
Supporting information

Unravelling the role of uncommon hydrogen bonds in cyclodextrin

ferrociphenol supramolecular complexes: a computational

modelling and experimental study

Pascal Pigeon 1,2,*, Feten Najlaoui 3, Michael J. McGlinchey 4, Juan Sanz García 5, Gérard

Jaouen 1,2 and Stéphane Gibaud 3

1 PSL, Chimie ParisTech, 11 rue Pierre et Marie Curie, Paris F75231 Paris cedex 05, France
2 Sorbonne Université, Institut Parisien de Chimie Moléculaire (IPCM) – UMR 8232, 4 place Jussieu,

75252 Paris Cedex 05, France; pascal.pigeon@sorbonne-universite.fr
3 Université de Lorraine, EA 3452/CITHEFOR, 5 rue Albert Lebrun (Faculté de Pharmacie), F-54000

Nancy, France
4 UCD School of Chemistry, University College Dublin Belfield, Dublin 4, Ireland
5 1MSME, Université Gustave Eiffel, CNRS, 5 Boulevard Descartes 77454 Marne-la-Vallée, France

Links:

All files needed for this work can be found into the data repository at

https://doi.org/10.57745/CBUPP3. This includes the PHP program, the C program, the database,

the static webpages, and other files (follow the link above and read the README.txt file for

more details).

The PHP program (named CDModelTree) was also deposited into a forge (Software Heritage)

using Hal:

Pascal Pigeon. CDModelTree (V1): Manipulation of a cyclodextrin-ferrociphenol

supramolecular models database using a PHP web application. 2022,

⟨swh:1:dir:5c05be4fc1a1a2d4ca16bc48323231bb28379dec;origin=https://hal.archives-

ouvertes.fr/hal-

03991394;visit=swh:1:snp:438a3325327d8bef3a099271997a0dbdeca32da2;anchor=swh:1:rel:4e

c1d7207a58cc63963137f2e79030f04cfdec96;path=/⟩. ⟨hal-03991394⟩

mailto:pascal.pigeon@sorbonne-universite.fr
https://doi.org/10.57745/CBUPP3

2

SUMMARY: page

Modelling (tables S1 and S2) 3

Classification trees for models of SuccFerr-βCD assemblies (Fig. S1-S2) 7

Web application 16

Database and SQL 18

The PHP program and the webpages (table S3) 27

Installation of XAMPP, of the database and of the PHP software 29

Useful algorithms (Fig. S3) 30

Case of 1-CD series 9 and 10 39

Figure S4. Algorithm of the two PHP programmes 41

Examples without XAMPP (static webpages) 42

C program to control the models 42

Case of the best models of 1CD series 8 and series 2 (fig. S5-S6) 49

Table S4. Second-order perturbation stabilization energies for the NBOs 51

Description of the trees of modelling and of the web application to manage them 54

3

Modelling

Molecular Modelling calculations with the semiempirical PM3 quantum-mechanical method were

performed using the 64-bit program Spartan 14 version 1.1.8 (Wavefunction Co., Irvine, CA,

USA) with a Dell Precision T5810 PC (equipped with an Intel® Xeon® CPU E5-1630 v3 at 3.70

GHz, 4 cores, 8 logical CPU, 16 Gb RAM memory, 64 bits Windows 10). DFT calculations were

performed using Spartan 20 on a workstation or Gaussian 09 on the supercomputer MeSU at

Sorbonne Université, Paris (https://sacado.sorbonne-universite.fr/mesu/).

Each time a model was modified, a geometry optimization was carried out using the Merck

molecular force field (MMFF) method followed by the semiempirical PM3 quantum-mechanical

method. The semiempirical PM3 quantum-mechanical method was also used to determine the

affinity of SuccFerr with the CD. This allowed one to evaluate the affinity of each of the 4

substituents of the alkene double bond for each side of each CD. In this SI, wdMβCD is an

abbreviation of well-defined Methyl βCD (all glucose units are identical).

Typical method for inclusion of SuccFerr into well-defined βCDs

Each of the six tested CDs (mono-methylated: 2-Me-βCD, 3-Me-βCD, 6-Me-βCD and

dimethylated: 2,3-diMe-βCD, 2,6-diMe-βCD and 3,6-diMe-βCD) were built separately and then

optimized as described above. SuccFerr and the CD were copied and pasted into the same new

window with forced inclusion of one of the four moieties of the double bond of SuccFerr

approximately on the axis of the CD. Each moiety of the SuccFerr molecule, i.e., ferrocenyl (Fc),

succinimidylpropyl (Succ), phenol #1 -cis with the ferrocenyl (Ph1) - and phenol #2 (Ph2) was

included on each side of the CD (wide and narrow side) and built in separated files.

Typical method for inclusion of SuccFerr into two well-defined βCDs

To limit the number of possibilities the two wdMβCDs were identical (the six previous wdMβCDs,

even for the special experiment CDxCD that gave two identical CDs as the best G0, see below)

and only four combinations were calculated (Fc-Ph1, Fc-Ph2, Fc-Succ, Ph1-Succ). However, the

four possible combinations of inclusion were calculated (wide side – wide side, narrow side –

narrow side, wide side – narrow side, narrow side – wide side). Files of previous experiments with

one CD (CD1) on Fc or Ph1 were duplicated, and in each copy, a second CD (CD2) was inserted

https://sacado.sorbonne-universite.fr/mesu/

4

by copying and pasting the CD1 and placing by forced inclusion one of the remaining 3

substituents (Ph1, Ph2 or Succ for Fc and Succ for Ph1) with an eventual flipping (wide side or

narrow side). The affinity required calculation of the energies of the reactions: SuccFerr + CD1 +

CD2 → molecular assembly (E = ESuccFerr-CD1-CD2 – ECD1 – ECD2 - ESuccFerr).

Table S1. Calculated 1-CD systems (series S1 to S8) for inclusion into narrow or wide side of each of the moieties

of SuccFerr into well-defined CDs with monomethylated CDs (2-Me-βCD, 3-Me-βCD, 6-Me-βCD) and

dimethylated CDs (2,3-diMe-βCD, 2,6-diMe-βCD, 3,6-diMe-βCD). ∆E in kJ/mol.

Series 1, narrow side, Fc 1 ∆E Series 2, wide side, Fc ∆E

2-Me-βCD 5

3-Me-βCD

6-Me-βCD

2,3-diMe-βCD

2,6-diMe-βCD

3,6-diMe-βCD

- 122

- 97

- 76

- 96

- 73

- 68

2-Me-βCD

3-Me-βCD

6-Me-βCD

2,3-diMe-βCD

2,6-diMe-βCD

3,6-diMe-βCD

- 58

- 83

- 43

- 53

- 52

- 75

Series 3, narrow side, Ph1 2 ∆E Series 4, wide side, Ph1 ∆E

2-Me-βCD

3-Me-βCD

6-Me-βCD

2,3-diMe-βCD

2,6-diMe-βCD

3,6-diMe-βCD

- 111

- 34

- 46

- 42

- 72

- 38

2-Me-βCD

3-Me-βCD

6-Me-βCD

2,3-diMe-βCD

2,6-diMe-βCD

3,6-diMe-βCD

- 52

- 47

- 53

- 41

- 40

- 141

Series 5, narrow side, Ph2 3 ∆E Series 6, wide side, Ph2 ∆E

2-Me-βCD - 48 2-Me-βCD - 37

5

3-Me-βCD

6-Me-βCD

2,3-diMe-βCD

2,6-diMe-βCD

3,6-diMe-βCD

- 36

- 21

- 34

- 38

- 43

3-Me-βCD

6-Me-βCD

2,3-diMe-βCD

2,6-diMe-βCD

3,6-diMe-βCD

- 44

- 49

- 40

- 28

- 31

Series 7, narrow side, Succ 4 ∆E Series 8, wide side, Succ ∆E

2-Me-βCD

3-Me-βCD

6-Me-βCD

2,3-diMe-βCD

2,6-diMe-βCD

3,6-diMe-βCD

- 61

- 40

- 41

- 161

- 74

- 45

2-Me-βCD

3-Me-βCD

6-Me-βCD

2,3-diMe-βCD

2,6-diMe-βCD

3,6-diMe-βCD

- 53

- 81

- 50

- 51

- 40

- 111

1 Fc: ferrocene, 2 Ph1: phenol 1 (cis to Fc), 3 Ph2: phenol 2 (trans to Fc), 4 Succ: succinimidylpropyl, 5 The best

system and value for each series is displayed in bold and is the starting systems (G0) for calculation for diversely

methylated cyclodextrins calculations.

Table S2. Calculated 2-CD systems: Inclusion of 2 moieties of SuccFerr into the wide side (WS) or into the narrow

side (NS) of monomethylated wdMβCDs (2-Me-βCD, 3-Me-βCD, 6-Me-βCD) or dimethylated wdMβCDs

(2,3-diMe-βCD, 2,6-diMe-βCD, 3,6-diMe-βCD). ∆E in kJ/mol.

Monomethylated Dimethylated

2-Me-βCD

∆E 2,3-diMe-βCD ∆E

Fc(WS)+Ph1(WS) 1 - 132

Fc(WS)+Ph1(WS) - 104

Fc(WS)+Ph2(WS) - 150

Fc(WS)+Ph2(WS) - 122

Fc(WS)+succ(WS) - 118

Fc(WS)+succ(WS) - 112

Ph1(WS)+succ(WS) - 116

Ph1(WS)+succ(WS) - 93

6

Fc(NS)+Ph1(NS) - 176

Fc(NS)+Ph1(NS) - 163

Fc(NS)+Ph2(NS) - 148

Fc(NS)+Ph2(NS) - 99

Fc(NS)+succ(NS) - 182

Fc(NS)+succ(NS) - 150

Ph1(NS)+succ(NS) - 142

Ph1(NS)+succ(NS) - 179

Fc(WS)+Ph1(NS) - 113

Fc(WS)+Ph1(NS) - 109

Fc(WS)+Ph2(NS) - 126

Fc(WS)+Ph2(NS) - 90

Fc(WS)+succ(NS) - 114

Fc(WS)+succ(NS) - 99

Ph1(WS)+succ(NS) - 246 2

Ph1(WS)+succ(NS) - 120

Fc(NS)+Ph1(WS) - 150

Fc(NS)+Ph1(WS) - 203

Fc(NS)+Ph2(WS) - 162

Fc(NS)+Ph2(WS) - 173

Fc(NS)+succ(WS) - 184

Fc(NS)+succ(WS) - 78

Ph1(NS)+succ(WS) - 178

Ph1(NS)+succ(WS) - 77

3-Me-βCD

∆E 2,6-diMe-βCD

∆E

Fc(WS)+Ph1(WS) - 131

Fc(WS)+Ph1(WS) - 100

Fc(WS)+Ph2(WS) - 140

Fc(WS)+Ph2(WS) - 97

Fc(WS)+succ(WS) - 111

Fc(WS)+succ(WS) - 77

Ph1(WS)+succ(WS) - 96

Ph1(WS)+succ(WS) - 111

Fc(NS)+Ph1(NS) - 150

Fc(NS)+Ph1(NS) - 112

Fc(NS)+Ph2(NS) - 187

Fc(NS)+Ph2(NS) - 82

Fc(NS)+succ(NS) - 89

Fc(NS)+succ(NS) - 79

Ph1(NS)+succ(NS) - 145

Ph1(NS)+succ(NS) - 89

Fc(WS)+Ph1(NS) - 122

Fc(WS)+Ph1(NS) - 87

Fc(WS)+Ph2(NS) - 110

Fc(WS)+Ph2(NS) - 70

Fc(WS)+succ(NS) - 124

Fc(WS)+succ(NS) - 84

Ph1(WS)+succ(NS) - 132

Ph1(WS)+succ(NS) - 87

Fc(NS)+Ph1(WS) - 133

Fc(NS)+Ph1(WS) - 114

Fc(NS)+Ph2(WS) - 208

Fc(NS)+Ph2(WS) - 118

Fc(NS)+succ(WS) - 278

Fc(NS)+succ(WS) - 106

Ph1(NS)+succ(WS) - 76

Ph1(NS)+succ(WS) - 112

6-Me-βCD

∆E 3,6-diMe-βCD

∆E

7

Fc(WS)+Ph1(WS) - 141

Fc(WS)+Ph1(WS) - 118

Fc(WS)+Ph2(WS) - 119

Fc(WS)+Ph2(WS) - 135

Fc(WS)+succ(WS) - 116

Fc(WS)+succ(WS) - 118

Ph1(WS)+succ(WS) - 129

Ph1(WS)+succ(WS) - 104

Fc(NS)+Ph1(NS) - 130

Fc(NS)+Ph1(NS) - 129

Fc(NS)+Ph2(NS) - 143

Fc(NS)+Ph2(NS) - 94

Fc(NS)+succ(NS) - 120

Fc(NS)+succ(NS) - 91

Ph1(NS)+succ(NS) - 103

Ph1(NS)+succ(NS) - 94

Fc(WS)+Ph1(NS) - 131

Fc(WS)+Ph1(NS) - 78

Fc(WS)+Ph2(NS) - 87

Fc(WS)+Ph2(NS) - 108

Fc(WS)+succ(NS) - 93

Fc(WS)+succ(NS) - 101

Ph1(WS)+succ(NS) - 123

Ph1(WS)+succ(NS) - 73

Fc(NS)+Ph1(WS) - 143

Fc(NS)+Ph1(WS) - 108

Fc(NS)+Ph2(WS) - 170

Fc(NS)+Ph2(WS) - 123

Fc(NS)+succ(WS) - 106

Fc(NS)+succ(WS) - 98

Ph1(NS)+succ(WS) - 119

Ph1(NS)+succ(WS) - 87

1 Fc: ferrocene, Ph1: phenol 1 (cis to Fc), Ph2: phenol 2 (trans to Fc), Succ: succinimidylpropyl. Calculated

combinations are WS-WS, NS-NS, WS-NS or NS-WS, but excluding all Ph1-Ph2 and Ph2-Succ combinations.2 The

best system and value for each series is displayed in bold and is the starting systems (G0) for calculation for

diversely methylated cyclodextrins calculations.

Classification trees for models of SuccFerr-βCD assemblies

General background:

The information related to our SuccFerr-cyclodextrin complex models generate a large amount of

data that needs to be saved reliably, but also to be readily consulted and even used in statistics or

other calculations. The ideal method is therefore to save the data in a database which makes it

possible to retrieve the desired information from thousands of other records by sorting and

selecting using simple queries. The free pack XAMPP (version 8.2.0 was used) can be used to

manage this very large scientific database. It contains a web server program (Apache), a database

(MariaDB) supporting the SQL query language, a web system for manually entering SQL queries

(phpMyAdmin) and a programming language interpreter (PHP). Access to the server through a

web browser (whichever one is used, and whatever the computer's operating system) allows

8

information to be entered and displayed in HTML format, but also to make decisions automatically

(PHP program). In addition to this database, all models are available in XYZ format satisfying the

Findability, Accessibility, Interoperability and Reusability (FAIR) approach and additional

treatments and statistics on them were carried out using a handmade C program. Together with

other recognized technologies, such as ioChem-BD, AiiDa, ASE or Flask, these new packages can

help in the exploitation and management of large amounts of computational data. More details

follow.

Method:

In this work, we show how our web application was used to classify a series of cyclodextrin models

(here limited to βCDs) according to their methylation state. These cyclodextrins serve to solubilize

SuccFerr (Figure 2 of main text), which is very active against cancer cells but poorly soluble in

water.

We have used the semiempirical PM3 quantum-mechanical molecular modelling method

(abbreviated as “PM3”) to determine which methylated βcyclodextrins are the ablest to make a

stable supramolecular assembly in order to solubilize SuccFerr. We calculated the models of

SuccFerr with one or two cyclodextrins (1-CD or 2-CD systems), using different types of βCD.

Assembly with 3 CDs was ruled out early on as models showed poor inclusion of “moieties” in

the CD cavity, and instead the formation of aggregate-like assemblies. Considering the central

double bond of SuccFerr, we can envisage four molecular fragments, designated here as "moieties"

(shown in Figure 2 of main text, surrounded by purple rectangles) likely to enter the CD cavity:

the ferrocenyl group (Fc), phenol 1 (Ph1, cis to the Fc), phenol 2 (Ph2, trans to the Fc) and the

succinimidylpropyl group (Succ). Each moiety can access the cavity of the CD either from the

wide side or from the narrow side. For 1 CD systems, this gives a total of 8 possible combinations,

which we label as 1-CD series 1 to 8. For 2-CD systems, there are 24 possible series (6

combinations of 2 moieties times 4 combinations of wide and narrow sides). When one of these

four moieties of SuccFerr is encapsulated within a CD, all 21 oxygen atoms become non-

equivalent. We have therefore numbered (O1 to O21) each of the oxygen atoms that can be

(de)methylated in order to identify them unambiguously not only in our models, but also in our

database (Figure 1 of main text). A specific structure can be found in this database using a complex

SQL query with the appropriate index for each oxygen atom (value of each Oi is even numbers for

unmethylated oxygen atoms and odd numbers for methylated ones). Based on the glucose

numbering system, oxygens at position 2 are given a number 3n + 1, those at the positions 3 are

9

listed as 3n + 2, and those at positions 6 are labelled as 3n + 3, with n (0 ≤ n ≤ 6) being the

anhydroglucose unit number. For simplicity, this number is not referenced in this article, and the

first unit (n = 0) was chosen arbitrarily for each series. The SQL query to search for all

supramolecular assemblies involving a specific CD, referred as “free CD”, is simpler and consists

of finding all records containing a certain number. This number is a binary conversion of the CD

configuration (unmethylated = 0, methylated = 1), retaining the smaller of the seven possible

numbers from now on “binarymin” (depending on the starting anhydroglucose unit number, see

details in SI: “Algorithm to calculate binarymin” and Figure S3). The number of possible systems

for each of these 8 series becomes 221 = 2,097,152 combinations (242 for 2-CD systems); evidently,

these are impossible to calculate with limited resources in a reasonable time. Thus, we have

devised a simple, robust, and sound algorithm to reduce the number of combinations to be

computed (see “undefined-CD” section). This algorithm is based on the stability of the CD-

SuccFerr complex. The computed stability requires calculation of the energies of the SuccFerr-

CD(s) molecular assembly, of each CD, and of SuccFerr, the latter two in the conformations they

had in the molecular assemblies to give the ∆E (energy variations, equation 2 or 3) of the reactions:

SuccFerr + CD1 [+ CD2] → molecular assembly. Note that equation 3 also takes into account the

eventual interactions between the two CDs, which makes it possible to predict a more negative ∆E

than that of 1-CD systems.

Eq. for 1-CD: ∆E = E(SuccFerr+CD) – ESuccFerr – ECD1

Eq. for 2-CD: ∆E = E(SuccFerr+CD1+CD2) – ESuccFerr – ECD1 – ECD2

We started with well-defined CDs (see definition above) as a basic model, in order not only to

compare them with undefined CDs but also to create the latter by modifying the states of

methylation.

• Well-defined CDs; Having no idea which types of methylation would work best for each

combination, the 8 1-CD series were each comprised of 6 well-defined CDs: three mono-

methylated combinations: 2-Me-βCD, 3-Me-βCD, and 6-Me-βCD (i.e., on all the oxygen atoms at

positions 2, 3 or 6, respectively, of their 7 anhydroglucose units, i.e., all glucose units are identical),

and three dimethylated combinations: 2,3-diMe-βCD, 2,6-diMe-βCD (DMβCD) and 3,6-diMe-

βCD (Table S1). The same calculations were made with the 2-CD assemblies (reduced to 16 of

the 24 possible, eliminating models with bad inclusion characteristics, Table S2).

10

• Undefined CDs; The well-defined CDs were then used as the basic model on which to

create the undefined CDs, that is, those with any combination of methylations. First, so as to start

from already relatively stable models, the best one from each of the 8 series of the previous 1-CD

models (i.e., having the most negative ∆E) was chosen (Table S1). For the 2-CD models, only the

4 best series (2-CD series 1 to 4, taken from Table S2) were studied because calculation times

would be too long. When creating methylation modification trees (resembling a tree of DNA /

RNA / protein mutations but without the deletions and insertions), these 12 basic systems were

classified as generation zero (G0). By analogy, we will use the term "mutation" for each change

in the methylation pattern, even if this nomenclature is perhaps non-standard. Initially, we are only

allowed to continue mutations into the next generation (Gn + 2) if ∆E has decreased between Gn

and Gn + 1 (rule 1). The series 2-CD S4 was exempted of this rule 1 to analyze its effect and utility

(the remaining very best model without descendant of the whole series was systematically used to

continue in the next generation, even if its ∆E has increased). Of course, it is only interesting when

this model has a ∆E more negative than that of any model with a decreasing ∆E.

Rule 1: (applied to any series but 2-CD S4)

If(∆E(Gn+1) < ∆E(Gn)) then

Allow to continue with descendants Gn+2 within this branch (creation of new

ramifications, one for all descendants)

else

stop (creation of new ramifications Gn + 2 are not allowed starting from this experiment of

generation Gn + 1)

For the 8 series 1-CD and 4 series 2-CD, 21 descendants of G0 (42 for 2-CD systems) were created,

each corresponding to a reversal of the methylation of the G0 system onto a different oxygen atom,

creating the first generation of mutations (G1). The best blend (most negative ∆E) of the 21/42 G1

offspring in each series was in turn used as a template for the creation of a new mutation (G2). At

the start of the branch, the first mutations (G1, G2, G3, etc.) were retained: rule 2: no modification

of the methylation of an oxygen atom several times in the same chain / route of modifications. The

series 2-CD S4 was also exempted of this rule 2 for the same purpose of studying the effect of this

rule.

11

Rule 2: (applied to any series but 2-CD S4)

nbOH = 21 (1-CD models) or 42 (2-CD models)

for (i = 1; i ≤ nbOH; i++) outer loop going through all oxygen atoms of current system, of

generation Gn, to be modified

for (j = 1; j < Gn; j++) inner loop going through all previous generations Gj of this route,

starting from G1

if(Oi of ancestor Gj was modified) then

mark Oi as non-modifiable (will be ignored)

if(Oi is not marked) then

allow inversion of methylation

The goal of fixing these mutations is a logical choice: If they have had a positive effect, it is

advisable not to cancel them in the following mutations, or in any case not soon after. However,

when many methylations have been altered, the complex interaction can cause a mutation that was

useful early on in advancing the stability of the SuccFerr-CD assembly, only to become

troublesome later on. This has been verified several times in this study. In this case it is necessary,

at a certain stage, mainly at the end of the road, to authorize this mutation at will (bypass of rule

2). In this study, the "end of the road" (dead end) will be how we describe a chain of modifications

leading to a generation where none of its systems have seen their ∆E drop, which leads to a dead

end (locally, a model not allowed by rule 1 is also a type of dead end). Bypass of rule 2 is applied

to a certain parent experiment chosen by the user and concerns only its direct descendants Gn + 1,

without changing the mode of operation of the rest of the tree. It brings up, for this parent

experiment, other descendants to be calculated, which can unblock the road for a few more

generations, as has been verified in this work. However, when even the bypass of rule 2 cannot

prevent the end of the route, it may also be interesting to remove rule 1 (bypass of rule 1), although

this only seems to make sense for better systems whatever branch they are in, and not only the

current one. The exception is 2-CD S4 where rules 1 and 2 were not applied from the start, as

stated above, for comparison of the two methods (with or without rules). Indeed, with a strict

application of rule 1, a good system, but going through a bad stage, would never be reached, or by

making a big detour. For example, the very best system # 3029 (unique value of its key 'ID')

belonging to series 4 (the only series where rule 2 is systematically bypassed) of 2-CD systems,

has undergone a chain of mutations starting from the G0 system: G0 - O37 + O2 - O31 - O40 + O18 -

12

O4 - O2 + O36 - O16 + O48 + O44 - O43 - O36 - O44 + O42 + O16 - O7 + O44 - O42 + O36 - O48 + O2 - O1

+ O7 + O48 - O19 (plus = methylation, minus = demethylation, of the indicated oxygen atom). The

demethylation of O48, carried out in G25 (ID = 2029), produced a rise of ∆E, and without the

bypass of rule 1, this chain, which continues until G27 (end of the route), would have been blocked

in G25. Likewise, we see a demethylation of O44 carried out in G14 (ID = 2630), while this atom

had already been modified in G11 (ID = 2518), and that without bypassing rule 2, the chain would

have stopped in G14. Moreover, we also see that this atom is modified a third time in G18, just

like O48 (G10, G21 et G25) and O36 (G8, G13 et G20). This latest information confirms what was

previously described, namely that a change, and its undoing a few generations later, can both lead

to an improvement in the system.

Always, in order to find more good systems, it is unavoidable to create bifurcations (creation of a

tree of mutations) since a single road will necessarily ends, even with bypasses. Going back to

generations before the end of the road and creating a fork from the second / third best system

respecting rule 1 creates parallel chains and therefore the branches of this tree of mutations. It

should be noted that this does not apply to 2-CD S4, where the current very best system is chosen,

respecting rules 1, rule 2 or none, being inside the current road or inside a parallel one. Some of

these parallel chains can lead to the same configuration (same mutations but in a different order),

which would create a duplicate in the tree which would no longer be a spanning tree. To avoid

this, you need a system that checks, before creating an experiment, that there is no risk of producing

a duplicate by checking whether it already exists in the database (rule 3: prohibit duplicates). This

rule 3 is thus systematically applied in each road to avoid doing a mutation in Gn + 2 that would

lead to the same model Gn, by cancelling the mutation done in Gn +1.

Rule 3: (no bypass allowed)

for (i = 1; i ≤ All structures this series; i++)

 if(Structurei already exists), then

Structurei is displayed for information

else

Structurei is allowed to be created in database

To summarize, to determine if rules 1 and 2 are really useful, we applied two methods and

compared their effect:

13

• Method I; For all 1-CD series and for the first three 2-CD series, we apply rules 1 and 2 at

the beginning of the trees and decide to lift these rules (bypass) when the progression becomes

slower (the number of dead ends becomes significant). This method therefore requires the user to

decide on when to apply these bypasses. We must then decide to bypass rule 2, but also decide if

we do it with, or without, simultaneously bypassing rule 1. This method is therefore less clear;

• Method II; For the 2-CD S4 series, we systematically bypass rules 1 and 2 from the start

(G0). The user therefore follows the algorithm without having to decide. Finally, to produce this

2-CD S4 series, a final adjustment was made: To simplify, for the 2-CD S1 to S3 series, we took

the same CD for both insertions. But there was no reason for this CD to be the best one for both

moieties at the same time, and therefore for us to start from the model with the lowest possible ∆E

(using the best model of Table S2, reported in Table 1). Therefore, we made the 6 x 6 possible

combinations, with the help of a new PHP program (CDxCD.php, provided) and a new database

table (CDxCD, provided) and chose the best model as G0 of our tree for S4. Ironically, a model

with twice the same CD (2-Me-CD) gave the best result!

Of course, rule 3 remains mandatory for both methods.

Figure S1 shows examples on a fictitious tree and Figure S2 compares the computer flowchart of

methods I and II:

1. Rule 1: The mutations indicated all correspond to decreases in ∆E except the G0 + O4 + O6

route where methylation on oxygen atom 6 causes an increase in ∆E and will not be allowed to

continue in G3 (bypass possible if the user so desires, and preferably only when reaching the ends

of the road leading to the best systems or if this model is the current very best for 2-CD S4);

2. Rule 2: The mutation (G0 + O4 - O8 + O5 - O4 modifies oxygen atom 4 a second time and

will not be authorized (but bypass possible, especially useful at the end of the road). For 2-CD S4,

bypass is systematic;

3. Rule 3: The G0 + O4 - O8 + O5 - O9 - O3 mutation gives the same configuration as the G0

+ O4 - O8 - O3 + O5 - O9 route, so the -3 mutation will be blocked, and this route will stop on

demethylation in 9 (bypass not authorized whatever is the series).

The simplified computer flowchart common to the two PHP programs which manages the trees of

the 1-CD and 2-CD system is shown in Figure S4.

14

Figure S1. Example of a fictitious mutation tree with explanation of the rules. + indicates methylation on the oxygen

atom of the number indicated and - demethylation. The main route/road is the one that goes through the best system

of each generation and the secondary roads those that go through at least one system that is not the best of its

generation. G0 (generation 0) represents the well-defined starting CD and G1, G2,… the following generations.

G0 G1 G2 G3 G4 G5 ... Gn

G0 +4 -8 -3 +5 -9

+5 -9 -3
(rule #3)

main route

secondary
routes

(rule #2)

(bypass
of rule #2)

-4 ...} }tree

E

E E E E E

E
E

E

E

+6

(rule #1)
This G2 is not
allowed to have

descendants
(end of route)

second modification
of methylation state

of oxygen atom #4
allowed by bypass

of rule #2

)same configuration
not allowed by rule #3

...

E

(bypass
of rule #1)

15

Figure S2. computer flowchart describing method I (left: rules 1 and 2 are respected) and method II (right: rule 1 and

2 are waived).

Comparing methods I and II

 The study of the paths of mutations ('path' fields of the database) shows that with the bypass

of rule 2, certain mutations are successfully cancelled sometimes only three generations later (for

example, ID 7692 and 7759 for O16). We can therefore ask ourselves the question of the validity

of rule 2, especially since its bypass is chosen more or less arbitrarily by the user, which introduces

serendipity into the calculations and therefore confusion into the case where we want to apply this

method for other systems. Similarly, rule 1 seems counter-productive. Indeed, when we arrive at

an end of route in Gn, the method I that we used consists in downgrading by taking the second-

best model respecting rule 1 of the previous generation (in Gn-1, if this model exists otherwise in

Gn-2, … see computer flowchart Figure S2 method I). This prolongs a parallel branch (a

bifurcation with just one model up to now) in the tree, whereas a model not respecting this rule, in

the current generation (Gn) may have a better affinity and not lead to the creation of a long new

branch but to the extension of the current branch (tree less ramified and therefore less confusing).

Method II not applying these two rules 1 and 2 with the 2-CD S4 series gives good results, but

with a larger number of calculations (Figure S2 method II). This new simplified method II is

therefore to be preferred over the old method I, even with more calculations (that also could lead

to better models by serendipity).

Web application

To help handle the considerable number of experiments (9,767 for 1-CD calculations and 3,458

for 2-CD calculations) and corresponding data created by the ten series of experiments for 1-CD

calculations and four series for 2-CD calculations, and to verify and respect the rules explained in

section “Undefined CD” in the main text, an application was specially created with the XAMPP

pack (PHP, MySQL/MariaDB and phpMyAdmin) (https://www.apachefriends.org). The pack

should be installed (Windows, Linux, or OS X) to run the application and operate the

database (see below).

Alternatively, to consult the results that are displayed into the dynamic webpages by the

PHP program, static webpages, one for each model, were created by the C program (see

https://www.apachefriends.org/

16

below). This C program permitted to avoid to manually save from the browser all pages

one by one. The links operate off-line without XAMPP (they were adapted), but not the

forms.

Description of the system:

More details can be found at https://hal.science/hal-03991394 (then follow the link towards

Software Heritage or directly use the link displayed in page 1 of this document).

- The data were stored into a database named ‘pascal’ operated by XAMPP (MariaDB,

database engine: MyISAM, one table (calculscd) for the eight series of 1-CD calculations

(+ 2 extra series S9 and S10, see below), one table (calculs2cd) for the four series of 2-CD

calculations) and one table (cdxcd) for the special experiment to find the best model used

as G0 for series 2-CD S4 (see above).

- Starting G0 systems for each series were either manually entered the table of the database

using the phpMyAdmin software or simply created by a special option in the software by

entering the methylation state of position 2, 3 and 6 for the seven anhydroglucose units.

The other experiments, derived from them, were stored by the same software.

- The software was coded in PHP and was stored into three files (cdmodele.php to handle 1-

CD calculations, cdmodele2cd.php for 2-CD calculations and CDxCD.php for the special

experiment to find the best G0 for 2-CD S4, see below). It allows one to:

• create a dynamic web page displaying the forms and the data of the trees into a

browser (location: http://localhost/cdmodele.php for 1-CD calculations,

http://localhost/cdmodele2cd.php for 2-CD calculations and

http://localhost/CDxCD.php?action=show for special experiment). If the server

(where the XAMPP pack is installed) and the client (where the browser operates)

are not the same computer, “localhost” should be replaced by the IP address of the

server,

• receive the data sent from the forms (energies of the supramolecular assembly and

of each of its components),

• calculate E according to the previous formula inside the main text of the article

(eq. 2 for cdmodele.php, eq. 3 for cdmodele2cd.php and CDxCD.php),

• store them into the table,

https://hal.science/hal-03991394
http://localhost/cdmodele.php
http://localhost/cdmodele2cd.php
http://localhost/CDxCD.php?action=show

17

• allow continuation of experiments in the next generation for ameliorated systems

only (rule 1) or force calculation of some next generations (bypass of rule 1 by

direct access to them by typing their parent ID number in a form in the webpage),

• create new allowed pending calculations into the database and keep track of them,

• only allow calculations of systems not already treated by another branch (rule 3)

and, if rule 2 activated (deactivated by clicking on a link), not corresponding to an

already modified oxygen atom in the path from G0 to the present system,

• calculate the statistics and automatically display them when displaying the G0 level

of the tree of the current series (see static webpages 1-CD S1 to 1-CD S8 and 2-CD

S1 to 2-CD S4 (.html) in compressed archive), display statistics for the eight series

of 1-CD calculations into a table for comparison, …

- The web page, used as an interface, allows one to display the forms:

• buttons for the creation of new pending experiments, if allowed, and direct access

to a specific experiment for an eventual bypass of rule 1,

• fields to input (copy/past from Spartan) calculated energies,

• hypertext links (navigation forward and backward inside the trees, bypass of rule 2

or change of current series), …

Database and SQL:

The structure of the database (tables calculscd, calculs2cd and cdxcd) is stored into the SQL file

‘pascal.sql’. This file, that contains SQL queries to create the database with its data, should be used

to import the database into the MariaDB system using the ‘Import’ option of phpMyAdmin (or

other database management systems). This SQL file is the one that should preferably be used to

recreate our database identically, because it includes the constraints on the keys, thanks to its

system-independent SQL commands and is therefore more portable.

For 1-CD calculations, the unique table for the 10 series inside the database was created with this

SQL command:

CREATE TABLE `calculscd` (

 `ID` int(16) UNSIGNED NOT NULL,

18

 `O1` tinyint(4) NOT NULL,

 `O2` tinyint(4) NOT NULL,

 `O3` tinyint(4) NOT NULL,

 `O4` tinyint(4) NOT NULL,

 `O5` tinyint(4) NOT NULL,

 `O6` tinyint(4) NOT NULL,

 `O7` tinyint(4) NOT NULL,

 `O8` tinyint(4) NOT NULL,

 `O9` tinyint(4) NOT NULL,

 `O10` tinyint(4) NOT NULL,

 `O11` tinyint(4) NOT NULL,

 `O12` tinyint(4) NOT NULL,

 `O13` tinyint(4) NOT NULL,

 `O14` tinyint(4) NOT NULL,

 `O15` tinyint(4) NOT NULL,

 `O16` tinyint(4) NOT NULL,

 `O17` tinyint(4) NOT NULL,

 `O18` tinyint(4) NOT NULL,

 `O19` tinyint(4) NOT NULL,

 `O20` tinyint(4) NOT NULL,

 `O21` tinyint(4) NOT NULL,

 `changed` tinyint(4) NOT NULL,

 `path` text NOT NULL,

 `IDparent` int(16) UNSIGNED NOT NULL,

 `deltaE` float NOT NULL,

 `stop` tinyint(2) NOT NULL,

 `series` smallint(6) NOT NULL,

 `binarymin` int(16) UNSIGNED NOT NULL,

 `generation` tinyint(2) UNSIGNED NOT NULL,

 `deltadelta` float NOT NULL,

 `mainseries` smallint(6) NOT NULL

) ENGINE=MyISAM DEFAULT CHARSET=latin1;

19

For 2-CD calculations, the unique table (calculs2cd) was created with this SQL command:

CREATE TABLE `calculs2cd` (

 `ID` int(16) UNSIGNED NOT NULL,

 `O1` tinyint(4) NOT NULL,

 `O2` tinyint(4) NOT NULL,

 `O3` tinyint(4) NOT NULL,

 `O4` tinyint(4) NOT NULL,

 `O5` tinyint(4) NOT NULL,

 `O6` tinyint(4) NOT NULL,

 `O7` tinyint(4) NOT NULL,

 `O8` tinyint(4) NOT NULL,

 `O9` tinyint(4) NOT NULL,

 `O10` tinyint(4) NOT NULL,

 `O11` tinyint(4) NOT NULL,

 `O12` tinyint(4) NOT NULL,

 `O13` tinyint(4) NOT NULL,

 `O14` tinyint(4) NOT NULL,

 `O15` tinyint(4) NOT NULL,

 `O16` tinyint(4) NOT NULL,

 `O17` tinyint(4) NOT NULL,

 `O18` tinyint(4) NOT NULL,

 `O19` tinyint(4) NOT NULL,

 `O20` tinyint(4) NOT NULL,

 `O21` tinyint(4) NOT NULL,

 `O31` tinyint(4) NOT NULL,

 `O32` tinyint(4) NOT NULL,

 `O33` tinyint(4) NOT NULL,

 `O34` tinyint(4) NOT NULL,

 `O35` tinyint(4) NOT NULL,

 `O36` tinyint(4) NOT NULL,

 `O37` tinyint(4) NOT NULL,

20

 `O38` tinyint(4) NOT NULL,

 `O39` tinyint(4) NOT NULL,

 `O40` tinyint(4) NOT NULL,

 `O41` tinyint(4) NOT NULL,

 `O42` tinyint(4) NOT NULL,

 `O43` tinyint(4) NOT NULL,

 `O44` tinyint(4) NOT NULL,

 `O45` tinyint(4) NOT NULL,

 `O46` tinyint(4) NOT NULL,

 `O47` tinyint(4) NOT NULL,

 `O48` tinyint(4) NOT NULL,

 `O49` tinyint(4) NOT NULL,

 `O50` tinyint(4) NOT NULL,

 `O51` tinyint(4) NOT NULL,

 `changed` tinyint(4) NOT NULL,

 `path` text NOT NULL,

 `IDparent` int(16) UNSIGNED NOT NULL,

 `deltaE` float NOT NULL,

 `stop` tinyint(2) NOT NULL,

 `series` smallint(6) NOT NULL,

 `binarymin1` int(16) UNSIGNED NOT NULL,

 `binarymin2` int(16) UNSIGNED NOT NULL,

 `generation` tinyint(2) UNSIGNED NOT NULL,

 `deltadelta` float NOT NULL,

 `mainseries` smallint(6) NOT NULL

) ENGINE=MyISAM DEFAULT CHARSET=latin1;

For the database to respond fast enough to requests, keys/index should be set on fields ‘ID’ (it is

mandatory to have unique values for this field, so ‘ID’ was auto incremented by the database

engine at each insertion of experiment) and ‘IDparent’ (mandatory for a large set of systems,

because the database is slow without it).

These two options are set by the SQL command:

21

ALTER TABLE `calculscd` ADD UNIQUE KEY ` ID` (`ID`) USING BTREE, ADD KEY

`IDparent` (`IDparent`);

For the ‘ID’ field to be set in auto_increment mode:

ALTER TABLE `calculscd` CHANGE `ID` `ID` INT(16) UNSIGNED NOT NULL

AUTO_INCREMENT;

The version in the pascal.sql file is a little different from the initial one (creation of an empty table),

since it considers the already filled (with 9767 models, the next one to be created being 9768)

table:

ALTER TABLE `calculscd` MODIFY `ID` int(16) UNSIGNED NOT NULL

AUTO_INCREMENT, AUTO_INCREMENT=9768;

For the calculs2cd table, the SQL commands are:

ALTER TABLE `calculs2cd` ADD UNIQUE KEY ` ID` (`ID`) USING BTREE, ADD KEY

`IDparent` (`IDparent`);

ALTER TABLE `calculs2cd` CHANGE `ID` `ID` INT(16) UNSIGNED NOT NULL

AUTO_INCREMENT;

Here too, we can see that the table is already filled (with 3458 models, the next one to be created

being 3459) table:

ALTER TABLE `calculs2cd` MODIFY `ID` int(16) UNSIGNED NOT NULL

AUTO_INCREMENT, AUTO_INCREMENT=3459;

There is no need to create a multicolumn index, as unicity constraint for example. Indeed, the PHP

software verifies the constraints (rule 3) before creating experiments. Moreover, it would be

impossible, since the Oi fields can take value 0, 1, 2, 3, 6 or 7 (the unicity should be based on the

bit 0 of these fields (0 = unmethylated (even number), 1 = methylated(odd number)), not on the

value itself.

Examples of useful SQL requests:

Calculation/recovery of some statistics or values by SQL requests for a particular series of

experiments for 1-CD systems (some can be used for 2-CD systems, replacing the table ‘calculscd’

by ‘calculs2cd’): The PHP software can use these SQL requests, but they also can be manually

22

used using phpMyAdmin (in this last case, the variable ‘$series’ should be replaced by 1 to 10

depending on the series we are interested in):

- The best E value of a series: SELECT MIN(deltaE) FROM calculscd WHERE

series='$series'

- The total number of calculated systems of a series: SELECT COUNT(*) FROM calculscd

WHERE series='$series'

- The total number of changes of methylation state on a certain oxygen atom n (replace $n

by: [1..21] for methylation, [-1..-21] for demethylation) for all the experiments of a series:

SELECT count(*) FROM calculscd WHERE changed='$n' AND series='$series'

- The same, but only changes that improved E (respecting rule 1 and 2 only): SELECT

count(*) FROM calculscd WHERE changed='$n' AND series='$series' AND (stop='0'

OR stop='2')

- The total number of free CDs of systems that have a E better than a certain value ($v, in

kJ/mol): SELECT COUNT(DISTINCT binarymin) FROM calculscd WHERE

deltaE<'$v' AND series='$series'

- Number of untreated sub-trees: SELECT count(*) FROM calculscd WHERE

series='$series' AND stop='0'

- Total number of treated sub-trees: SELECT count(*) FROM calculscd WHERE

series='$series' AND (stop='2' OR stop='3')

- Recovery of the generation of a certain experiment ‘$ID’: SELECT generation FROM

calculscd WHERE ID='$ID’ LIMIT 1

- Recovery of its E: SELECT deltaE FROM calculscd WHERE ID='$ID’ LIMIT 1

- Recovery of the number of systems that are allowed to continue for the next generation for

a certain generation Gn (respecting rule 1 and 2 only): SELECT count(*) FROM calculscd

WHERE generation=’$Gn’ AND series='$series' AND (stop='0' OR stop='2')

- Recovery of the number of systems of a certain generation Gn: SELECT count(*) FROM

calculscd WHERE generation='$Gn' AND series='$series'

- To find the average positive variation of E (E): SELECT AVG(deltadelta) FROM

calculscd WHERE series='$series' AND deltadelta>0

- To find the average negative variation of E (E): SELECT AVG(deltadelta) FROM

calculscd WHERE series='$series' AND deltadelta<0

23

- With phpMyAdmin, ordering the experiments of series ‘$series’ by decreasing stability

(i.e. starting from the lowest E): SELECT ID,deltaE,stop FROM `calculscd` WHERE

series='$series' ORDER BY deltaE. The change of the ‘stop’ field value (with

phpMyAdmin, by double-clicking on it) to 3, unlocks the bypass of rule 2 for its possible

(allowed by rule 3) descendants. Then, typing the value of the ‘ID’ field into a form in the

web page generated by the PHP software permits one to directly access to this experiment

(without having to navigate into the tree, an even if not allowed by rule 1) to calculate its

descendants (if not treated yet, and even if not allowed by rule 2).

- To calculate the average E of a certain series: SELECT AVG(deltaE) FROM calculscd

WHERE series='$series'

- To calculate the best E of 1-CD systems (used as the limit to determinate the 2-CD

systems that are better than any 1-CD system): SELECT MIN(deltaE) FROM calculscd

- Then, to calculate the number of 2-CD systems that are better than any 1-CD system:

SELECT COUNT(*) FROM calculs2cd WHERE deltaE<(SELECT MIN(deltaE)

FROM calculscd)

Database table design

The tables, which are attached to a database must contain all the identifying values of an

experiment (one row represents an experiment). The columns represent the state information, the

values of certain calculations, but also the links between the experiments which derive from one

another and form a tree, this one consisting of parent-descendant couples attached to each other.

Table S3 is part of the database table "calculscd" which contains information for 9767 1-CD

system experiments. The 8 (+2) series / trees are stored in this table, the "series" field allowing one

to select only the experiments concerning the desired series (tree).

- The 'ID' field represents the unique experiment number (key), assigned by the database

management system when creating a new experience row in the table (the 'AUTO_INCREMENT'

attribute added to the table after its creation by an SQL command 'ALTER TABLE' allows this

uniqueness, see above).

- The "Parent ID" field indicates the parent experiment (its "ID" field) from which the current

experiment is derived by modifying the methylation of one of its 21 oxygen atoms. It allows

navigation in the tree going back to the previous generation (Gn→Gn-1) thanks to the PHP

24

program and the hypertext links displayed in the web page it creates. A zero value indicates that

this is the initial CD G0 (no parent).

- Conversely, searching for the value of the ‘ID’ field of a parent experience in the ‘Parent ID’

field of all the rows in the table allows you to find its descendants (downward navigation Gn→Gn

+ 1).

- The modified oxygen atom in the offspring is indicated in the 'changed' field, a positive value

indicating methylation, and a negative value indicating demethylation.

- This change is reflected in the state attributes ‘O1’ through ‘O21’ which represent the methylation

state of the corresponding oxygen atom. The values taken are: 0 = initially unmethylated and

unmodified, 1 = initially methylated and unmodified, 2 = changed once to demethylated, 3 =

changed once to methylated, 6 = unmethylated and 7 = methylated. Values 6 and 7 represent the

last change when the possibility to change several times the methylation state of certain oxygen

atoms was allowed and done by bypass of rule 2). For this reason, a unicity constraint in the table

(unicity index set on O1… O21 + series) is useless, because inoperative to control respect of rule

3 (done by the PHP program, not by the database engine).

- The ‘deltaE’ attribute represents ∆E and ‘deltadelta’ its variation between itself and its parent

(∆∆E). A calculated positive value indicates destabilization which sets the "stop" attribute to 1,

indicating to the PHP program that the tree should not continue in this route / branch (rule 1). A

negative value indicates a system improvement and "stop" is set to 0 to allow the PHP program to

display a hyperlink in the web page to be able to calculate the descendants of the descendant. When

at least one descendant has been created in the database, "stop" changes to 2 to indicate that this

system is a parent. A value then changed to 3 for "stop" indicates that although we should not

calculate some of its descendants (mutation already made in this route), we still allow it (bypass

of rule 2).

- The 'binarymin' attribute corresponds to a very simple representation of a CD, a binary

representation (but seen as a number in base 10, see algorithm below): the methylation of an

oxygen atom corresponds to a value of 1 and a non-methylation (hydroxyl group) to 0. All these

values represent the bits of the binary number. As a βCD is composed of 7 anhydroglucose units

connected in a cycle, depending on the unit from which we start to count (but always from position

2 (glucose numbering system) of each unit and in the direction 2→3→6→2→3→6→…) we can

calculate 7 binary numbers. The one selected is the smallest. Two experiments that have the same

‘binarymin’ attribute have in common the same CD that is placed differently around SuccFerr,

25

which makes it easier to search by SQL query than using the 21 fields ‘O1’ through ‘O21’. A

description of binarymin and how to calculate this number (algorithm and Figure S3) can be found

below.

- 'mainseries' indicates the type of insertion (moieties of SuccFerr involved + insertion side of the

CD) as 'series', but 'mainseries' permits any starting CD as G0 (i.e., permits to create several series

'series' with the same insertion type but with a different starting CD), where the starting CD was

fixed with 'series' and is unique. Originally, S8, S9 and S10 were sub-series of 'mainseries'=8 (but

disassociated because of denaturation of the model during modelling). Now 'mainseries'='series'

for all the models (see below).

- The last attribute, not shown in Table S3 for clarity, is "path". It is a string of characters which

indicates, in an understandable way for a person, the chain of mutations that has taken place since

G0. For example, for experiment (ID) # 7011, 'path' = " 1CD succinimide into wide side of 3-6-

diMe-CD: - O ₂₀ + O ₁", we see what the G0 system corresponds to

and that it has then undergone two mutations: demethylation to O20 (sign -) followed by

methylation to O1 (sign +). This representation makes it possible to see immediately the route

followed (without having to reconstruct it with each "changed" field encountered starting from

G0). It is displayed in the web page for each experiment, so that the formatting HTML tags are

interpreted, and that "- O ₂₀ + O ₁" is displayed simply and cleanly

"- O20 + O1".

The table 'calculs2cd' (2-CD systems) follows the same model but 'binarymin' is replaced by

'binarymin1' and 'binarymin2' (for each of the two CDs) and fields O31 to O51 are added to

represent the 21 atoms of oxygen from the second CD. The numbering starts at 31 because it

suffices to subtract 30 to find the numbering of the first CD and to guess the numbering position

of the glucose.

26

Table S3. Partial representation (a few rows selected) of the 'calculscd' table (1-CD systems)

concerning experiments in series S8. Values in kJ/mol for deltaE (∆E of model ID) and deltadelta

(∆∆E: ∆E of model ID - ∆E of parent model IDparent). Other fields (integers) do not have units.

ID O1 O2 … O19 O20 O21 changed IDparent deltaE stop series binarymin generation deltadelta

6990 0 1 … 0 1 1 0 0 -110.51 2 8 1797558 0 0

… … … … … … … … … … … … … … …

7010 0 1 … 0 2 1 -20 6990 -249.138 2 8 1273270 1 -138.628

… … … … … … … … … … … … … … …

7029 0 1 … 0 2 1 -18 7010 -266.011 2 8 748980 2 -16.873

… … … … … … … … … … … … … … …

7039 0 1 … 0 2 1 -5 7029 -279.769 2 8 748852 3 -13.758

8882 0 1 … 0 2 1 -6 7029 -259.584 1 8 738742 3 6.427

… … … … … … … … … … … … … … …

For clarity, the fields 'O3' to 'O18' as well as the field 'path' are not shown. The beginning of the tree is visible:

experiment 6990 corresponds to the starting wdMβCD (G0), experiments 7010 (G1), 7029 (G2), 7039 (G3) are the

descendants of the main branch (G0→- 20→-18→-5→…) which continues in G4 (stop = 2). Experiment 8882 is the

end (stop = 1) of a secondary route because ∆E (deltaE) has increased (∆∆E (deltadelta)> 0).

The PHP program and the webpages

The role of the program written in PHP is to generate the web page describing part of the tree (a

Gn generation experiment and all of its Gn + 1 descendants) by fetching the information to display

in the database. It also manages user interactions with the page (click on a hypertext link or validate

forms), calculates ∆E and updates the information in the database. SQL queries are created by the

program from the data it owns and are represented as strings that are sent to the database manager

by the PHP function "mysqli_query()". For the queries, the database sends back to the program a

response in the form of a table which must then be traversed line by line (if several lines) by

extracting the attributes (one or more columns) requested by the “SELECT” clause. For

modifications to the table, the SQL commands "INSERT" (insertion of a new experiment/row) and

"UPDATE" (update of one or more columns of an existing experiment/row) save the program data

to the database.

The program is responsible for displaying in the web page the characteristics of an experiment

(identification number ID and generation Gn) chosen by the user and, in a table, all its authorized

27

direct descendants. These are the Gn + 1 respecting rule 2 or authorized by bypass of rule 2, or

already created (in the case of the bypass of rule 1, which is then no longer controlled for this

descendant), otherwise they are not displayed. The program displays their status and possible

action for them. In the case of a descendant authorized but not created, the program displays a

form button to create it (will trigger an SQL "INSERT" command in the database with automatic

attribution of a unique "ID" experiment number serving key). Then you have to use the Modelling

software to build the model according to the instructions on the web page (parent serving as the

starting model and its oxygen atom to be modified). The energies of formation of the

supramolecular assembly and its constituents are then calculated, then the web form displayed for

the experiments awaiting results is completed. The program receives the information from the form

sent, calculates ∆E for this descendant Gn + 1 and updates the fields 'deltaE' (∆E), 'deltadelta'

(∆∆E: variation of ∆E) and 'stop' (authorization to continue or not). The page then displays the

calculated ∆E and the possible actions on this descendant according to its ‘stop’ value:

- 'stop' = 0: display a hypertext link (because authorized by rule 1) to display the detail of this

Gn + 1 descendant in a web page (which replaces the current web page), which also allows

one to display and calculate all its descendants of generation Gn + 2 (those allowed by rule

2).

- ‘stop’ = 1: indicates that ∆E has increased for this Gn + 1 experiment so rule 1 prohibits

calculating the Gn + 2 descendants of this Gn + 1 experiment. No hypertext link is displayed

to the web page describing the details of the Gn + 1 experience and therefore its Gn + 2

descendants are inaccessible and therefore not calculable (end of the route).

Bypass of rule 1:

However, it is still possible to bypass the absence of a hyperlink to the description of a Gn + 1

descendant and to calculate the Gn + 2 descendants (bypassing rule 1 in a roundabout way). A

form on the web page allows you to enter an experience number "ID" to go directly to its

description page without any restriction. Then, the creation of a Gn + 2 experience will

automatically perpetuate this link, even if rule 1 does not allow it.

Bypass of rule 2:

28

By default, the web page describing a Gn experiment, only displays its Gn + 1 descendants

allowed by rule 2 (oxygen atoms not having already been modified in this route). To also display

those which do not respect rule 2 (bypass of rule 2), you must set the 'stop' field of the parent

experiment Gn to 3 (this mode only concerns the current experiment Gn and have an influence

only on the display of its descendants Gn + 1). This can be done by clicking on a hyperlink at the

bottom of the web page (or by changing this value with phpMyAdmin, see above).

Rule 3 being essential, the bypass is not possible, but the future descendants which do not respect

it (already calculated by a parallel branch of the tree) are displayed with the other authorized

descendants and with their ∆E for information. No link is displayed to go to their description, in

order to keep a spanning tree: no cycle in the tree and horizontal movement prohibited). To go to

this experiment, one has to go backward in the previous generations, up to a common ancestor,

then has to go forward in the branch containing this experiment (it is also possible to simply type

the experiment ID into the form for direct access).

Installation of XAMPP, of the database and of the PHP software

The code of the PHP programs is accessible for a better understanding. It was deposited into the

data repository (https://doi.org/10.57745/CBUPP3) and on Software Heritage passing through

Hal (https://hal.science/hal-03991394).

This software (consisting of several PHP files, one for 1-CD systems (cdmodele.php), one for 2-

CD systems (cdmodele2cd.php), one “include file” for functions common to both previous files

(functions.inc), and CDxCD.php to calculate the best combination of two CDs to use as G0 model

for series 2-CD S4). The database is needed to access and navigate into the trees, and to see

examples that are cited inside the paper as ‘ID …’. An alternative method, if you just want to

consult the data, is to use the static web pages (see below). After installation of the XAMPP pack,

downloadable for free at URL https://www.apachefriends.org (version 8.2.0 was used in this

work), download the pascal.sql file (https://doi.org/10.57745/38MYXM). Start the XAMPP

control panel (if error message, launch it with administrator rights) then start ‘Apache’ and

‘MySQL’ with their “start” buttons (allow them with the firewall) and click “Admin” button for

MySQL to launch phpMyAdmin (or use url http://localhost/phpmyadmin/). To install the “pascal”

database, click on “home” icon to be sure to not be into another database, click “import” in the

https://doi.org/10.57745/CBUPP3
https://hal.science/hal-03991394
https://www.apachefriends.org/
https://doi.org/10.57745/38MYXM
http://localhost/phpmyadmin/

29

menu, select the “pascal.sql” file on your disk, then click “Import”. The imported database “pascal”

appears in the left panel.

Access the PHP software typing, into a browser, the url http://localhost/cdmodele.php for 1-CD

systems, http://localhost/cdmodele2cd.php for 2-CD systems

(http://localhost/CDxCD.php?action=show for the special method to find the best G0 for 2-CD S4

series). This software can be freely used and modified for academic research, but in case of

publication please cite the present article. For help to adapt this software to another scientific

problem, the author (P.P.) can be contacted.

Useful algorithms:

Notes of main text. Calculation of the average methylation-per-glucose-unit, methylation-

per-glucose-unit domains (+ extra information: percentage of Me occupancy on the narrow

sides and on the wide sides of the CDs), for all systems of each series that are better than

their G0 (improved systems) and their corresponding free CDs (CDs without inclusion):

The PHP code is displayed in black, the comments in green and the SQL queries in blue.

for(i=1 ; i≤8 ; i++) //for each series 1-CD

nMeseries=0; //overall number of Me for this series i (systems better than G0)

deltaELevel0 "SELECT deltaE FROM calculscd WHERE series='$i' AND IDparent='0'

LIMIT 1" //deltaE of G0 system (limit to determinate improved systems)

ntotal "SELECT COUNT(*) FROM calculscd WHERE series='$i'" //overall number of

systems for this series i

nbestg0 "SELECT COUNT(*) FROM calculscd WHERE series='$i' AND

deltaE<$deltaELevel0" //number of systems better than G0 for this series i

nMemin=21 //number of minimum Me/CD for this series=maximum possible for now

nMemax=0; //number of maximum Me/CD for this series=minimum possible for now

nMenarrow=0; //number of Me found on narrow side

nMewide=0; //number of Me found on wide side

for(j = 1; j ≤ All structures of series i that are better than their G0 system*; j++)

nMe=0 //number of Me for this CD = 0 for now

http://localhost/cdmodele.php
http://localhost/cdmodele2cd.php
http://localhost/CDxCD.php?action=show

30

for(k = 1 ; k ≤ 21 ; k++) //all O atoms Ok of the CD (1-CD system = 21)

if(parity of Ok is odd) //1, 3 or 7 => Ok is methylated

nMe++ //one more Me found for this CD

if(k %3 ==0) //numbers on narrow side: 3, 6, 9, 12, 15, 18, 21

nMenarrow++ //one more Me found on narrow side

else

nMewide++ //one more Me found on wide side

if(nMe>nMemax) nMemax=nMe; //max number of Me/CD for this series

if(nMe<nMemin) nMemin=nMe; //min number of Me/CD for this series

nMeseries+=nMe; //total Me for this series

rateMe =nMeseries / 7 / nbestg0 //average rate of Me/anhydroglucose unit for the

best systems of this series

nfreeCD "SELECT COUNT(DISTINCT binarymin) FROM calculscd WHERE

deltaE<'$deltaELevel0' AND series='$i'" //number of distinct free CDs**

Displays calculated/found information

* All structures of series i that are better than their G0 system: "SELECT * FROM calculscd

WHERE deltaE<'(SELECT deltaE FROM calculscd WHERE series='$i' AND generation='0'

LIMIT 1) AND series='$i'"

**Free CDs: In a series, certain systems can correspond to the same CD being associated to the

same moiety but with different placements (rotation around the moiety). To easily find the number

of distinct CDs in the series, the bynarymin value is used as an identifier for each CD.

Note: for the SQL queries (in blue), the PHP variables as $i will be replaced by their values (1 to

8) before being sent to the database management system.

For 2-CD systems, we first must retrieve the list of union of CD1s and CD2s (CDs used as both

CD1 and CD2 are counted as only one): SELECT DISTINCT binarymin1 FROM calculs2cd

where series='$series' GROUP BY binarymin1 UNION SELECT DISTINCT binarymin2

FROM calculs2cd where series='$series' GROUP BY binarymin2. The number of lines founds

by the SQL request is the researched number of free CDs.

31

PHP code to retrieve the data to fill Figure 4:

Code to be copied into the PHP file (cdmodele.php) for 1CD models (not included in the

published version). 2CD models works the same (PHP file cdmodele2cd.php), but replace table

“calculscd” by table “calculs2cd”, change the values in array $tablebests and limit to 4 values,

replace 9 by 5 in the two for loops).

$tablebests[1]=1553; //list of the best models for each of the 8 series

$tablebests[2]=3738;

$tablebests[3]=5051;

$tablebests[4]=5370;

$tablebests[5]=5732;

$tablebests[6]=5838;

$tablebests[7]=6040;

$tablebests[8]=7759;

$maxgeneration=0; //max generation to be displayed (for Figure 4 of the article)

for($laserie=1;$laserie<9;$laserie++) //for the 8 1CD series

{

 $ID2=$tablebests[$laserie]; //retrieves the current series

 do //searches from best model to the G0 model (decreasing generation)

 {

 $requete="SELECT IDparent,deltaE,generation FROM calculscd WHERE ID='$ID2'

LIMIT 1"; //for model $ID2, retrieves deltaE, the generation and its parent model (its ID)

 if($row=fctselect1X($requete,1,$id)) //for this handmade function, see reference

https://hal.science/hal-03991394 (or Software Heritage whose link is inside)

 {

list($IDparent,$deltaE,$generation)=$row; //retrieves data from database.

if($maxgeneration==0) $maxgeneration=$generation; //finds the higher generation to be

displayed in Fugure 4.

$tabledeltaE[$laserie][$generation]=$deltaE; //saves into array for latter.

 }

32

 else { print("<p>ID $ID2 not found !</p>"); exit(); } //should not be.

 $ID2=$IDparent; //Continues with the parent to find its own parent.

 }

 while($generation>0); //loop until G0 is reached.

}

for($g=0;$g<=$maxgeneration;$g++) //print data ordered by generation.

{

 print("<p>G$g"); //(print the generation: G0, G1, …)

 for($laserie=1;$laserie<9;$laserie++) //then by series

 {

 if(isset($tabledeltaE[$laserie][$g])) $d=$tabledeltaE[$laserie][$g]; else $d=0; //if no value

for deltaE, replaces by 0 (0 will be erased in Excel afterwards). Otherwise, copies the value.

 print(";$d"); //writes the value.

 }

 print("</p>"); //closes the paragraph.

}

When the webpage finishes to display the table, copy/past it into a text file, open Excel and insert

the content of the file, erase all 0 values, do the graphic.

Algorithm to calculate binarymin:

As stated above binarymin is a binary representation of the CD. Indeed, each oxygen atom (Oi

with i ranging from 1 to 21 in 1-CD + 31 to 51 systems for 2-CD) can only take a binary state

(methylated or not), like the bits which represent the smallest information of a computer (1 or 0).

In addition, the oxygen atoms are arranged in a certain order (their numbers), as an integer

encoded in the memory of a computer consists of a series of numbered bits (0, 1, 2, ...), each bit

having a weight equal to 2number (20, 21, 22, …). The value of the integer, converted to base 10, is

the sum of each bit multiplied by its weight (so only bits with 1 count in this sum). By analogy,

we therefore converted the configuration of a CD into a binary number. The reason for creating

binarymin is to simplify the SQL query to find a particular CD. Indeed, an Oi can take 6 possible

values (0, 1, 2, 3, 6 and 7), which makes the request complicated by considering the 21 Oi while

the search on binarymin is simple and very fast (theoretically more again if we placed an index

33

on this field). This binarymin number is calculated only once, when creating the experiment in

the database (inserted in the SQL query "INSERT INTO"). The binarymin2 field of the second

CD of 2-CD systems is calculated similarly.

Depending on the anhydroglucose unit from which we start to count, and always starting from a

position 2 (in the glucose numbering system, then 3, 6, then the following anhydroglucose unit)

we can obtain 7 binarymin numbers different. We only keep the smallest. The algorithms of the

two functions performing this calculation are shown below followed by the explanatory diagram.

//The first function converts the configuration of the CD to a binary number depending on the

starting anhydroglucose unit (Shift). Array o contains the configuration (methylation state of all O

atoms 1 to 21).

function ConvertCDtoBinaryNonUnique(o, shift)

binary=0 //binary number to calculate

multi=1 // → weight of the bit = 20 (=1 for starting bit 0)

for(i=0 ; i<21 ; i++) //for each oxygen atom Oi (i.e., o[i])

binary += multi * o[((3 * shift + i) %21) +1] //adds value of the bit x its weight

multi *= 2; //then the weight become 21, 22, 23, … for next bit

return binary //send calculated binary

//The second function converts the configuration to a unique binary number by calling seven times

function ConvertCDtoBinaryNonUnique(), each one starting from a different anhydroglucose unit

(the smaller binary number on the 7 possibilities, will be saved in database afterwards). Array o

contains the configuration (methylation state of all O atoms 1 to 21).

function ConvertCDtoBinaryUnique(o)

BinaryMin = 2097152; // 221 = max+1

for(i =1 ; i<22 ; i++) o[i]=o[i] & 1; //0, 2 or 6 →0, 1, 3 or 7 →1 (conversion to 0 or 1 only)

for(i=0 ; i<7 ; i++) //for each starting anhydroglucose unit

binary=ConvertCDtoBinaryNonUnique(o, i) //start counting from anhydroglucose

unit i

if(binary < BinaryMin) BinaryMin=binary //retains the smaller one

return BinaryMin //and send it

34

For example, the best 1-CD series 8 experience (ID = 7759) has an official binarymin of 9346,

which corresponds, following the order of the numbers, and starting at number 1, to an H-Me-H-

H-H-H-H-Me-H-H-Me-H-H-Me-H-H-H-H-H-H-H string starting the count at O1. By converting

the string into 0 (H) and 1 (Me), and by returning the string, to write the binary number in

conventional notation (decreasing weight), we obtain 000000010010000010, that is to say 9346 in

base 10 notation. The other combinations starting the count at O4, O7, O10, O13, O16, O19 (the

other positions numbered 2 in glucose notation), give larger numbers, so 9346 is retained.

Figure S3. Determination of the binarymin code, the minimum of the 7 binary numbers calculated when starting

from position 2 (glucose numbering system) of each of the 7 anhydroglucose units (orange circles). Binary numbers

are represented from left to right to be consistent with the way of reading the CD but should be reversed in

conventional binary notation.

35

With this binarymin number, it is easy to find the number of free CDs of a series ‘s’ (when freed

from supramolecular assembly, i.e., the number of distinct CDs):

- For 1-CD series (remark: DISTINCT eliminates doubloons): SELECT

COUNT(DISTINCT binarymin) FROM calculscd WHERE series=’s’.

- For 2-CD series: 1) First, we recover the list of total CDs by the intersection (UNION, that

also eliminates doubloons) of CD1 and CD2: SELECT DISTINCT binarymin1 FROM

calculs2cd WHERE series=’s’ UNION SELECT DISTINCT binarymin2 FROM calculs2cd

WHERE series=’s’, 2) then we look at the number of results the database displays.

To collect all the free CDs of the 12 series (1-CD and 2-CD) to determine in how many series

they are involved, it is necessary to make the intersection of the free CDs of the 1-CD and those

of 2-CD systems (by making the intersection of CD1 and CD2), by the SQL command:

SELECT DISTINCT binarymin FROM calculscd GROUP BY binarymin UNION SELECT

DISTINCT binarymin1 FROM calculs2cd GROUP BY binarymin1 UNION SELECT

DISTINCT binarymin2 FROM calculs2cd GROUP BY binarymin2.

Then, number of series a CD is implicated into (replace b by the researched binary value, and this

for all the free CDs found above): SELECT COUNT(DISTINCT series) FROM calculscd

WHERE binarymin='b' (for 1-CD) or SELECT COUNT(DISTINCT series) FROM calculs2cd

WHERE binarymin1='b' OR binarymin2='b' (for 2-CD).

Insertion of a new experiment into the table ‘calculscd’ (called by the PHP software by its

“handmade” fctinsert() function; the variable ‘$num’ receives the unique ‘ID’ value attributed by

the database).: $num=fctinsert("INSERT INTO calculscd VALUES

('0','$o[1]','$o[2]','$o[3]','$o[4]','$o[5]','$o[6]','$o[7]','$o[8]','$o[9]','$o[10]','$o[11]','$o[12]',

'$o[13]','$o[14]','$o[15]','$o[16]','$o[17]','$o[18]','$o[19]','$o[20]','$o[21]','$signe2$oxygenet

','$path $signe O_{$oxygenet}','$IDparent','0','0','$series','$NumUniqueCD',

'$generation', '0' ,'$mainseries')",0,$id).

First parameter (ID): 0 indicates to the database to attribute a new and unique ID to the new record.

Second to 22th parameters (O1 to O21): $o is the table that contains the values of all O atoms O1…21.

Thus, $o[i] represents oxygen atom number i into table $o of the PHP program.

36

23th parameter (changed = $signe2$oxygenet): O atom ($oxygenet is its number) that was changed

with sign ($signe2) – for demethylation and sign + for methylation.

24th parameter (path): “$signe O_{$oxygenet}” is appended to the end of the string

‘path’ to indicate in a comprehensive way, the O atom of the parent experiment that is changed in

this descendant. The HTML tags < > are interpretated when displaying path in webpage (O atom

number ($oxygenet) is set to subscript).

25th parameter (IDparent'): ID of the parent experiment this experiment derivate from.

26th parameter (deltaE: E): Set to 0 to indicate this value is to be calculated (pending calculation).

27th parameter (stop): No decision yet if the experiment can continue in next generation (waiting

for calculation).

28th parameter (series). Series 1 to 10.

29th parameter (binarymin): Calculated and stored in PHP variable $NumUniqueCD.

30th parameter (generation): generation was incremented by the PHP program (generation of its

parent + 1).

31th parameter (deltadelta: E): 0 for now (waiting for calculation).

32th parameter (mainseries): Permits to gather series that have the same inclusion type (same

moiety + same inclusion side of the CD) but starting from a different CD for its G0 model. This is

the field used (with O1 – O21) to search for an existing model to avoid creating a doubloon into

the table of the database (rule 3). For details on its utility, see below (1-CD S9 and S10).

The database was first opened calling the PHP function mysqli_connect() (into include file

functions.inc that was used by the three PHP files) that returns a value (stored by the PHP program

into variable ‘$id’, if the database was opened successfully) that serves to link PHP and the

database it has opened. This variable $id should be furnished with each query sent to the database.

It should be noted that this variable $id should not be confused with variable $ID (variables are

case-sensitive) that represent the number of a model (its ID field inside the database table).

All queries are sent by the PHP program to the database management system using the native

“$res=mysqli_query($id,$requete);” command, where: - $id is the handler for the database (see

just above), - $requete is a text variable containing the SQL query as a text. The result of the query

is returned and stored into a variable (here $res), whose value is ‘false’ if the query failed (SQL

syntax error for example).

37

For illustration: The handmade PHP function fctinsert(…), is used to send a ‘INSERT INTO’ SQL

request to the database to save the new pending experiment by creating a new row (see above).

This function uses the “fctsql($requete,$stop,$id);” command (where fctsql is also an handmade

function, where $requete and $id were described above and $stop indicates if the PHP program

should stop or not if the query failed). This last function calls the native mysqli_query() PHP

function.

Example of update of several attributes of the experiment '$ID' in the table of the database:

When the calculation of the pending experiment was done by Spartan, and the energies were

entered the form in the webpage, the PHP program receive the data, calculates deltaE

 (∆E calculated and stored in PHP variable $e), and allows or not to continue in next generation

(‘stop’), depending on calculated ‘deltadelta’ (variation of ∆E (∆∆E) calculated and stored in PHP

variable $deltadeltacal):

UPDATE calculscd SET deltaE='$e', stop='$stop', deltadelta='$deltadeltacal' WHERE

ID='$ID' LIMIT 1.

LIMIT 1 was added to the request to limit the research of the experiment in the database to only

one (there is only one to be modified, so searching all the database when one was already found is

a loss of time).

Case of 1-CD series 9 and 10

A question that arises using our method is: "Is this technique able to detect the best models?" As

said in the article, we are not looking for the global minimum, because no complex CD will be

synthesized to make this assembly. However, an evaluation of the effectiveness of the method is

required to appreciate the convergence towards a local minimum close to the global minimum

(which could theoretically only be found and proven by making a calculation on all the models,

which is currently impossible). To help answer this question, we decided to make a modification

to the method and the web application first used for 1-CD S1 to S8. Two new 1-CD series have

been made (S9 and S10), but with the same inserts as for the S8 series (reminder: Succ inserted

into the wide side of 3,6-diMe-CD). The goal was not only to see if we converge to a better

minimum than S8 starting from a different point into the combination space, but also to find if we

converge to some local minima already found by S8. Starting from different CDs (for S9, from 2-

38

Me-CD which is the exact inverse of 3,6-diMe-CD, and from 3-Me-CD for S10), the 2 series each

formed a tree of mutations evolving in parallel, with only one exception: rule 3 (no duplicates)

applies for S8 UNION S9 UNION S10 thanks to the creation of a new field in the database,

"mainseries". For S8, S9 and S10, this field has been set to 8 (mainseries = series for others),

indicating that the PHP program must now rely on this field, and not on the "series" field to detect

duplicates before they are created. It is this rule that must make it possible to see the collision

between these 3 series/trees and therefore to see if we converge well towards the same models.

However, by analyzing these models, we realized that the Succ group was not well inserted into

the CD, and worse, that after a few generations, it was the Fc group that was partially inserted

automatically into the CD cavity (see ID 9191 for S9 and 9690 for S10), which corresponds more

to S2 than to S8. The S9 and S10 series have therefore been distorted and have been disassociated

from S8 in the database (they became independent, setting mainseries = series using a SQL query).

They have also not been associated with S2 because some of their models are intermediate between

S8 and S2 and moreover, the control of duplicates was not made with respect to S2. These two

series have therefore not been included in Table 1 on main text, but their models are provided for

information as for the other series in the form of XYZ files. We wanted to know more about the

reason for this failure and noticed that from G0, Succ is almost not inserted into the cavity. The

reason is due to hydrogen bonds between one (e.g., ID 8996) or two carbonyls (ID 8997) of the

imide which anchor the succinimide group at the cavity entrance. However, methylation of one of

these OH groups on the wide side of the CD, even though breaking the hydrogen bond, does not

allow Succ to penetrate deep into the cavity because the carbonyl then finds another hydroxyl to

replace it (for example ID 8909 – (+ O8) → ID 8914 where O8 is replaced by O12). Forced manual

insertion of Succ when modifying the model does not work around this problem; when calculating

the geometry, Succ is still sticking out of the cavity. We have therefore demonstrated that this

method can succeed or fail depending on the CD chosen for the G0 generation, and that it is

preferable to start from the models with the lowest E for G0, i.e., from the most suitable CD, as

we instinctively did for the others before the S9 and S10 series. However, the method of starting

from different points into the combination space, to browse larger space (but remaining

reasonable), is validated, since it could permit to get around falling into a local minimum that

hampers to reach a better minimum.

39

40

Figure S4. Algorithm of the two PHP programmes. Drawing in blue is specific to 1-CD systems and drawing in red

to 2-CD systems. Effects of rules 1,2,3 and their bypasses are drawn in green.

Start : no parent
experiment to

display
==> ID=0

Start of webpage: Displays links to created
series + form to access any parent experiment

+ links to create a new series or do statistics

ID==0
 OR

is invalid

Displays information on this parent
experiment (series, ID, generation, E,

nature of starting (G0) well defined CD +
followed path)

Displays status (methylated or not) for
all oxygen atoms O1 to O21

(+ O31 to O51 for 2-CD systems)

generation==0
Displays
stats on

this series

Start table displaying all descendants
of this parent experiment ID

Function WriteDescendants(ID, O, 0...)
Displays each possible descendant of ID

(limited to O atom that can be methylated)

Function WriteDescendants(ID, O, 1...)
Displays each possible descendant of ID

(limited to O atom that can be demethylated)

End of table displaying descendants

End of webpage

bypass of
rule#2 is

disabled

Displays a
link to

allow to
enable it

true

false

Function WriteDescendants(IDparent, O, type...)

IDparent is the key of a parent of generation Gn

O is a table containing all O atoms of the parent

type = 0 ==> methylation, Oi must be even

type = 1 ==> demethylation, Oi must be odd

true

false

false

true

i=1

i<=21
i<=51

false

true

End of function

(index of O atom Oi)

 Oi==type OR

(bypass of rule#2 is enabled

AND type and Oi have

 same parity)

false

true descendant Gn+1
of IDparent where Oi

 was changed exists in
 database

true

false

E==0

Displays form to
enter energies for

calculation of E
displays
 E

false

true

 rule#1
 is respected

or already have a
 descendant

Gn+2

Link to go to this
experiment Gn+1

to access/calculate
generation Gn+2

true

 this
configuration

exists in another
 branch

Displays information
on this configuration

but no link
(violation of rule#3)

true

Displays form
to create the

descendant

false

false

i = i + 1

i == 22 i = 31
true

false (jump on CD2)

Database
search

Database
search

Database
search

Return from creation of a
descendant, calculation of its

 E,... ==> updates the webpage
with the ID of its parent. Or direct

access from the form.

41

Examples without XAMPP (static webpages)

To be able to see the results of the web application without installing XAMPP, all the

corresponding static webpages were created by the C program (see below) and can be seen using

a navigator. These webpages can be found into the data repository and into Software Heritage

(links in the first page of this document) as a compressed archive. The archive should be

downloaded, unzipped, and almost any webpage (preferably the first HTML file) can serve as an

entry point to then reach any model. Indeed, the links work, permitting to navigate off-line into

the models.

C program to control the models

This C program works on 1-CD series or on 2-CD series depending on a constant set in the

program (“#define CD1OR2 1” to work on 1-CD series, “#define CD1OR2 2” for 2-CD

series) before compiling it. It needs the corresponding database table to work. For this

purpose, the tables were exported from phpMyAdmin as tab files (openable with a text

editor, alternatively with Excel). In fact, these files were saved from phpMyAdmin as .csv

files then renamed as .tab files (extension changed) to be compliant with the data repository

system (to be visible on-line). The needed files to be opened by the C program are

“calculscdprog.tab” for the “calculscd” table and “calculs2cdprog.tab” for the “calculs2cd”

table. These files have tabulations as separator and the fields are not escaped by quotes. It

should be noted that these tab files only differ from the “calculscd.csv” and

“calculs2cd.csv” files (also in the repository) by their format (separators = comma, fields

escaped by quotes), format requested by the repository for CSV files. These files make it

easy to recreate the database regardless of the OS or database management system. But the C

program can also read the .tab file, extracts its content, and fills a structure (typedef struct

{ … } table;) whose instance is called “database”. Some of the SQL queries executed by

the PHP program are simulated by the C program by accessing the fields of this structure

(or an adapted copy where the Oi fields are simplified (0 or 1 only) to simplify the simulated

SQL query).

42

The program also needs to have access to the folders where the models’ files are saved.

When a parent model was used to create its descendants in Spartan, a folder was created

inside the same folder than the parent and all descendants were put inside, and so on for

several generations. When the XYZ files were created from Spartan, these files were saved

into the same folder as its original Spartan model file. The program can know and access

to the corresponding folder and file of each model thanks to the “path” field of the table/.tab

file. However, some information is lost in XYZ files, such as chemical bonds and atom labels.

Nevertheless, these text files are easily openable by handmade software, which can recreate the

lost chemical bonds according to the interatomic distances, and then to recreate the molecule by

linking neighboring atoms and control if the files and the database match.

Although the PHP program could analyze these models, this procedure is not especially applicable

because of the constraints applied to a web application, which thus shows its limits. A "standalone"

program is therefore desirable, and we have carried out this audit program in the C language. The

data can be easily retrieved, each line representing a model.

The C program was created for several purposes:

- As stated above, for fast consultation of the trees of models displayed into the

dynamic webpages by the PHP program, but without the need to use it, static

webpages, one for each model, were furnished into the repository as clones of the

dynamic webpages. Saving all pages one by one from the browser would have

caused several issues: - It would have taken a long time, - Manually giving to the

saved webpages a name related to their ID would have caused some errors, - The

original links would have been unsuitable to operate off-line, hindering the

navigation into the trees, or would have necessitated to manually adapt the links for

each page. To create these static webpages, the behaviour of the C program was

copied on the code of the PHP program but adapting the links.

- When using a parent model to create its descendants in Spartan, obviously errors are

unavoidable. The errors can be: - changing the wrong oxygen atom or forgetting to

change it, - accidentally erasing an atom (this unvalidated a whole series having

more than 1000 models that had to be redone because the G0 was wrong and the

error has spread into descendants), - starting from the wrong parent, forgetting to

convert some Spartan models into XYZ files… The C program having access to the

43

“path” field of the database, was able to determinate the path to the file, to look for

its presence, to open it and to create a modified copy. The modifications are:

• Gathering all XYZ files into the same folder “XYZ” (the one that was

compressed into an archive deposited into the repository), but each series

being into its own folder “aCDSb” where “a” is the number of CDs (1 or 2)

and “b” is the series.

• Changing the name of the copy to comply with the format “a-CD-Sb-ID-

c.xyz” where “a” and “b” are those described above and c is the ID of the

model.

• Fixing an error of Spartan that does not respect the format for XYZ files.

Indeed, the two first lines are missing when saving XYZ files from Spartan

14 (not from Spartan 20). These two lines were added with the first line being

the number of atoms into the model/XYZ file, and the second line being a

facultative comment (that was filled with information about the model, based

on its “path” field).

• Removing the two pseudo atoms “Lig” than Spartan adds to connect ligands

to the metal atom, here Fe connected to two Cp (cyclopentadienyl), but that

are confused with lithium by other modelling software.

• Accessory, reducing the size of the XYZ files by replacing several

consecutive spaces by a unique tabulation.

• Finding the real name of the original XYZ file. Indeed, for high generation

models, the path to the file became too long, provoking errors in Windows

10. The only possibility, if we want to keep the path to the folder, was to

reduce the name of the original XYZ file to reduce the total path (folders path

+ file name). To do this, the beginning of the file was truncated. The C

program needed to scan the last folder of the path to find the real name of the

file finishing with "G0.xyz" for the G0 model, "+a.xyz" for models finished

by a methylation or "-a.xyz" for models finished by a demethylation, where

“a” is the modified oxygen atom.

Then, the program reads the new XYZ file and writes into a file (message.txt) all errors that

were found. To check if the configuration of the CD(s) was correct, the “binarymin” of the

XYZ file was calculated and compared to that of the database: Starting from the first found

44

anomeric carbon atom, the program progress from neighbour atom to the next one, checks the

methylation state of the three important oxygen atoms on its way, and this for each glucose

unit. It should be noted that this method does not guaranty to find all errors for the G1 models,

because three groups of CDs have in common the same (free) CD (those having the inversion

of methylation on the same number, in glucose numbering: 2, 3 and 6). Moreover, the number

of atoms with a certain valence where also counted (H, O, C and N).

- Hydrogen bonds were found to be important for the stability of the supramolecular

models, in particular hydrogen bonds implicating the iron atom of ferrocene. We

used the C program to do extra statistics based on these hydrogen bonds but limited

to intermolecular bonds (between the inserted molecule and a CD). To find these

bonds, we fixed the limit to 2 Å (#define HBONDLIMIT2 4.0 in the C program is the

square of this value, because with wanted to compare squares of distances to avoid using

the square root function that is time consuming). For SuccFerr the atoms involved in these

bonds are the iron atom, the two phenols (-O- and -H independently) and the two carbonyls

(=O) of the imide group. For CDs these are the hydroxyls (-O- and -H independently), the

ethers (-O-) and the anomeric group (-O-). The C program created files Hbonds-aCD.txt,

where “a” is the number of CDs (1 or 2). Then, it has reread these files to make a

webpage containing statistics on these bonds, including the found clamps

(“TableofHbondsbySeries-aCD.html” where a is the same as above, inside the

compressed archive where the other webpages are gathered).

Details on the C program and call to functions

The C program flows in this order:

- Program starts.

- Creates the structure “table” and creates an instance: “database”. It will contain all the fields

of the MariaDB table (“calculscd” for 1-CD and “calculs2cd” for 2-CD models) plus

complementary fields that are calculated on-demand by the PHP program but that will be

calculated once by the C program and stored in “database”. Its size is set to 9800 (#define

NLINESMAX 9800) for 1-CD or 2-CD models.

- Opens the "message.txt" file for writing. All found errors (if any) will be written inside.

- Opens "Hbonds-aCD.txt" for writing (where “a” is the number of CD). All H bonds of interest

and Me (methyl groups) close to Fc (ferrocene) will be written inside.

45

- Calls “ReadCSVToTable()”:

• Open the csv file ("calculscdprog.tab" or "calculs2cdprog.tab").

• Reads each line of the file (one line = one model) and fills the database structure

for each record “ID”. Since the table was ordered, ID = number of the record.

• If constant “MAKEXYZFILES” was set to 1 (default, allows to create adapted

XYZ files):

▪ Calls function “CopyConvertedXYZFiles()” that reads, modifies and copies

the new corresponding XYZ file for this experiment, knowing its ID and

path.

▪ Calls function “ChecksBinaryConfiguration()” that reads the new adapted

XYZ file, calls function “VerifyCount()” that counts the number of atoms

by type and valence, checks if incoherences exist into the XYZ file (writes

errors in file "message.txt"), calls function “CalculationOfBinary()” that

calculates the “binarymin” for the CD (then the “binarymin” for the second

CD, for 2-CD models).

▪ Checks for errors (if calculated “binarymin” for the XYZ file and in

database are different) and if any, writes in file "message.txt".

▪ If constant “MAKEHBONDSSTUDY” is set to 1, calls function “FindFe()”

to search for the iron atom, calls function “FindThe2Carbonyls()” to find

the two carbonyl groups (imide), calls function “FindThe2Phenols()” to find

the two oxygen atoms and the two hydrogen atoms of the two phenol

groups. Then calls function “FindHBonds()” for each type of hydrogen

bond, that are written into file "Hbonds-1CD.txt" or "Hbonds-2CD.txt".

Calls function “FindNumberOfMeCloseToFe(Fe)” to count the number of

Me close to ferrocene (to Fe) and to write this information into file

"Hbonds-1CD.txt" or "Hbonds-2CD.txt".

• Determines how many series are inside the CSV file (store into variable

“NumberOfSeries”) then closes it.

- Closes file "Hbonds-1CD.txt" or "Hbonds-2CD.txt".

- For each series, calls function “TreatTree()” to complete the database structure by some

calculations (for values not in the original database but calculated on-demand by the PHP

program):

46

• Determines, in “database”, the area where the models of this series are located (to

increase the search speed by reducing this area).

• Calls the recursive function “TreatTreeRecursive()” that browses this model and all

its descendants (sub-branch starting from this model) to determine all fields not in

the original database: “best” (number of descendant models that are better than this

model), “pending” (number of models that are pending, i.e., whose ∆E was not

calculated yet), “finished” (all descendants are blocked by rule 1 or not, dead end

or not for this sub-branch), “max_generation” (the higher generation reached inside

this sub-branch), “bestdeltaE” ” (the higher ∆E reached inside this sub-branch),

“descendants” (the number of descendants this model has inside the sub-branch this

model is the ancestor).

- If constant MAKEHBONDSSTUDY and constant MAKEXYZFILES are set to 1, creates a

stat report on H bonds by reading file “Hbonds-1CD.txt” or “Hbonds-2CD.txt”.

• Opens file “Hbonds-1CD.txt” or “Hbonds-2CD.txt” for reading.

• Calls function “CreateHBondsStatReport()” to create the report uniquely with data

of the txt file.

▪ Opens file "TableofHbondsbySeries-aCD.html" (“a” = number of CDs = 1

or 2) for the webpage containing the statistics about hydrogen bonds and

Me close to Fc for each series. Starts to write the beginning of its HTML

tag + information.

▪ Finds each series inside the text file.

▪ For each series, calls function “CalculatesLimitDeltaE()” to Find the

minimum and maximum ∆E for this series and the average value (will be

needed to find if a model should be classified as good or worse model).

▪ For each series, reads each model, class it as good or worse models, counts

the number of hydrogen bond for each type and the average number of Me

close to Fc found. Writes the values into a table into the webpage, with a

column for the good models and a column for the worse models.

▪ Closes the HTML file.

• Closes the text file.

- If constant MAKEHTMLFILES was set to 1 (creates the webpages for all the models)

47

• Calls function “AdaptedDatabase()” to create a copy of array “database” (dynamic

allocation) with simplified fields Oi: 0 or 1 only. It permits to simplify the query

that will imitate the SQL query to find if a model exists in database.

• Calls function “CreateTheWebPages()”.

▪ Determines, in “database”, the area where the models of this series are

located (to increase the search speed by reducing this area).

▪ For each series, Calls function “CreateOneWebPage()” that creates the

webpage for the model whose ID is furnished in parameter. It opens the

webpage, includes into the webpage the beginning that is common to all

webpages, then the content that depends on the database. It calls function

“WriteDescendants()” for the descendants of this model that were

methylated, then for the descendants that were demethylated, then closes

the webpage.

• Free the memory allocated for the copy of “database”.

- Closes text file “message.txt”.

- End of program

48

Case of the best models of 1CD series 8 and series 2 (figures S5 and S6)

Comparison of best model of 1CD series 8 calculated in PM3 (Spartan 14, Figure S5a) and in

DFT (Spartan 20, Figure S5b):

Note: This DFT calculation (Figure S5b, ωB97X-D, 6-31G*, medium=water, option

PCMRAD=FE~2.2, starting from the PM3 model) is different from Figure 4 (main text) that was

calculated with the 6-311G* basis set and Gaussian 09, but gave comparable results.

(a) (b)

Figure S5. Molecular models of the best 1-CD system (series S8, ID 7759, Succ entering by the wide side

of the CD). SuccFerr is represented with a “ball-and-stick” model and the CD is represented with a

“licorice” model. Orange dashed lines (clamp between the iron atom and O19–H and O20–H) represent the

two atypical hydrogen bonds between the iron atom and the CD. Another clamp between one of the C=O

group and O12–H and O18–H is also visible, as bonds between the phenol group (Ph2) and O14–Me and

between the second C=O of imide and O5-H (blue dashed lines). The numbering is not shown. (a)

Computed with Spartan 14 at the semiempirical PM3 level of theory (i.e., in vacuum), with length of Fe-

H bonds ≈ 1.9 Å and angles of O19-H…Fe and of O20-H…Fe ≈ 167° and 177°. (b) Computed with Spartan

20 at the DFT level of theory, with length of Fe-H bonds ≈ 2.6 Å and angles of O19-H…Fe and of O20-

H…Fe ≈ 165° and 169°.

49

Best models of 1CD series 2 (PM3) (this calculation did not succeed in DFT):

Figure S6. Molecular model of the best system of 1-CD series S2 (ID 3738, Fc included by wide side of the CD, ∆E

= -261 kJ/mol) computed at the semiempirical PM3 level of theory. SuccFerr is represented with a “ball-and-stick”

model and the CD is represented with a “licorice” model. The 2 hydrogen bonds between the iron atom and the CD

are represented by orange dashed lines (clamp between the iron atom and O10–H and O11–H, length ≈ 1.9-2.0 Å).

Hydrogen bonds also exist between each C=O of imide group and -O1-H and -O17-H (blue dashed lines).

50

Table S4. Second-order perturbation stabilization energies for the NBOs involving atoms taking part in the atypical H-

bond Fe-HO interactions. NBO labels: LP = Lone pair, LP* = Antibonding lone pair, CR = Core.

 NBO Donor NBO Acceptor E(2) (kj/mol)

Fe ----- H210 – O19

 LP (1) (Fe) Rydberg (1) (H210) 0.92

 LP (1) (Fe) Rydberg (4) (H210) 0.21

 LP (1) (Fe) * (1) (H210 – O19) 1.80

 LP (2) (Fe) * (1) (H210 – O19) 1.67

 LP (3) (Fe) * (1) (H210 – O19) 0.33

 LP* (6) (Fe) Rydberg (1) (H210) 25.48

 LP* (6) (Fe) Rydberg (2) (H210) 2.80

 LP* (6) (Fe) Rydberg (3) (H210) 6.69

 LP* (6) (Fe) Rydberg (4) (H210) 14.85

 LP* (6) (Fe) Rydberg (5) (H210) 0.75

 LP* (7) (Fe) Rydberg (2) (H210) 0.67

 LP* (7) (Fe) Rydberg (4) (H210) 0.38

 LP* (8) (Fe) Rydberg (1) (H210) 1.97

 LP* (8) (Fe) Rydberg (3) (H210) 0.29

 LP* (8) (Fe) Rydberg (4) (H210) 1.38

 LP* (9) (Fe) Rydberg (5) (H210) 1.51

 LP* (6) (Fe) Rydberg (1) (O19) 0.50

 LP* (6) (Fe) Rydberg (3) (O19) 1.80

 LP* (6) (Fe) Rydberg (4) (O19) 1.88

 LP* (6) (Fe) Rydberg (7) (O19) 0.29

 LP* (7) (Fe) Rydberg (1) (O19) 2.09

51

 LP* (7) (Fe) Rydberg (4) (O119) 1.71

 LP* (8) (Fe) Rydberg (3) (O19) 0.21

 LP* (9) (Fe) Rydberg (7) (O19) 0.75

 LP* (8) (Fe) * (1) (H210 – O19) 4.48

 (1) (H210 – O19) LP* (6) (Fe) 7.49

 (1) (H210 – O19) LP* (7) (Fe) 0.96

 (1) (H210 – O19) LP* (8) (Fe) 1.17

 (1) (H210 – O19) LP* (9) (Fe) 0.21

 (1) (H210 – O19) Rydberg (9) (Fe) 0.29

 LP (1) (O19) LP* (7) (Fe) 0.25

 LP (2) (O19) LP* (6) (Fe) 0.67

Fe ----- H193 – O20

 CR (1) (Fe) Rydberg (4) (H193) 0.21

 LP (1) (Fe) Rydberg (1) (H193) 1.34

 LP (1) (Fe) Rydberg (3) (H193) 0.63

 LP (1) (Fe) Rydberg (4) (H193) 0.92

 LP (3) (Fe) Rydberg (3) (H193) 0.25

 LP (1) (Fe) * (1) (H193 – O20) 1.30

 LP (3) (Fe) * (1) (H193 – O20) 1.60

 LP* (6) (Fe) Rydberg (1) (H193) 23.68

 LP* (6) (Fe) Rydberg (3) (H193) 18.33

 LP* (6) (Fe) Rydberg (4) (H193) 38.99

52

 LP* (6) (Fe) Rydberg (5) (H193) 0.42

 LP* (7) (Fe) Rydberg (2) (H193) 1.63

 LP* (8) (Fe) Rydberg (1) (H193) 0.79

 LP* (8) (Fe) Rydberg (3) (H193) 0.84

 LP* (8) (Fe) Rydberg (4) (H193) 0.96

 LP* (9) (Fe) Rydberg (5) (H193) 12.76

 LP* (8) (Fe) * (1) (H193 – O20) 4.43

 (1) (H193 – O20) LP* (6) (Fe) 6.23

 (1) (H193 – O20) LP* (8) (Fe) 2.38

 (1) (H193 – O20) Rydberg (1) (Fe) 0.25

 (1) (H193 – O20) Rydberg (11) (Fe) 0.25

 LP (1) (O20) LP* (7) (Fe) 0.21

 LP (1) (O20) LP* (8) (Fe) 0.21

 LP (2) (O20) LP* (6) (Fe) 0.63

53

Description of the trees of modelling and of the web application to manage

them

Explanation: In a very schematic view, the molecule (SuccFerr, with its central double bond where

are attached 4 moieties (Fc, Ph1, Ph2 and Succ)) is partially inserted into a CD by one of its

moieties. The methylation state of the CD was changed at each generation, inverting all Me and H

(blue and green spheres, on wide and narrow side of the CD, the current modification for this

generation is a red sphere). The best G1 model (other G1 models are not shown for clarity) was

used to do the same for several generations. To show that the model is more stable, its insertion

into the CD is drawn deeper (even though this is not so simple!). If the model is less stable (shallow

insertion), this branch is finished (dead end, here in G3, the worse model is drawn specially for

illustration) and a better model of the same generation is used to continue the tree, or from a

previous generation.

The server has the XAMPP pack installed (Apache web server, PHP interpreter, MariaDB database

server). The client (same computer or another one) communicates with the server by HTTP

protocol. The server sends the dynamic webpage (content based on the PHP program and on the

content of the database) to the client that displays it using its web browser (compatible with any

OS, even if the server and the client are different computers that have different OS).

The image was created with Blender (up) and with Chemdraw (down) and was assembled with

Paint.

