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Abstract: Alzheimer’s disease (AD) is the most common form of dementia worldwide, and it
contributes up to 70% of cases. AD pathology involves abnormal amyloid beta (Aβ) accumulation,
and the link between the Aβ1-42 structure and toxicity is of major interest. NMDA receptors (NMDAR)
are thought to be essential in Aβ-affected neurons, but the role of this receptor in glial impairment
is still unclear. In addition, there is insufficient knowledge about the role of Aβ species regarding
mitochondrial redox states in neurons and glial cells, which may be critical in developing Aβ-caused
neurotoxicity. In this study, we investigated whether different Aβ1-42 species—small oligomers,
large oligomers, insoluble fibrils, and monomers—were capable of producing neurotoxic effects
via microglial NMDAR activation and changes in mitochondrial redox states in primary rat brain
cell cultures. Small Aβ1-42 oligomers induced a concentration- and time-dependent increase in
intracellular Ca2+ and necrotic microglial death. These changes were partially prevented by the
NMDAR inhibitors MK801, memantine, and D-2-amino-5-phosphopentanoic acid (DAP5). Neither
microglial intracellular Ca2+ nor viability was significantly affected by larger Aβ1-42 species or
monomers. In addition, the small Aβ1-42 oligomers caused mitochondrial reactive oxygen species
(mtROS)-mediated mitochondrial depolarization, glutamate release, and neuronal cell death. In
microglia, the Aβ1-42-induced mtROS overproduction was mediated by intracellular calcium ions
and Aβ-binding alcohol dehydrogenase (ABAD). The data suggest that the pharmacological targeting
of microglial NMDAR and mtROS may be a promising strategy for AD therapy.

Keywords: Alzheimer’s disease; amyloid-β; microglia; NMDA receptors; mitochondrial ROS; cell
death; glutamate

1. Introduction

Alzheimer’s disease (AD) is the most common cause of dementia in older adults,
with an estimated 55 million cases worldwide, which are predicted to reach 150 million
by 2050 [1]. AD pathogenesis involves the abnormal accumulation of amyloid beta (Aβ)
peptides, and the action mechanism of various Aβ1-42 assemblies is of major interest. The
neurotoxicity of Aβ1-42 oligomers includes the neuronal N-methyl D-aspartate receptor
(NMDAR)-dependent disruption of Ca2+ homeostasis, the destabilization of the neuronal
cell membrane [2,3], the promotion of inflammatory reactions [4,5], or mitochondrial in-
jury [6,7]. Most studies refer to neuronal NMDAR as the primary target in the Aβ damage
pathway, yet the role of NMDAR in the microglia-related events in AD remains unclear.
We have previously reported that small Aβ1-42 oligomers (but not larger aggregates or
monomers) induce neuronal and microglial plasma membrane depolarization and neu-
ronal death; however, only microglial depolarization was prevented by the NMDAR
blocker MK801 [8]. Recently, it has been shown that NMDA stimulates microglial prolif-
eration and morphological transformation toward an activated state that is characterized
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by the increased expression of inducible nitric oxide synthase (iNOS), NO production,
proinflammatory cytokine secretion, and reactive oxygen species (ROS) production [9–11].
Furthermore, the redox state directly controls NMDAR, and oxidative stress causes mi-
croglial activation, perineural net degradation, and impairs NMDARs [12,13]. On the
other hand, NMDAR activation may induce superoxide generation through nicotinamide
adenine dinucleotide phosphate (NADPH) oxidases, thereby leading to neuronal damage
during anoxia/reoxygenation [14]. The overproduction of neuronal mitochondrial ROS
(mtROS) triggers the activation of NMDARs and AMPARs, thereby increasing cytoso-
lic calcium and neuronal death in frontotemporal dementia pathology [15]. In neurons,
mtROS might be induced by Aβ-binding alcohol dehydrogenase (ABAD) [16,17]; there-
fore, targeting the Aβ-ABAD interaction has emerged as a novel therapeutic strategy for
AD [18]. In addition, the mtROS-related inhibition of the respiratory chain complex I/II by
rotenone and antimycin A markedly reduced the microglial capacity related to phagocy-
tose Aβ [19]. The data suggest that microglial NMDARs, mitochondrial dysfunction, and
mtROSs could likely be involved in Aβ-mediated neurotoxicity; however, the impact of dif-
ferently oligomerized Aβ1-42 species on these targets is not consistently studied. Therefore,
in this study, we investigated whether Aβ1-42 in the form of small (z-high < 5 nm) and large
(z-high > 5 nm) oligomers, insoluble fibrils, and monomers exerted neurotoxic effects
via changes in microglial intracellular Ca2+, NMDAR activation, and mtROSs, and if so,
whether these events were interrelated.

2. Results
2.1. The Role of NMDARs in Aβ1-42-Induced Microglial Cytoplasmic Calcium Increase and Death

First, we investigated whether Aβ1-42 species of different aggregation states might
cause changes in the cytosolic calcium ion concentration in primary microglial cultures
(Figure 1). After 15 min of incubation of the cultured microglial cells with small Aβ1-42
oligomers, the level of intracellular Ca2+-dependent fluorescence increased by 18% com-
pared with the control, and after 45 and 90 min, the fluorescence levels rose to 36% and
50%, respectively (Figure 1b,c,i). In contrast, the level of intracellular Ca2+ in microglia re-
mained unchanged during a 90-minute treatment with Aβ1-42 monomers, large oligomers,
and fibrils.

Next, we evaluated whether small Aβ1-42 oligomers induced microglial death. As
shown in Figure 2a, in pure microglial cultures, small Aβ1-42 oligomers caused rapid
necrosis in a concentration- and time-dependent manner: after 30 min of incubation with
0.5 µM and 1 µM small Aβ1-42 oligomers, the levels of necrotic (PI-positive) cells were
about 10% and increased gradually over 4.5 h of incubation to eventually reach 22% and
61% necrosis at 0.5 µM and 1 µM concentrations, respectively. After 24 h, about 90% of the
cells were necrotic in the 1 µM small Aβ1-42 oligomer-treated primary microglial cultures
(Figure 2a,b); in the 0.5 µM small Aβ1-42 oligomer-treated primary microglial cultures,
about 60% necrosis was observed (Figure 2a). Large oligomers and fibrilar Aβ1-42 did not
cause necrosis during the 24 h treatment of microglial cultures (Figure 2a). The preparation
of Aβ species involves the solvent hexafluoroisopropanol (HFIP), which is evaporated in
further steps; however, trace amounts of HFIP in Aβ solutions might be present. Therefore,
we performed additional control experiments in which cultures were treated with solvent
solutions (HFIP) prepared in exactly the same way as Aβ oligomers but in the absence of
peptides. HFIP applied at the same concentration as in the Aβ1-42 preparations did not
influence the microglial viability (Figure 2a,b).
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Figure 1. The effect of different Aβ1-42 species on Ca2+ concentration in microglial cells:Intracellular 

Ca2+ was assessed by loading microglia with Fluo-3AM dye and measuring the fluorescence inten-

sity of microscope images. In (a–h), there are representative images of the cells; the scale bar (100 

µm) is the same for all images. In (i)—a quantitative evaluation of Ca2+-dependent fluorescence in 

microglial cells. HFIP—hexafluoroisopropanol is a solvent used for Aβ preparation. BAPTA—1,2-

Bis(2-aminophenoxy)ethane-N,N,N′,N′-tetraacetic acid tetrakis(acetoxymethyl ester) was used as a 

negative control of the assay. ATP was used as a positive control. The fluorescence intensity in each 

experiment was expressed as a percentage of ATP-stimulated fluorescence, and BAPTA-treated cell 

fluorescence level was eliminated as a nonspecific baseline. The data are presented as averages with 

a standard deviation of 5–9 experiments performed in triplicates (5 images each, i.e., 15 images per 

sample in total). ***, **—statistically significant difference compared with the HFIP control at the 

same time point. ***—p < 0.001, **—p < 0.01. 

Next, we evaluated whether small Aβ1-42 oligomers induced microglial death. As 

shown in Figure 2a, in pure microglial cultures, small Aβ1-42 oligomers caused rapid ne-

crosis in a concentration- and time-dependent manner: after 30 min of incubation with 0.5 
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10% and increased gradually over 4.5 h of incubation to eventually reach 22% and 61% 

Figure 1. The effect of different Aβ1-42 species on Ca2+ concentration in microglial cells:Intracellular
Ca2+ was assessed by loading microglia with Fluo-3AM dye and measuring the fluorescence intensity
of microscope images. In (a–h), there are representative images of the cells; the scale bar (100 µm)
is the same for all images. In (i)—a quantitative evaluation of Ca2+-dependent fluorescence in
microglial cells. HFIP—hexafluoroisopropanol is a solvent used for Aβ preparation. BAPTA—1,2-
Bis(2-aminophenoxy)ethane-N,N,N′,N′-tetraacetic acid tetrakis(acetoxymethyl ester) was used as a
negative control of the assay. ATP was used as a positive control. The fluorescence intensity in each
experiment was expressed as a percentage of ATP-stimulated fluorescence, and BAPTA-treated cell
fluorescence level was eliminated as a nonspecific baseline. The data are presented as averages with
a standard deviation of 5–9 experiments performed in triplicates (5 images each, i.e., 15 images per
sample in total). ***, **—statistically significant difference compared with the HFIP control at the
same time point. ***—p < 0.001, **—p < 0.01.
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The effect of small Aβ1-42 oligomers on microglial viability was also observed in mixed 

neuronal–glial cell cultures. The percentage of necrotic microglia after a 30 min of treat-

ment with small Aβ1-42 oligomers was 17% and gradually increased in time to reach 37% 

after 4.5 hours and 53% after 24 h (Figure 3b,d,e). There were almost no necrotic cells in 

the controls (Figure 3c) and other Aβ1-42 species-treated samples. Thus, the levels of cells 

killed by small oligomers were significantly higher after all investigated periods. 

Figure 2. The effect of Aβ1-42 peptide on microglial viability in pure microglia cultures: In (a), there
are average percentages of necrotic (PI-positive) nuclei in fluorescence microscope images taken after
treatment with Aβ1-42 peptides of different aggregation states (0.5 µM and 1 µM small Aβ small
oligomers; 1 µM Aβ large oligomers and fibrils). HFIP—a solvent used for Aβ preparation. In (b),
there are representative images of microglial nuclei stained for viability detection with Hoechst33342
and PI after 24 h treatment with the small Aβ1-42 oligomers. Cell cultures were analyzed at 20X
magnification. ***, **—statistically significant difference compared with the control at the same time
point; ***—p < 0.001; **—p < 0.01.

The data described above show that small Aβ1-42 oligomers elevated intracellular Ca2+

and induced cell death in pure microglial cultures. Next, we tested the effects of different
Aβ1-42 preparations on microglia in mixed neuronal–glial cell cultures. After 15 min of
incubation, the average microglial calcium-dependent fluorescence in the small Aβ1-42
oligomer-treated cultures was 7% higher compared to the untreated control (Figure 3a).
After 45 min, the difference from the control increased to 20% and remained similar after
90 min. In contrast, there was no significant difference between the control and monomer-,
large oligomer-, and fibril-treated cultures.

The effect of small Aβ1-42 oligomers on microglial viability was also observed in mixed
neuronal–glial cell cultures. The percentage of necrotic microglia after a 30 min of treatment
with small Aβ1-42 oligomers was 17% and gradually increased in time to reach 37% after
4.5 h and 53% after 24 h (Figure 3b,d,e). There were almost no necrotic cells in the controls
(Figure 3c) and other Aβ1-42 species-treated samples. Thus, the levels of cells killed by
small oligomers were significantly higher after all investigated periods.

In summary, small Aβ1-42 oligomers increased Ca2+ levels and induced necrosis in the
microglia in pure and mixed neuronal–glial cell cultures; however, the effects were more
prominent in pure cultures. No Ca2+ or viability changes were observed after treatment
with other Aβ1-42 forms, such as monomers, large oligomers, or fibrils.

We have previously found that small Aβ1-42 oligomers induced neuronal toxicity via
NMDARs [8]. In this study, we examined whether NMDARs were involved in microglial
Ca2+ elevation and cell death triggered by small Aβ1-42 oligomers by incubating primary
microglial cell cultures with the peptide in the presence of the NMDAR inhibitors MK801,
memantine, or D-2-Amino-5-phosphopentanoic acid (DAP5).



Int. J. Mol. Sci. 2023, 24, 12315 5 of 17

Int. J. Mol. Sci. 2023, 24, x FOR PEER REVIEW 5 of 17 
 

 

 

Figure 3. The effect of Aβ1-42 peptide on microglial viability in neuronal-glial cultures: In (a), micro-

glial Ca2+-dependent Fluo 3AM fluorescence intensity after treatment with with Aβ1-42 peptide of 

different aggregation states. In (b), there are average percentages of necrotic (PI-positive) nuclei in 

fluorescence microscope images taken after treatment with Aβ1-42 peptides of different aggregation 

states. HFIP—a solvent used for Aβ preparation. In (c), there is a representative image of solvent 

(HFIP-treated) control samples of neuronal–glial cell cultures. In (d)—24 h small Aβ1-42 peptide oli-

gomer-treated sample of neuronal–glial cell culture. In (e)—surface-floating microglial cells after 24 

h small Aβ1-42 peptide oligomer treatment. Microglial cells are stained green with Isolectin B4; all 

nuclei are stained for viability detection with Hoechst 33342 and PI. White arrows in (d) point to the 
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treated with glutamate, which is an activator of NMDA, AMPA, and kainate receptors. 
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Figure 3. The effect of Aβ1-42 peptide on microglial viability in neuronal-glial cultures: In (a),
microglial Ca2+-dependent Fluo 3AM fluorescence intensity after treatment with with Aβ1-42 peptide
of different aggregation states. In (b), there are average percentages of necrotic (PI-positive) nuclei in
fluorescence microscope images taken after treatment with Aβ1-42 peptides of different aggregation
states. HFIP—a solvent used for Aβ preparation. In (c), there is a representative image of solvent
(HFIP-treated) control samples of neuronal–glial cell cultures. In (d)—24 h small Aβ1-42 peptide
oligomer-treated sample of neuronal–glial cell culture. In (e)—surface-floating microglial cells after
24 h small Aβ1-42 peptide oligomer treatment. Microglial cells are stained green with Isolectin B4; all
nuclei are stained for viability detection with Hoechst 33342 and PI. White arrows in (d) point to the
microglial cells with PI-positive necrotic nuclei. All the quantitative data are presented as averages
with a standard deviation of 5–7 experiments performed in technical triplicates; 5 images each
(15 images per sample per experiment in total). The scale bar in (c–e) is 100 µm. ***, **—statistically
significant difference compared with the control at the same time point; ***—p < 0.001; **—p < 0.01.

All the applied inhibitors at 10 µM concentrations completely prevented the Aβ1-42-
induced increase in microglial intracellular Ca2+ (Figure 4a). In the cells affected by small
Aβ1-42 oligomers without the inhibitors, the Ca2+ level was comparable to the samples
treated with a specific NMDAR agonist 1 mM NMDA and was lower than in the cells treated
with glutamate, which is an activator of NMDA, AMPA, and kainate receptors. However,
the NMDAR inhibitors were not as effective in protecting the microglia from death caused
by small Aβ1-42 oligomers (Figure 4b). Although the noncompetitive NMDAR inhibitors
MK801 and memantine significantly prevented small Aβ1-42 oligomer-induced increases
in the necrotic cell number after 90, 180, and 270 min of treatment, the levels of dead
cells remained substantially higher than in the control cultures (compare Figure 2a,b). A
competitive NMDAR inhibitor DAP5 was even less protective and significantly prevented
cell death only after 180 and 270 min, but not after 90 min. Neither of the inhibitors
significantly affected the microglial viability in the presence of the small Aβ1-42 oligomers
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after 30 min or 24 h. The data suggest that small Aβ1-42 oligomers (but not monomers,
large oligomers, or fibrils) elevate the intracellular Ca2+ concentration in microglia by
triggering the NMDARs; however, other mechanisms contribute to this outcome in causing
microglial death.
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Figure 4. The effect of Aβ1-42 peptide on microglial viability in pure microglia cultures and in-
volvement of NMDARs in Aβ-induced intracellular Ca2+ elevation and toxicity: In (a), microglial
Ca2+-dependent Fluo 3AM fluorescence intensity after treatment with small Aβ1-42 oligomers in the
absence and presence of NMDAR inhibitors (MK801, memantine, and DAP5, all at 10 µM concentra-
tion). In (b), the effect of NMDAR inhibitors on the level of microglial death induced by small Aβ1-42

oligomers. DAP5—D-2-Amino-5-phosphopentanoic acid. All the quantitative data are presented
as averages with a standard deviation of 5–7 experiments performed in technical triplicates, 5 im-
ages each (15 images per sample per experiment in total). ***, **—statistically significant difference
compared with the control at the same time point; ˆˆˆ, ˆˆ, ˆ—compared with Aβ. ***, ˆˆˆ—p < 0.001;
**, ˆˆ—p < 0.01; ˆ—p < 0.05.

2.2. The Effect of Aβ1-42 Species on Superoxide Production by Mitochondria

In this part of the study, we investigated whether various Aβ1-42 species could stimu-
late mitochondrial superoxide generation in microglia and neurons in mixed neuronal–glial
cell cultures. As can be seen in Figure 5a,b, after 30 min of treatment with small Aβ1-42
oligomers, superoxide-dependent MitoSOX Red fluorescence in the neuronal cells was 35%
higher than in the control, and it remained at this level for 1 h and increased further by
153% after 2 h (Figure 5a,b). Large Aβ1-42 oligomers and Aβ1-42 fibrils did not cause any
detectable changes in the mitochondrial superoxide production. Similarly to the neuronal
data, small Aβ1-42 oligomers induced a substantial increase in MitoSOX fluorescence in the
microglial cells, which reached 195%, 155%, and 167% of the control after 30 min, 1 h, and
2 h of incubation, respectively (Figure 5a,c). Again, other Aβ1-42 forms did not significantly
influence the mitochondrial superoxide production. In addition, small and large Aβ1-42
oligomers or fibrils did not cause any superoxide-related fluorescence in the astrocytes after
0.5–2 h of incubation in neuronal–glial cell cultures. HBSS or 2 µM Antimycin A without
MitoSOX did not affect the MitoSOX-related fluorescence in the neurons and microglia.
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Figure 5. The effect of Aβ1-42 peptide on mitochondrial superoxide production in neuronal–glial
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oligomers; cells pretreated with MitoTEMPO + small Aβ1-42 oligomers; and cells pretreated with
Antimycin A, upper line—phase contrast light microscopy images; middle line—cells stained using
green fluorescent MitoTrackerGreen dye and Hoechst 33342; bottom line—images of cells stained with
MitoSOX Red and Hoechst 33342. In (b), there are average percentages of MitoSOX Red fluorescence
intensity after treatment with various Aβ1-42 species (small Aβ oligomers, large oligomers, (AβL),
Aβ fibrils (AβF)) at 1 µM concentration in neuronal cells; (c) in microglial cells. HFIP—a solvent
used for Aβ preparation. AA—Antimycin A (2 µM), a positive control. In (d), there are average
percentages of MitoSOX Red fluorescence intensity after treatment with small Aβ1-42 oligomers plus
various inhibitors in neuronal cells; (e) in microglial cells. Cultures were pretreated with MitoTEMPO
(MitoT) (10 µM), Frentizole drug (FR) (5 µM), N-Acetyl Cysteine (NAC) (100 µM), Apocynin (Apo)
(1 mM), MK801 (MK) (10 µM), and BAPTA (5 µM), see Section 4. All data are presented as averages
with a standard deviation of 4-8 experiments performed in technical triplicates, five images each
(15 images per sample per experiment in total). The changes in red fluorescence were evaluated in
neuronal and microglial cells separately. The fluorescence intensity was measured in individual cells
that were traced according to their bright field/fluorescence images; marked with arrows—neurons,
N, and microglia, M. Cell cultures were analyzed at 20× magnification. ***, *—statistically significant
difference compared with the control (Ctr); #, ##—with Aβ; ***—p < 0.001; ##—p<0.01, *, #—p < 0.05.

To get more mechanistic insights into Aβ1-42-induced superoxide production by mito-
chondria, we applied a set of pharmacological modulators. The possible involvement of
NMDARs and elevated Ca2+ was tested with MK801 and BAPTA, a selective cell-permeable
Ca2+ chelator. Frentizole was used to identify whether the mitochondrial superoxide was
induced by Aβ-ABADs. N-Acetyl L-Cysteine (NAC) has mitochondria-specific antioxidant
effects [20] and was applied to examine the importance of the mitochondrial redox state,
and Apocynin, an inhibitor of NADPH oxidase, was appliedto verify the role of ROS
produced by this enzyme. None of the compounds (except the selective mitochondrial
superoxide scavenger MitoTEMPO) affected the small Aβ1-42 oligomer-induced neuronal
mitochondrial superoxide (Figure 5a,d). However, the microglial Aβ1-42-induced mito-
chondrial superoxide was significantly reduced by the Frentizole, NAC, and BAPTA (and
MitoTEMPO), but not by the Apocynin and MK801 (Figure 5e). The results indicate that
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Aβ-mediated mtROS overproduction is differentially regulated in neurons and microglia
in mixed neuronal–glial cultures and point to microglial intracellular Ca2+- and ABAD-
mediated mitochondrial oxidative stress.

For evaluating whether small Aβ1-42 oligomer-induced mtROS cause mitochondrial
depolarization and whether it is related to ABAD activation, we measured the mitochon-
drial membrane potential using MitoTracker Orange CM-H2TMRos in the presence of
MitoTEMPO or Frentizole. The exposure of the neuronal–glial cultures to small Aβ1-42
oligomers for 1 h caused a 25% decrease in the membrane potential compared to the control
(Figure 6a,b). The membrane potential was restored by MitoTEMPO (to 90%) but not
with Frentizole (Figure 6a,b), thus suggesting no considerable role of the ABADs in the
Aβ-mediated decrease in mitochondrial activity. In addition, MitoTEMPO was not effec-
tive in preventing Antimycin A-induced mitochondrial depolarization (Figure 6b), most
likely because the latter was caused by respiratory chain complex III inhibition but not by
the mtROS. Thus, the result was small Aβ1-42-induced mtROS-dependent mitochondrial
depolarization in the neuronal–glial cell culture.
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Figure 6. The effect of small Aβ1-42 oligomer-induced mitochondrial membrane potential collapse
in neuronal-glial cultures: Mitochondrial membrane potential was monitored using fluorescent
dye MitoTracker Orange CM-H2TMRos. In (a), there are representative images of the control cells;
cells pretreated with small Aβ1-42 oligomers; cells pretreated with MitoTEMPO + small Aβ1-42

oligomers and cells pre-treated with Antimycin A; upper line—phase contrast light microscopy
images; middle line—cells stained using green fluorescent MitoTrackerGreen dye and Hoechst 33342;
bottom line—images of cells stained with MitoTracker Orange CM-H2TMRos. (b)—a quantitative
evaluation of mitochondrial membrane potential-dependent fluorescence in cultures pretreated with
MitoTEMPO (MitoT), Frentizole (FR), HFIP or Antimycin A (AA). All the quantitative data are
presented as averages with a standard deviation of 4–8 experiments. Cell cultures were analyzed at
20×magnification. ***—statistically significant difference compared with the control; #—with Aβ;
***—p < 0.001; #—p < 0.05.

2.3. The Role of Mitochondrial ROS in Small Aβ1-42 Oligomer-Induced Neuronal and
Microglial Death

We have previously shown that small Aβ1-42 oligomers induce the opening of mi-
tochondrial permeability transition pore in neurons, thereby leading to mitochondrial
dysfunction and cell death [8]. Mitochondrial permeability transition pore sensitivity to
Ca2+ is modulated by mtROS [21], thus suggesting that Aβ1-42-affected neurons could be,
in principle, rescued by mitochondrially targeted antioxidants or by suppressing ABADs.
To test this hypothesis, neuronal–glial cultures were preincubated with MitoTEMPO or
Frentizole and then treated with 1 µM small Aβ1-42 oligomers for 24 h. Aβ1-42 reduced the
neuronal viability to 43%, and both Frentizole and MitoTEMPO significantly prevented
this loss of viability, thus resulting in 72% and 81%, respectively, of the cells remaining
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alive (Figure 7a). Twenty-four-hour treatment with small oligomers reduced the microglial
viability to 47% of the control (Figure 3b), and the decrease was not MitoTEMPO- or
Frentizole-sensitive.
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Figure 7. The effect of MitoTEMPO and Frentizole on small Aβ1-42 oligomer-induced neuronal death
and extracellular glutamate in neuronal-glial cultures: (a)—viable neurons; (b)—glutamate. In cell
death experiments (a), cells were exposed to 1 µM Aβ1-42 oligomers with or without MitoTEMPO
(MitoT) or Frentizole (FR) for 24 h. Cell death was quantified by assessing nuclei morphology after
staining with PI and Hoechst 33342. Cells were counted in at least 5 microscopic fields per well
(two wells per treatment). Data are expressed as percentage of specific neuronal cells of the total
number of neuronal cells per field. Neurons were recognized according to characteristic morphology
using phase contrast microscopy. For extracellular glutamate measurements (b), cells were treated
with 1 µM small Aβ1-42 oligomers for 1 h with or without MitoTEMPO or Frentizole. Glutamate in
culture medium was evaluated by Amplex Red glutamic acid/glutamate oxidase assay kit. Glutamate
concentrations were calculated with L-glutamic acid standard curve. All the quantitative data are
presented as averages with a standard deviation of 4–8 experiments. ***, statistically significant
difference compared with the control; ###—with Aβ; #—p < 0.05; ***, ###—p < 0.001.

MtROS might modulate glutamatergic signaling leading to calcium overload and exci-
totoxicity [15]; therefore, we further investigated the potential effects of MitoTEMPO and
Frentizole on extracellular glutamate levels in Aβ1-42 oligomer-treated neuronal–glial cell
culture medium. Indeed, 1 h treatment with small Aβ1-42 oligomer elevated the extracellu-
lar glutamate from 2.1 µM in the control to 3.9 µM in the treated cultures (Figure 7b). The
pretreatment with MitoTEMPO or Frentizole significantly prevented glutamate increases
by causing the levels to drop to 2.6 and 2.2 µM, respectively, thereby indicating glutamate
release mediation by mtROS and ABAD.

3. Discussion

In this study, we used Aβ1-42 species of different oligomerization states—small and
large oligomers, fibrils, and monomers—to investigate Aβ neurotoxicity mechanisms in rat
brain primary cell cultures. The main finding of the study was that the microglial cell culture
was extremely sensitive to toxic small Aβ oligomers. Small Aβ1-42 oligomers triggered an
NMDAR-mediated increase in the intracellular Ca2+ in microglial cells, which partially
correlated with microglial necrosis. We have previously shown that small oligomers, but
not other Aβ forms, induced neuronal necrosis in neuronal–glial cell cultures [22], and now
we demonstrate that small oligomers cause the concentration- and time-dependent necrosis
of microglial cells. Dystrophic microglia have been found in aged, AD- and frontotemporal-
lobar-degeneration-affected brains [23–25]. Amyloid plaque-associated microglia have
impaired Ca2+ signaling and increased apoptosis rates in the AD mouse models [26,27];
however, there are no data about the link between microglial death and neuronal damage
in Aβ pathology.
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We determined that small Aβ1-42 oligomers caused mtROS, mitochondrial depolariza-
tion, high extracellular glutamate levels, and neuronal death in neuronal–glial cell cultures;
and mitochondrial antioxidants prevented all these events. Aβ-induced mtROS overpro-
duction in microglia was mediated by intracellular Ca2+ and ABADs. The interaction
of Aβ with ABAD enhances mitochondrial oxidative stress, mitochondrial toxicity, and
cognitive decline in AD patients and transgenic mice [16], whereas the inhibition of ABAD–
Aβ interaction reduces oxidative stress, as well as improves mitochondrial functions and
spatial memory in a mouse AD model [28]. Several studies indicate that the molecular
pathways under redox control may be implicated in the Aβ pathogenesis targeting mi-
croglia [29]. In our study, Apocynin was not effective in the Aβ-mediated ROS production
in microglia, and this result suggests that mtROS, not NADPH oxidase derived-ROS, might
be responsible for mediating microglial damage in response to small Aβ oligomers.

Mitochondrial dysfunction in microglia plays a significant role in the pathogenesis
of AD and other neurological disorders [30]. Previously, we found that small Aβ1-42
oligomers decreased the capacity of isolated brain mitochondria to retain calcium, thus
inducing mitochondrial permeability transition pore opening [8]. The overload of calcium
in mitochondria leads to the opening of mitochondrial permeability transition pore, which
is an initial step in activating necrotic and apoptotic cell death [31,32]. Moreover, ROS
overproduction in neurons and glia can serve as an additional trigger for pore opening [33].
One of the possible causes of enhanced mtROS might be the direct impairment of complex
I activity by Aβ [34].

Here, the Aβ1–42 oligomers caused a rapid increase in the NMDAR-dependent cytoso-
lic calcium in microglia and a calcium-dependent increase in the mtROS and extracellular
glutamate, thereby inducing neuronal and microglial death. The overproduction of mtROS
in neurons alters the NMDARs, thus leading to impaired glutamatergic signaling, calcium
overload, and excitotoxicity [15]. Oxidative glutamate toxicity has been hypothesised as
the component of excitotoxicity-initiated cell death when parts of the neurons are killed by
glutamate exposure directly in an antioxidant-dependent manner, and another part is dam-
aged due to the activation of the NMDARs [35]. Aβ1-42 oligomers stimulated the excessive
formation of mtROS through a mechanism requiring NMDAR activation in hippocampal
neuronal cultures [36]. Ionotropic glutamate receptors are also expressed in microglial
cells, and their stimulation leads to a Ca2+ influx [37] and ROS production [38]. In addition,
glutamate might cause an extracellular Ca2+ influx via Na+/Ca2+ exchanger [39].

One of the possible explanations for NMDAR-mediated mitochondrial response in-
duced by Aβ oligomers could be the involvement of mitochondria-associated membrane-
dependent NMDARs. It has been shown that the activation of NMDARs may trigger
efficient Ca2+ release from endoplasmic reticulum (ER) stores [40,41], and the NMDA
receptor antagonist DAP5 may suppress ER Ca2+ release and mitochondrial Ca2+ import
in mammalian neurons [42]. Earlier investigations on postmortem brains affected by AD
have determined the increase of contact sites between the ER and mitochondria, as well as
the upregulation of proteins of the mitochondria-associated membranes [43]. Additionally,
Aβ-induced NMDAR activation can cause mitochondrial dysfunction via Ca2+ flux from
the ER in primary cortical neurons [44]. Thus, the activation of the NMDAR is required for
Ca2+ release from ER stores and the Ca2+ import into neuronal mitochondria. However,
it is not known whether NMDARs are important for ER/mitochondria Ca2+ fluxes in
microglial cells.

Our findings suggest that the downstream effects of small Aβ oligomers leading to
microglial calcium overload and NMDAR activation, microglial and neuronal mitochon-
drial damage, and glutamate release may contribute to the mitochondrial oxidative stress
hypothesis and may provide a basis for the development of therapeutic measures for delay-
ing the progression of AD. The effects of small Aβ oligomer-induced toxicity on neurons
and microglia, as well as their potential pharmacological modulation sites, are summarized
in a scheme in Figure 8.
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Figure 8. Aggregation states of Aβ1-42 peptide (a) and schematic representation of small Aβ1- 42

oligomer-induced toxicity in neuronal and microglial cells (b): Only small Aβ1-42 peptide oligomers
are toxic to neurons and microglia; the toxicity mechanisms in these two cell types share some
similarities but also have differences. Both microglia and neurons suffer from NMDA-dependent
Ca2+ increases followed by mitochondrial ROS increases, as well as the loss of mitochondrial inner
membrane potential ∆Ψ (most likely due to the Ca2+ and ROS-induced mitochondrial permeability
transition pore mPTP). The mitoROS feedback to NMDARs via glutamate (GLUT) increase can
lead to neuronal death due to excitotoxicity and deenergization. In microglia, NMDAR is not the
only pathway of Aβ1-42-induced Ca2+ entry, and the importance of ABAD and the mitochondrial
redox state is evident. Small Aβ1-42 oligomer-mediated damage in neurons and microglia can
be pharmacologically controlled by NMDAR inhibitors MK801, memantine, and DAP5, as well
asmitochondrial ROS scavenger MitoTEMPO. In microglia, this damage can be prevented by ABAD
inhibitor Frentizole and mitochondrial redox state modulator N-Acetyl L-Cysteine (NAC).

4. Materials and Methods
4.1. Materials

Synthetic Aβ1-42 was obtained from Bachem (Bubendorf, Switzerland), Isolectin GS-
IB4 from Griffonia simplicifolia conjugated with Alexa Fluor488, MitoSOX™ Red, Mi-
toTracker Green FM dye, MitoTracker® Orange CM-H2TMRos, Amplex red glutamic
acid/glutamate oxidase assay kit, and TNF-α (Rat) ELISA kit, were purchased from
Invitrogen, ThermoFisher Scientific (Waltham, MA, USA); glucose (ROTH), penicillin–
streptomycin (Biochrom, Cambridge, UK), Versene was obtained from Gibco (Paisley, UK).
All other materials were purchased from Sigma-Aldrich, Burlington, MA, USA.
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4.2. Preparation of Aβ1-42 Aggregates

Aβ1-42 species, monomers, small oligomers, large oligomers, and fibrils were prepared
as described in Cizas et al. (2010) [22]. The average size of small Aβ1-42 oligomers was below
5 nm z-high and >5 nm for large Aβ1-42 oligomers, as measured by atomic fluorescence
microscopy (AFM) [22]. HFIP was used as a solvent to prepare all Aβ1-42 species. Vehicle
(referred as HFIP) was prepared in the same way as oligomeric forms but without Aβ.

4.3. Cell Cultures and Treatments

The procedures used in this study were approved by The State Food and Veterinary
Service of the Republic of Lithuania in accordance with European Convention for the
protection of vertebrate animals used for experimental and other purposes. The rats
were bred and maintained at Lithuanian University of Health Sciences Animal House
under controlled conditions. Wistar rats were anaesthetised by CO2, followed by cervical
dislocation. Primary pure microglial cultures from rat cerebral cortices were prepared from
7–8-day-old Wistar rats of both genders as described in [45].

Primary neuronal–glial cultures from rat cerebellum were prepared from 7–8-day-old
Wistar rats as described in [46]. Cells were grown for 7 days in vitro (DIV) before exposure
to Aβ species. The neuronal–glial culture contained 80% neurons and 7% astrocytes as
assessed by cellular morphology and 13% microglia indicated by staining with Isolectin
GS-IB4 conjugated with Alexa Fluor488.

4.4. Measurement of Intracellular Calcium Concentration

Intracellular calcium concentration was assessed by fluorescence microscopy using the
Fluo-3AM dye. Cultures were exposed to Aβ1-42 compounds (monomers, small oligomers,
large oligomers, and fibrils), at 1.0 µM, and Fluo-3AM at 2.0 µM for 15, 45, and 90 min;
all were visualized by OLYMPUS IX71S1F-3 fluorescent microscope (at 495/521 nm wave-
lengths). To investigate the role of NMDARs, the cell cultures were preincubated with
NMDAR blockers (memantine, MK801, and DAP5) all at 10 µM for 30 min. A total of
1 mM ATP-induced Fluo-3AM fluorescence was evaluated as maximal and was considered
100%. Fluo-3AM fluorescence after treatment with BAPTA (6 µM) was considered minimal
(0%). For calcium evaluation in microglia in neuronal–glial cultures, the cells were treated
and assessed the same way as in pure culture, and fluorescence intensity was measured
in individual microglial cells that were traced according to their brightfield images, as
demonstrated in Figure 9.

4.5. Cell Viability Assay

The viability of cells in cultures was assessed by propidium iodide (PI, 7 µM) and
Hoechst 33342 (4 µg/mL) staining using a fluorescence microscope OLYMPUS IX71S1F-3,
as described in [22]. Neurons were recognised according to characteristic morphology
(round in shape, small somata with a few dendrites) using phase-contrast microscopy.
PI-positive cells were classified as necrotic, and cells with condensed/fragmented nuclei
(Hoechst 33342, bright blue) as apoptotic. Microglial cells were identified by Isolectin
GS-IB4 conjugated with AlexaFluor488 (7 ng/mL) staining. Neuronal and microglial cell
numbers in neuronal–glial cultures were assessed by counting cells in at least 5 microscopic
images/wells by means of ImageJ software. Cell viability was expressed as the percentage
of viable, necrotic, or apoptotic cells of the total number of specific cells in the microscopic
image. The number of neurons/microglia in the control group was considered as 100%.
Cultures were treated with Aβ1-42 species (0.5 or 1 µM) in the presence/absence of NMDAR
blockers memantine, MK801, or DAP5. The blockers were applied at 10 µM concentrations
and added 30 min before the Aβ treatment. MitoTEMPO (10 µM) or Frentizole (5 µM),
where applied, were added 15 min before the Aβ treatment. List of inhibitors used in the
study is indicated in Table 1.
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Figure 9. Representative images explaining Ca2+-related fluorescence intensity assessment in mi-
croglial cells in mixed neuronal-glial cultures: In (a), there is a brightfield phase-contrast image
of the culture after 45 min treatment with small Aβ1-42 oligomers. Small round bodies of about
10–12 µm in diameter belong to cerebellar granule neurons and those larger ones of about 20 µm
belongto microglial cells. Astrocyte cells form a layer below the neurons and are not so well visible
under phase contrast. In (b), the same cells visualized for Ca2+-dependent fluorescence of Fluo-3AM
preloaded to the cells before the Aβ1-42 treatment. In (c), the brightfield image merged with the
fluorescent one to indicate the Ca2+-related fluorescence in microglial bodies (indicated by white
arrows). In (d), the fluorescent image areas covered by microglial bodies were traced yellow to
evaluate the fluorescence intensity.

Table 1. Inhibitors used in the study.

Inhibitor Mechanism of Action

MK801 A potent noncompetitive NMDAR antagonist [47].

Memantine A low-affinity noncompetitive NMDAR antagonist [48].

D-2-Amino-5-phosphopentanoic acid A competitive NMDAR antagonist [47].

BAPTA A selective cell-permeable Ca2+ chelator (information
provided by manufacturer).

MitoTEMPO
A mitochondrially targeted antioxidant and specific
scavenger of mitochondrial superoxide (information
provided by manufacturer).

Frentizole
An inhibitor of amyloid beta peptide binding alcohol
dehydrogenase (ABAD)–Aβ interaction (information
provided by manufacturer).

N-Acetyl L-Cysteine A disulfide reductant, a direct scavenger of oxidants,
and a driver of glutathione synthesis [20,49].

Apocynin A potent and selective inhibitor of NADPH oxidase [50].

Antimycin A
An inhibitor of mitochondrial cytochrome bc1
(complex III), often used as a positive control for
superoxide generation.
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4.6. Mitochondrial Superoxide Measurements

Cultures were incubated with MitoSOX Red (200 nM) and MitoTrackerGreen (200 nM)
for 30 min at 37 ◦C, washed by Hanks’ Balanced Salt Solution (HBSS) and analyzed by
fluorescence microscopy OLYMPUS IX71S1F-3 (495/521 nm and 536/617 nm bandpass
filters). For evaluating the effects of Aβ1-42, neuronal–glial cultures were treated with
various Aβ1-42 species (1 µM) for 0.5, 1, or 2 h. In some cases, culture was pretreated with
MK801 (10 µM), APO (1 mM), NAC (100 µM), BAPTA (5 µM), MitoTEMPO (10 µM), or
Frentizole drug (5 µM) for 15 min before addition of Aβ1-42. For positive control, the cells
were treated with Antimycin A, in concentration of 2 µM, for 30 min. Images of at least
5 randomly selected fields per well were taken, and the changes in red fluorescence were
evaluated and analyzed by Image J 1.52 v software.

4.7. Mitochondrial Membrane Potential Assessment

Mitochondrial membrane potential in neuronal–glial cultures was monitored using the
fluorescent dye MitoTracker® Orange CM-H2TMRos (200 nM) according to the manufac-
turer protocol. Cultures were treated with small Aβ1-42 oligomers plus/minus MitoTEMPO
or Frentizole, as described in Section 4.5. The ability of the dye to respond to plasma mem-
brane potential changes was tested by a mitochondrial membrane potential destabilizer
Antimycine A (2 µM) for 30 min. Pictures of at least 5 randomly selected fields per well
were taken using fluorescence microscope OLYMPUS IX71S1F-3 with 554/576 nm bandpass
filters. The changes in red fluorescence were analyzed by Image J 1.52 v software and
calculated per total number of cells.

4.8. Measurement of Glutamate Concentration

Extracellular glutamate was measured using the commercially available Amplex
Red glutamic acid/glutamate oxidase assay kit according to the manufacturer’s protocol.
Neuronal–glial cultures were pretreated with small Aβ1-42 oligomers for 1 h plus/minus
MitoTEMPO or Frentizole. After incubation, 50 µL aliquots of culture medium were taken
and mixed with a working solution of 100 µM Amplex Red reagent containing 0.25 U/mL
HRP, 0.08 U/mL L-glutamate oxidase, 0.5 U/mL L-glutamate–pyruvate transaminase, and
200 µM L-alanine; they were then incubated for 30 min at 37 ◦C and protected from light.
The fluorescence was measured in a fluorescence microplate reader Fluoroskan Ascent
(Thermo Scientific, Waltham, MA, USA) using excitation in the 530–560 nm range and
emission at 590 nm. Glutamate concentrations of the test samples were calculated from the
L-glutamic acid standard curve.

4.9. Statistical Analysis

Data were expressed as mean ± standard deviation SD of 4–9 experiments on separate
cultures. Statistical comparison between experimental groups was performed using a
one-way ANOVA followed by a Tukey’s or LSD post hoc test using SPSS 20.0 software.
p values < 0.05 were considered significant.
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