‑
sults, depicted in Figure 7c,d, clearly demonstrate that the FEC‑PBDT POP sample exhibits
higher specific capacitance values compared to the FEC‑Mel POP sample.

In Figure 8a, the specific capacitance values for the FEC‑Mel POP sample were ob‑
served to be 54, 43, 36, 33, 27, 24, 21, 19, and 16 F g−1 at a current density of 0.5, 1, 2, 3, 5,
7, 10, 15, and 20 A g−1, respectively. Similarly, for the FEC‑PBDT POP, the specific capaci‑
tance values were recorded as 82, 49, 25, 18, 14, 12, 10, 8, and 7 F g−1 at the corresponding
discharge rates of 0.5, 1, 2, 3, 5, 7, 10, 15, and 20 A g−1. Figure 8b and Table 1 demonstrate
the excellent supercapacitor performance of the FEC‑PBDT POP compared to other POPs
precursors [21,64–69]. This superiority can be attributed to two key factors: its high surface
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area and the increased proportion of nitrogen atoms in the PBDT units. The higher surface
area allows for more efficient ion adsorption and desorption, leading to enhanced capac‑
itance. Moreover, the higher content of nitrogen atoms in the PBDT units contributes to
improved electrochemical performance, as nitrogen functionalities can facilitate pseudoca‑
pacitive behavior and enhance the overall capacitance of the material [14,70–74]. Overall,
these characteristics make the FEC‑PBDT POP a highly promising candidate for superca‑
pacitor applications.
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Table 1. The capacity values of FEC‑Mel and FEC‑PBDT POPs were compared with those reported
for various three‑electrode supercapacitor materials.

Material Surface Area (m2 g−1) Capacitance References

FEC‑Mel POP 556 53 F g−1/0.5 A g−1 This work

FEC‑PBDT POP 428 82 F g−1/0.5 A g−1 This work

TBN‑Py‑CMP 473 31 F g−1/0.5 A g−1 [67]

CoPc‑CMP ‑ 13.7 F g−1/1.0 A g–1 [65]

Py‑BSU CMP 42 38 F g−1/0.5 A g−1 [69]

POSS‑F‑POIP 452 36.2 F g−1/0.5 A g−1 [68]

TPE‑FFC‑CMP 8 4.8 F g−1/0.5 A g−1 [64]

Py‑FFC‑CMP 50 5.07 F g−1/0.5 A g−1 [64]

C1‑CMP‑1 608 31 F g−1 at 20 mV s�1 [66]

Py‑PDT POP 76 28 F g−1/0.5 A g−1 [21]

The Ragone plot shown in Figure 8c compares the energy density of the electrode
materials FEC‑Mel and FEC‑PBDT POPs. The FEC‑PBDT material exhibits an energy den‑
sity of 7.42 Wh kg−1, while the FEC‑PBDT POPs material has a higher energy density
of 11.36 Wh kg−1. These values correspond to a power density of 250 W kg−1. Notably,
both FEC‑Mel and FEC‑PBDT POPs materials outperform other N‑doped porous carbon
materials, with an energy density of 7.11 Wh kg−1 [75], and a porous graphene carbon
material, with an energy density of 2.4 Wh kg−1 [76]. This highlights the superior perfor‑
mance of FEC‑Mel and FEC‑PBDT POPs as highly efficient N‑doped porous carbon mate‑
rials. To comprehend the ion diffusion process and electrical resistance of the electrodes,
electrochemical impedance spectroscopy (EIS) was employed. By analyzing Figure 8d, de‑
picting the Nyquist plot, we can assess the resistances exhibited by FEC‑Mel POP and
FEC‑PBDT POP electrodes. Our primary focus was investigating the ohmic resistances of
these electrodes, which were determined as 18.50 and 4.20, respectively. In EIS measure‑
ments, ohmic resistance pertains to the resistance encountered by the electric current as it
flows between the bulk electrolyte and the electrode–electrolyte interface. This resistance
comprises several components, such as electrolyte resistance, resistance at the electrode–
electrolyte interface, and any other resistances present within the system. In Figure S8, the
chemical structure stability of both the FEC‑Mel POP and FEC‑PBDT POP samples was
examined through FTIR analysis after undergoing electrochemical measurements. The re‑
sults revealed that all absorption peaks associated with NH, aliphatic C‑H, and C=N func‑
tionalities remainedunaltered. This outcome strongly indicates that the FEC‑Mel POP sam‑
ple displayed outstanding chemical stability, even after the electrochemical experiment.

3. Materials and Methods
3.1. Materials

Ferrocene (FEC), 1,4‑dicyanobenzene (BZ‑2CN), dimethyl sulfoxide (DMSO), potas‑
sium hydroxide (KOH), chloroform, dimethyl formamide (DMF), phosphoryl chloride
(POCl3), sodium acetate, hexane, acetone, NaOH, 2‑cyanoguanidine (GD‑2CN), tetrahy‑
drofuran (THF), ethanol (EtOH), and methanol (MeOH) were obtained via various trade
resources, such as Sigma‑Aldrich (Darmstadt, Germany), andAlfa Aesar (Lancashire, UK).

3.2. Synthesis of Ferrocenecarboxaldehyde (FEC‑CHO)
POCl3 (37 mL, 0.4 mol) was then progressively added after DMF (75 mL, 0.98 mol)

had been chilled in an ice bath. A 15 min break was followed by the addition of 100 mL
of CHCl3 to thin the liquid. FEC (25 g, 0.14 mol) was then included in the mixture. The
resultant mixture was agitated at 60 ◦C (for 16 h) and had a dark amber appearance. Upon
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completion of the reaction, the mixture was allowed to cool down. Ice water (500 mL) was
then added gradually, followed by the slow addition of 35 g of NaOH and 107 g of sodium
acetate. The product was extracted using chloroform (500 mL) and subsequently washed
three times with water. To purify the product, it was passed through a silica column, and
any remaining impurities were removed by elution with a hexane/acetone mixture (ratio
of 5/1). Finally, crimson crystals of the desired product were obtained (17 g, yield: 61%,
Scheme S1a). FTIR: 1243, 1034 cm−1 (Figure S1). 1HNMR (Figure S2): 9.90 (1H), 4.80 (2H),
4.67 (2H), 4.28 (5H). 13C NMR (Figure S3): 194.32, 69.77, 73.53.

3.3. Synthesis of 6,6′‑(1,4‑Phenylene)bis(1,3,5‑Triazine‑2,4‑Diamine) (PBDT)
A reaction was carried out using the following procedure: In a flask, BZ‑2CN (0.386 g,

2.3 mmol) was added into DMF (10 mL). Separately, a mixture of KOH (0.281 g, 5 mmol)
andGD‑2CN (1.012 g, 12mmol) was added into DMF (40mL). The KOH/GD‑2CN solution
was then added to the BZ‑2CN solution. About 20 h were spent stirring and refluxing the
resultant mixture at 130 ◦C under a N2. Once the reaction was complete, the product was
subjected to thorough washing with EtOH andMeOH to obtain PBDT (Scheme S1b). FTIR
(Figure S4): 3301, 3125, and 1550. 1H NMR (Figure S5a, δ, ppm) 8.35, 6.90. 13C NMR
(Figure S5b, δ, ppm) 170.91, 168.33, 140.24, 128.20.

3.4. Synthesis of FEC‑Mel POP
Mel (0.5 g, 3.96 mmol) and FEC‑CHO (1.5 g, 7.01 mmol) in DMSO (20 mL) were pro‑

duced and charged into a Schlenk flask. Three cycles of freezing and thawing were per‑
formed on the flask. The reaction flask was then heated to 180 ◦C and held at this tem‑
perature while stirring for 3 days. Following the reaction, the flask was allowed to cool to
room temperature. After filtering, the finished product was washed with acetone, MeOH,
and THF. The resulting black powder is known as FEC‑Mel POP (Figure 1a). To prepare
FEC‑PBDT POP, FEC‑CHO (0.87 g, 4.06 mmol) and PBDT (0.5 g, 1.69 mmol) weremixed in
20mL ofDMSOat 180 ◦C for 3 days. After the reaction period, the flaskwas allowed to cool
down. The resulting product was filtered and washed sequentially with THF, MeOH, and
acetone. The obtained solid material, which appeared black, was further dried at 100 ◦C.
As a result, FEC‑PBDT POP was obtained as a black powder (Figure 1b).

4. Conclusions
In summary, we developed two types of porous organic polymers (FEC‑POPs) by

incorporating the FECunitwith different aryl amines through a polycondensation reaction.
The resulting polymers were named FEC‑Mel and FEC‑PBDT POPs. Both the FEC‑Mel
and FEC‑PBDT POPs exhibited remarkable thermal stability, with a Td10 value of up to
353 ◦C and a char yield of approximately 54.55wt% at 800 ◦C, as determined using thermal
gravimetric analysis (TGA). For the potential applications for FEC‑POPs, we revealed that
the FEC‑PBDT POP electrode exhibited an exceptional capacitance of 82 F g−1, confirming
its suitability for application in supercapacitors. Furthermore, the FEC‑Mel POP sample
demonstrated impressive CO2 capture capacities, measuring 1.34 and 1.57 mmol g−1 at
298 and 273 K, respectively. These findings highlight the potential of the synthesized FEC‑
POPs for utilization in energy storage and gas adsorption devices.
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