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Abstract: A combination of atezolizumab with bevacizumab (AB) is the first regimen that has shown
superiority compared to sorafenib and is now being used as the systemic treatment of choice for
hepatocellular carcinoma (HCC) patients with Barcelona Liver Cancer Clinic stage C. However, a
considerable number of patients do not achieve survival or significant responses, indicating the need
to identify predictive biomarkers for initial and on-treatment decisions in HCC patients receiving
AB. In this manuscript, we summarized the current data from both experimental and clinical studies.
This review will be beneficial for both clinicians and researchers in clinical practice as well as those
designing experimental, translational, or clinical studies.
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1. Introduction

Hepatocellular carcinoma (HCC) ranks as the sixth most common cancer and the third
leading cause of cancer-related deaths worldwide [1]. The prevalence of this cancer is
expected to increase by 55% from 2020 to 2040 [2]. Even though surgical and locoregional
treatments can be used in some cases, it is estimated that systemic therapies might be the
chosen treatment for 50–60% of HCC patients [1]. Multi-targeted tyrosine kinase inhibitors
(TKIs) including sorafenib, lenvatinib, regorafenib, and cabozantinib, which target various
molecules, can be used as first- or later-line systemic treatments. These agents commonly
target the vascular endothelial growth factor receptor (VEGFR) and also have various
molecular targets depending on each drug. However, other than sorafenib and lenvatinib,
no drugs have been approved for first-line systemic treatment of advanced HCC, as trials
have not demonstrated a significant clinical benefit compared to sorafenib.

Recent breakthroughs have led to a new era in systemic therapies, as immune-
checkpoint inhibitors (ICIs) have proven to be effective in patients with HCC. However,
the use of ICIs as a monotherapy has demonstrated limited efficacy with a response rate be-
tween 15% and 20%, which benefits only a small subgroup of HCC patients in a second-line
setting. There are several suggested mechanisms related to the resistance to ICI treatment
in HCC, including tumor-intrinsic and extrinsic factors [3]. Thus, numerous efforts to
overcome this resistance and improve the clinical outcome of HCC patients have been
made, and combinations of other regimens to ICIs have also been tried.

In 2020, the results of the IMbrave150 trial, which enrolled 501 treatment-naïve patients
with advanced HCC and assigned them randomly to receive either atezolizumab combined
with bevacizumab (AB) or sorafenib monotherapy, were published [4]. AB is the first agent
that has shown superiority compared to sorafenib as a first-line systemic treatment, and
can be administered at a dose of atezolizumab 1200 mg plus bevacizumab 15 mg/kg IV
every 3 weeks, with target concentrations of 6 µg/mL for atezolizumab [5] and 140 µg/mL
for bevacizumab [6]. The AB group exhibited a median progression-free survival (PFS) of
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6.8 months, whereas the sorafenib group had a median PFS of 4.3 months. At the 12-month
follow-up, 67.2% of patients in the AB group and 54.6% in the sorafenib group survived.
The objective response rate (ORR) was 33.2% in the AB group, and 13.3% in the sorafenib
group, which represented an improved, but insufficient clinical benefit.

Atezolizumab is a monoclonal antibody of the IgG1 isotype that acts on PD-L1 [7],
which is present in immune cells or tumor cells within the tumor, blocking its interaction
with receptors on the programmed cell death protein 1 (PD-1) and B7-1 (CD80) [4]. The
interactions between PD-L1 and PD-1 inhibit T cell proliferation, cytokine secretion,
and cytotoxic action, leading to T cell de-activation or exhaustion [8]. Atezolizumab
reactivates tumor-specific cytotoxic T cells by disrupting the interaction between PD-1
and PD-L1. Bevacizumab is a monoclonal antibody of IgG1 isotype that targets VEGF,
which is a key factor in angiogenesis [7]. Angiogenesis is the process of new blood vessel
formation and is regulated by a balance between pro- and anti-angiogenic factors. Repre-
sentative pro-angiogenic factors encompass the VEGF family, angiopoietins, epidermal
growth factors (EGFs), and fibroblast growth factors (FGFs) [9]. Inflammatory cytokines
such as interleukin (IL)-6 and IL-8 also participate in angiogenesis [10]. Anti-angiogenic
therapies facilitate vascular normalization, impede tumor blood supply, and induce hy-
poxia and nutrient deficiency, consequently resulting in tumor cell death. Furthermore,
they enable a more efficient delivery of therapeutic agents and immune cells to the tumor
site. However, there is no randomized trial showing the clinical benefits of bevacizumab
monotherapy in HCC.

The AB combination treatment may possess a potential synergistic effect in cancer
treatment, enhancing their combined therapeutic efficacies. Anti-VEGF therapies coun-
teract VEGF-induced immunosuppression within tumors and their microenvironments,
potentially boosting anti-PD-1 and anti-PD-L1 effectiveness by reversing VEGF-driven im-
munosuppression and enhancing T cell infiltration, thereby enhancing antitumor immune
responses [11].

Although the combination regimen targets two different molecules, programmed cell
death-ligand 1 (PD-L1) and vascular endothelial growth factor (VEGF), previous reviews
have only focused on biomarkers for ICIs, and have not considered the point that this
regimen further targets VEGF signaling. In this manuscript, we aim to reconcile the
current knowledge on this topic and review both experimental/translational and clinical
studies. This review will be beneficial for both clinicians and researchers in terms of making
decisions and planning clinical, translational, and experimental studies. Brief introductions
of the mechanisms of action and currently reported biomarkers for AB treatment in HCC
patients are presented in Figure 1.
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Figure 1. Predicting clinical outcomes in patients with HCC receiving Atezolizumab and Bevaci-
zumab combination treatment. Atezolizumab targets PD-L1 resulting in the inhibition of PD-1 me-
diated T cell exhaustion pathway and T cell restoration. Bevacizumab targets VEGF and inhibits 
aberrant angiogenesis of tumor, as well as improving immunosuppressive TME via affecting Tregs, 
MDSCs, and TAMs. Predicting clinical outcomes of AB treatment can be performed by analyzing 
clinical factors such as medical records, laboratory tests, imaging tests, and the presence of AEs. 
They are also able to be performed by blood examinations, which include tumor markers, inflam-
matory markers, cytokines, and angiogenic factors. Liquid biopsy is also under investigation. Tissue 
studies include PD-L1 staining, whole genome or RNA sequencing, and staining for immune cell 
infiltration. Gut microbiome, CTCs, analysis for PBMCs, and various cytokines and chemokines 
should also be studied.  

2. Clinico-Radiological Parameters 
2.1. Clinical Parameters 
2.1.1. Etiology 

Previous studies that have identified clinical factors associated with outcomes fol-
lowing AB treatment are summarized in Table 1. A recent experimental study showed that 
pathologic CD8+PD-1+ T cells might be associated with the limited role of anti-PD-1 treat-
ment in NASH-related HCC [12]. Another study showed that hepatitis B virus (HBV)-
infected subjects have distinct upregulation of peripheral blood inflammatory cytokine 
profiles, compared to the other etiologies including hepatitis C virus (HCV), NASH, and 
alcoholic liver diseases, suggesting different peripheral, intrahepatic, and intratumoral 
immune environments across the etiologies of HCC [13]. The tendency of better clinical 
outcomes in patients with viral etiologies have been reported in association with 
nivolumab [14], cabozantinib plus atezolizumab [15], and tremelimumab plus durval-
umab [16] regimens. 

Figure 1. Predicting clinical outcomes in patients with HCC receiving Atezolizumab and Beva-
cizumab combination treatment. Atezolizumab targets PD-L1 resulting in the inhibition of PD-1
mediated T cell exhaustion pathway and T cell restoration. Bevacizumab targets VEGF and inhibits
aberrant angiogenesis of tumor, as well as improving immunosuppressive TME via affecting Tregs,
MDSCs, and TAMs. Predicting clinical outcomes of AB treatment can be performed by analyzing
clinical factors such as medical records, laboratory tests, imaging tests, and the presence of AEs. They
are also able to be performed by blood examinations, which include tumor markers, inflammatory
markers, cytokines, and angiogenic factors. Liquid biopsy is also under investigation. Tissue studies
include PD-L1 staining, whole genome or RNA sequencing, and staining for immune cell infiltration.
Gut microbiome, CTCs, analysis for PBMCs, and various cytokines and chemokines should also
be studied.

2. Clinico-Radiological Parameters
2.1. Clinical Parameters
2.1.1. Etiology

Previous studies that have identified clinical factors associated with outcomes following
AB treatment are summarized in Table 1. A recent experimental study showed that patho-
logic CD8+PD-1+ T cells might be associated with the limited role of anti-PD-1 reatment in
NASH-related HCC [12]. Another study showed that hepatitis B virus (HBV)-infected subjects
have distinct upregulation of peripheral blood inflammatory cytokine profiles, compared
to the other etiologies including hepatitis C virus (HCV), NASH, and alcoholic liver dis-
eases, suggesting different peripheral, intrahepatic, and intratumoral immune environments
across the etiologies of HCC [13]. The tendency of better clinical outcomes in patients with
viral etiologies have been reported in association with nivolumab [14], cabozantinib plus
atezolizumab [15], and tremelimumab plus durvalumab [16] regimens.

In updated efficacy and safety data from IMbrave150, AB treatment in patients with
viral etiologies including HBV and HCV had superior OS and PFS compared to those
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treated with sorafenib, although the subgroup analysis that only included AB treatment
was not presented [17]. A recent meta-analysis, which included 3 large randomized phase
III trials of nivolumab, AB, and pembrolizumab, suggested that the ICI regimen might be
superior to sorafenib in terms of OS in HBV- and HCV-related HCC [12]. In addition, a
recent network meta-analysis showed that patients with viral etiology showed significant
survival benefits with the AB regimen compared to the TKIs [18]. However, such research
has provided glimpses into the role of etiology as a predictive marker because these studies
only showed the benefits of the AB regimen compared to the TKIs.

A reduction in AFP levels (≥75%) at 6 weeks following the start of therapy can serve
as a potential biomarker for HCC patients receiving the AB treatment to predict improved
OS and PFS, particularly in those with HBV etiology, but not in the HCV and non-viral
etiologies in the recent report analyzing 440 patients who were included in the Phase Ib and
III trials of IMbrave150 [19]. A small-sized (n = 66) recent real-world study also showed
that patients with viral etiologies have better OS and PFS than patients with non-viral
etiology [20]. Another small-sized retrospective study (n = 23) also showed that patients
with viral etiology have higher ORR than those with non-viral etiology receiving the AB
treatment [21]. However, other real-world studies did not find differences between the
two groups, therefore larger nationwide studies are needed to validate the previous data.
In addition, whether there might be a difference between HBV and HCV in the clinical
outcome of AB treatment and its related mechanism also needs to be clarified.

2.1.2. Tumor Burden

A larger tumor burden is associated with the more immunosuppressive tumor microen-
vironment (TME) contributed by regulatory T cells (Tregs), tumor-associated macrophages
(TAMs), and myeloid-derived suppressor cells (MDSCs), as well as immunosuppressive
cytokines such as tumor growth factor-beta (TGF-β) and IL-10 [22]. In HCC patients treated
with nivolumab, an intrahepatic tumor size of more than 10 cm was associated with poor
OS and PFS [23]. However, there is a possibility that the VEGF inhibitor may have a
complementary effect, and therefore, the impact of tumor burden on the clinical outcome
of the AB treatment remains unclear. A recent retrospective report (n = 121) showed that
macrovascular invasion was associated with poor OS in AB treatment [24]. In addition, the
presence of extrahepatic spread was associated with poor PFS in AB treatment in a recent
real-world study (n = 433) [25]. The accumulation of data from further studies will confirm
this association.

2.1.3. Liver Function Parameters

Although most clinical trials, including IMbrave150, enrolled patients with good liver
function of Child–Pugh A, liver function status in real-world practice might be variable
and can change dynamically from the baseline status. Liver function plays a critical role
in determining the prognosis and treatment options for HCC patients, particularly in
patients receiving the AB treatment. A small-sized retrospective study (n = 100) showed
that patients with Child–Pugh B had comparable ORR compared to those with Child–Pugh
A, but had shorter OS and PFS [26]. A recent real-world study (n = 66) also showed that
Child–Pugh A was a significant favorable factor for OS [20]. In addition, there was no
difference between Child A and B patients in ORR, but PFS and OS were significantly
better in the Child A group in a retrospective study (n = 457) [27], which indicates that liver
function might be related to the prognosis rather than reflecting the therapeutic efficacy of
the AB treatment.
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In addition to the Child–Pugh score, albumin–bilirubin (ALBI) grade is also an im-
portant indicator of liver function, and several studies have investigated the associations
between ALBI and clinical outcomes in AB treatment. Recent small-sized retrospective
studies have demonstrated that ALBI grade [28,29] and Eastern Cooperative Oncology
Group [28] scores before treatment were independent factors in predicting OS or PFS. An-
other real-world study (n = 28) also showed that a lower baseline modified ALBI (mALBI)
predicts better ORR, and a Child–Pugh score of five and mALBI grades 1 and 2a were
significantly associated with the continuation of treatment [30]. In addition to its baseline
status, a worsening ALBI score within 3 weeks after the AB treatment was also significantly
associated with OS in a retrospective analysis (n = 69) [31]. It can be combined with another
biomarker. A recent multicenter retrospective study (n = 426) showed that the combination
of mALBI grade and AFP (mALF score) significantly predicted OS and PFS [32].

2.2. Pre-Treatment Radiologic Examinations
2.2.1. Hepatobiliary Phase of Magnetic Resonance Imaging (MRI)

In gadoxetic acid-enhanced MRI, it has been suggested that the hepatobiliary phase
could be an imaging biomarker for the identification of β-catenin mutations in HCC [33].
Recent studies suggest that HCC with CTNNB1 mutations, which induces activation of the
Wnt/β-catenin pathway, is characterized by reduced intratumoral T cell infiltrations [34]
and can also be related to the ICI response [35]. According to the ratio of relative enhance-
ment and visual assessment of the hepatobiliary phase, HCCs could be classified into hypo-
and hyperintensity types, as well as heterogeneous and homogeneous types. In a recent
small-sized study (n = 35), the heterogeneous/hyperintensity type in the baseline MRI
imaging had significantly shorter PFS compared to homogeneous/hypointensity types [36].

2.2.2. Perfusion Changes in Computed Tomography (CT), MRI, and Contrast-Enhanced
Ultrasound (CEUS)

Changes in tumor perfusion have been observed in AB treatment in a preclinical HCC
model [37], and this might be due to the immune cell infiltration by atezolizumab, as well
as vascular normalization by bevacizumab. This finding implies that measuring a dynamic
change in tumor perfusion might have a role in predicting the responses of AB treatment
in HCC. In a recent retrospective pilot study (n = 19), perfusion change, which represents
the decline in tumor-to-liver ratio in the arterial phase of CT or MRI at a mean of 9 weeks
after AB treatment, was significantly associated with the disease control rate (DCR) [38].
Thus, early measures of perfusion change might help in predicting treatment response
and long-term outcomes. In addition to the CT/MRI imaging, another retrospective study
(n = 35) evaluated time-intensity curve (TIC) analysis using CEUS 3 to 7 days after the
initial AB treatment [39]. As a result, cases without decreased blood flow showed signifi-
cantly higher rates of progressive disease, compared to those with decreased blood flow.
Decreased blood flow in the TIC analysis was also associated with longer PFS.

2.2.3. Positron Emission Tomography-Computed Tomography (PET-CT)

Imaging characteristics on 18F-fluorodeoxyglucose PET-CT (18F-FDG-PET-CT) have
demonstrated a strong association with poorly differentiated HCC, and the presence of 18F-
FDG-PET/CT-positive HCC is known as an unfavorable prognostic indicator for responses
to anti-HCC treatments including lenvatinib or TACE [40]. A recent retrospective study
(n = 20) evaluated the tumor-to-normal liver ratio (TLR) of FDG uptake before AB treatment
and found that a baseline TLR ≥ 2 was associated with early progressive disease and poor
PFS, but not with OS [41].
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2.3. Adverse Events (AEs)

The appropriate monitoring and management of AEs are important in the continuation
of chemotherapy and the outcome of patients. In fact, early bevacizumab interruption
within 9 weeks after treatment was related to shorter PFS and OS and was associated
with AEs, including liver injury, poor oral intake, proteinuria, and ascites [42]. It was also
associated with a poor mALBI grade and, importantly, it also affected the implementation
of later-line treatment. The following are current data regarding AEs and their impact on
the outcomes of patients in AB treatment.

2.3.1. Immune-Related Adverse Events (irAEs)

Because it reinforces the immune system, ICI can cause irAEs that involve multiple
organs such as the skin, gastrointestinal, respiratory, thyroid, and central nervous systems.
However, it is unclear whether irAEs are associated with efficacy or survival, particularly
in HCC patients receiving AB treatment. A recent retrospective study (n = 150) evalu-
ated irAEs and their impact on the outcome of patients [43]. This study classified irAEs
into endocrine, dermatologic, gastrointestinal, hepatic, hematological, pulmonary, muscu-
loskeletal, cardiovascular, nervous system, and renal events. The authors found that total
irAEs, not independent irAEs, are not associated with the ORR. However, grade 1/2 irAEs
were significantly associated with favorable PFS and OS, compared to grade 3/4 irAEs or
no irAEs in the multivariate analysis. Another retrospective study (n= 130) found that skin
reactions were associated with longer OS [44]. These results suggest that irAEs might reflect
the activation of immune function and the effectiveness of ICIs including atezolizumab,
but the severe grade of irAEs might reduce this beneficial effect due to the discontinuation
of treatment or their own severity.

Since most patients have liver cirrhosis (LC) or chronic hepatitis, hepatic irAEs require
special attention in HCC patients receiving ICIs. Prior studies have indicated that liver
damage is linked to unfavorable outcomes in cancer patients undergoing ICI therapy,
and even HCC patients experiencing grade 1 or 2 liver injury during ICI treatments
demonstrated a poor prognosis [45–47]. In patients receiving the AB treatment, liver injuries
including AST, ALT, and bilirubin elevation were associated with shorter OS [44,48]. On
the other hand, anti-VEGF treatment can also cause liver injury and reduce liver function as
shown in a clinical trial of ramucirumab in HCC patients [49]. Therefore, further studies are
needed to distinguish whether the liver injury is related to the irAE during AB treatment,
and on-treatment strategies including dose modification or special management should
be investigated.

2.3.2. Anti-VEGF-Related AEs

Hypertension related to anti-VEGF was linked to a better DCR and PFS in HCC
patients undergoing AB therapy in a recent retrospective study (n = 286) [50]. Another
study also showed that hypertension is associated with longer OS [44]. The underlying
mechanism is uncertain; however, the direct relationship between VEGF inhibition and
hypertension onset is evident, given the role of VEGF in maintaining normal endothelial
cell function and vascular balance [51].

Proteinuria was also significantly associated with better OS in a recent Japanese real-
world study (n = 286) [48]. Although its impact on bevacizumab efficacy is controversial
across various types of cancer, proteinuria was correlated with VEGF signal inhibition [52].
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Table 1. Previous studies investigating the association between clinico-radiological factors and out-
come.

Clinical Markers Related Outcomes Study Design (n) Reference

Viral etiology (HBV + HCV) Favorable OS, PFS of AB
compared to SOR

Phase III RCT-
IMbrave150 (336) Cheng et al. [17]

AFP reduction (≥75%) after Tx
in HBV subjects Favorable OS, PFS Phase Ib and phase III

IMbrave150 (440) Zhu et al. [19]

Viral etiology (HBV + HCV) Favorable ORR Retrospective (23) Takeda et al. [21]

Viral etiology (HBV + HCV) Favorable OS, PFS Retrospective (66) Himmelsbach et al. [20]

Macrovascular invasion Unfavorable OS Retrospective (121) Chon et al. [24]

Extrahepatic spread Unfavorable PFS Retrospective (433) Fulgenzi et al. [25]

Child–Pugh B Treatment discontinuation Retrospective (28) Tanaka et al. [30]

Child–Pugh B Unfavorable OS, PFS Retrospective (100) Jost-Brinkmann et al. [26]

Child–Pugh B Unfavorable OS, PFS Retrospective (66) Himmelsbach et al. [20]

Child–Pugh B Unfavorable OS, PFS Retrospective (457) Tanaka et al. [27]

High ALBI and ECOG Unfavorable OS, PFS Retrospective (147) de Castro et al. [28]

High ALBI Unfavorable OS, PFS Retrospective (50) Sinner et al. [29]

High mALBI Unfavorable ORR,
treatment discontinuation Retrospective (28) Tanaka et al. [30]

High mALF score
(mALBI + AFP) Unfavorable OS, PFS Retrospective (426) Hatanaka et al. [32]

Worsening ALBI at wk3 Unfavorable OS Retrospective (69) Unome et al. [31]

Heterogeneous/hyperintensity
in HBP of MRI Unfavorable PFS Retrospective (35) Sasaki et al. [36]

Decline in TLR in the arterial
phase of CT or MRI after Tx Favorable DCR Retrospective (19) Onuoha et al. [38]

Decrease in blood flow in CEUS
after Tx Favorable DCR, PFS Retrospective (35) Takada et al. [39]

High tumor-to-normal ratio of
FDG uptake in PET-CT Unfavorable PFS and DCR Retrospective (20) Kawamura et al. [41]

Grade 1/2 irAEs Favorable OS, PFS Retrospective (150) Fukushima et al. [43]

Skin reaction Favorable OS Retrospective (130) Shimose et al. [44]

Liver injury Unfavorable OS Retrospective (130) Shimose et al. [44]

Liver injury Unfavorable OS Retrospective (286) Takaki et al. [48]

Hypertension Favorable DCR, PFS Retrospective (286) Tada et al. [50]

Hypertension Favorable OS Retrospective (130) Shimose et al. [44]

Proteinuria Favorable OS Retrospective (286) Takaki et al. [48]

HBV, hepatitis B virus; HCV, hepatitis C virus; OS, overall survival; PFS, progression free survival;
AB, atezolizumab + bevacizumab; SOR, sorafenib; RCT, randomized controlled trial; AFP, alpha-fetoprotein;
Tx, treatment; ORR, objective response rate; BCLC, Barcelona Clinic Liver Cancer; ALBI, albumin–bilirubin;
ECOG, Eastern Cooperative Oncology Group; mALBI, modified albumin–bilirubin; HBP, hepatobiliary phase;
MRI, magnetic resonance imaging; DCR, disease control rate; CT, computed tomography; TLR, tumor–liver ratio;
CEUS, contrast-enhanced ultrasonography; FDG, fluorodeoxyglucose; PET, positron emission tomography; and
irAEs, immune-related adverse events.

3. Blood-Based Biomarkers
3.1. Clinically Available Blood-Based Biomarkers
3.1.1. Alpha-Fetoprotein (AFP)

Previous studies that have investigated predictive factors using blood samples are
summarized in Table 2. Higher levels of AFP correlate with lower survival and higher
tumor recurrence rates across different stages of HCC. Despite its association with worse
outcomes, AFP has not been confirmed as a predicting factor in trials for various first-line
systemic treatments. However, AFP levels above 400 ng/mL have been linked to a poorer
response for ramucirumab, showing for the first time that a biomarker that can be used to
select a systemic treatment in HCC [49].
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Many clinical studies have investigated whether AFP can be used as a biomarker
for predicting clinical outcomes in HCC patients receiving the AB treatment, with a grad-
ual accumulation of evidence. For example, a baseline AFP level of ≥100 ng/mL was
associated with poor PFS in a recent real-world study (n = 286) [50]. Furthermore, more
data have reported that its dynamic change might be associated with the clinical outcome
of AB treatment. A reduction in AFP levels (≥75%) at 6 weeks may serve as a potential
biomarker for predicting improved OS and PFS in HCC patients receiving the AB treatment,
particularly in those with HBV etiology among 440 patients enrolled in the phase Ib and
III trials of IMbrave150 [19]. Another prospective study (n = 284) additionally evaluated
the optimal cut-off reduction in AFP level at week six [53]. As a result, both 20% and
50% showed a significant relationship with ORR and PFS. In another retrospective study
(n = 58), AFP response at 6 weeks after AB treatment was associated with the ORR, OS, and
PFS [54]. Early AFP reduction at 3 weeks also predicted a better radiological response and
OS in the small-sized retrospective study (n = 75) [55]. This study also showed that an AFP
ratio of 1.4 or higher at 3 weeks was related to PFS. These results suggest that the dynamic
change of AFP has a role as an important biomarker for early determination of treatment
continuation, although this needs to be further validated.

3.1.2. Protein Induced by Vitamin K Antagonist-II (PIVKA-II)

PIVKA-II is a tumor marker that is closely associated with the prognosis of HCC
patients. The reduction in PIVKA-II was correlated with better ORR, OS, and PFS in HCC
patients who underwent nivolumab treatment [56]. Several reports have observed an
association between PIVKA-II level and prognosis in AB treatment. A recent retrospective
study (n = 121) showed that a higher level of PIVKA-II at baseline (≥86 mAU/mL) was
associated with poor OS and PFS [24]. A baseline PIVKA-II level of <400 mAU/mL was
also associated with favorable PFS in a real-world study (n = 75) [57]. Another retrospective
study (n = 69) also suggested that an early increase in PIVKA-II level was related to poor
OS [31].

3.1.3. C-Reactive Protein (CRP)

High levels of CRP are associated with systemic inflammation and the progression of
cancer [58]. It also has an immunosuppressive effect, which might be associated with
the impaired efficacy of ICIs. A previous study showed that an elevated CRP level
was a significant factor for poor PFS and OS in various types of cancers treated with
ICIs [59]. Scoring systems using CRP and other parameters have been developed and
validated in HCC patients receiving AB. A recent study showed that CRP < 1 mg/dL and
AFP < 100 ng/mL at baseline are significantly associated with OS in HCC patients receiving
PD-L1 immunotherapy [60]. These two markers were subsequently used to create the
CRAFITY score, and the radiological response was significantly better in a lower CRAFITY
score. Another retrospective study validated the CRAFITY score as a significant factor
for OS and PFS in AB-treated HCC patients (n = 89) [61]. A Japanese retrospective study
(n = 297) showed that the CRAFITY score significantly predicted OS and PFS, AEs, including
liver injury, loss of appetite, proteinuria, fever, and fatigue [62].

A neo-Glasgow prognostic score (GPS) was reported in HCC patients who underwent
surgery associated with postoperative complications [63]. Individuals exhibiting a serum
CRP concentration exceeding 1.0 mg/dl in conjunction with an ALBI grade of either two
or three can be classified as having a neo-GPS score of two. A recent retrospective study
validated this scoring system with 421 patients receiving AB treatment and found that
it was independently related to OS and DCR [64]. Studies using CRAFITY and neo-GPS
systems suggest that CRP should also be considered in the outcome prediction of AB
treatment in HCC.
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3.1.4. Neutrophil-to-Lymphocyte Ratio (NLR) and Platelet-to-Lymphocyte Ratio (PLR)

A high NLR has been suggested to potentially serve as a marker for resistance to ICIs
due to its association with intratumoral concentrations of MDSCs [65], TAMs [66], a serum
cytokine profile encompassing pro-inflammatory and angiogenic cytokines [67], and the
presence of tumor-infiltrating lymphocytes (TILs) [68]. Prior research has indicated that
an increased NLR is linked to a worse prognosis in HCC patients undergoing nivolumab
treatment [69,70]. Evidence on the role of the NLR in predicting outcomes of AB treatment
in HCC patients has accumulated. An NLR > 3.21 was associated with poor ORR in a
small-sized retrospective study (n = 40) [71]. Another retrospective study (n = 240) reported
that an NLR ≥ 3 was not associated with the ORR, but it was associated with the cumulative
discontinuation rate due to AEs, resulting in a shorter OS [72]. A German real-world study
(n = 100) also showed that an NLR > 3.2 was the most significant factor predicting poor
ORR and PFS [26]. Furthermore, an NLR ≥ 3 at baseline was an independent risk factor
related to hyperprogressive disease (HPD) in a pilot study (n = 8) [73]. Patients with an
NLR ≥ 5 had significantly poorer OS in a real-world study (n = 296) [74], and another
retrospective study (n = 121) suggested that an NLR ≥ 2.5 at baseline was associated with
poor OS and PFS [24]. The latter study also showed that an NLR decrease of 10% or more at
the first response evaluation was an independent factor for longer OS. An NLR < 1.97 in the
second course was associated with better ORR, OS, and PFS in a recent retrospective study
(n = 110) [75]. An investigation to determine its optimal cut-off and mechanism should
be performed in future studies. In addition to the NLR > 3, a PLR > 230 is a risk factors
for poor PFS in a small-sized retrospective study (n = 48) [76]. Therefore, the NLR should
be considered as a biomarker, and baseline and dynamic changes in its level should also
be evaluated.

3.1.5. Prognostic Nutritional Index (PNI)

The PNI can be calculated with serum albumin and the absolute count of peripheral
blood lymphocytes and has been used as a prognostic marker in HCC patients who have
undergone liver transplantation [77]. However, its impact on HCC patients receiving ICIs,
including an AB regimen, has been unclear. A recent study showed that a high PNI of 47 or
more, with an AFP level lower than 100 ng/mL, were independent factors associated with
better OS and PFS in a recent retrospective study (n = 286) [78].

3.2. Other Blood-Based Biomarkers Based on Experimental Research
3.2.1. Serum IL-6

IL-6 is a cytokine that is elevated in hepatitis, LC, and HCC patients [79], and also has a
tumor-promoting or tumorigenesis effect that might be associated with the attenuation of T
cell function and recruitment [80]. In a recent study, the association between serum IL-6 and
clinical outcomes in AB-treated patients was investigated prospectively (n = 165) [81].
Among the various blood-derived biomarkers, a serum level of IL-6 was significantly
elevated in patients who did not achieve favorable outcomes (complete response, partial
response, or stable disease for at least 6 months), and it also correlated with poor OS and
PFS. This study found that high IL-6 levels correlated with decreased interferon-γ (IFN-γ)
and tumor necrosis factor-α (TNF-α) secretion from CD8+ T cells, which was validated
by in vitro assays showing that the treatment of IL-6 inhibited cytokine secretion and
expansion of CD8+ T cells. Furthermore, patients with elevated IL-6 levels displayed a
non-T-cell-inflamed immunosuppressive TME in the transcriptome analysis. Results from
another prospective study (n = 64) were also compatible, which showed that higher levels
of serum IL-6 correlated with a poorer ORR, OS, and PFS [82].
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3.2.2. Peripheral Blood PD-1 Expression on Granulocytes

In addition to the NLR, a prospective study further evaluated the expressions of
PD-1 and PD-L1 of granulocytes among whole blood samples using flow cytometry in
34 patients with AB treatment [83]. Interestingly, PD-1 expression on granulocytes, but
not PD-L1, was a significant factor, and a low baseline PD-1 percentage expressed on
granulocytes was associated with better ORR and longer time to progression. Future
translational studies investigating the characteristics of the peripheral blood immune
cell population, as well as their dynamic changes, and their association with the clinical
outcome in AB treatment, should be performed.

3.2.3. Factors Associated with Aberrant Angiogenesis

A recent retrospective study (n = 46) evaluated the serial changes of growth factors and
found that patients who initially had disease control but later progressed had significantly
higher levels of VEGF-D and ANG-2 [84]. These findings suggested that increased levels of
VEGF-D and ANG-2 in the serum may contribute to the resistance of AB treatment.

Insulin-like growth factor-1 (IGF-1) is also associated with angiogenesis in addition
to liver function [85]. A recent study divided HCC patients receiving AB treatment into
baseline IGF-1 high, normal, and low groups among 371 patients enrolled in the phase III
IMbrave150 trial, and found that the low IGF-1 group showed significantly better OS and
PFS [86].

Growth hormone (GH) is known to promote tumor angiogenesis [87] and is also linked
to tumorigenesis or tumor-promoting effects in various types of cancers, such as breast
cancer and HCC. A small-sized previous study (n = 37) evaluated the prognostic role of
GH in HCC patients receiving AB, the low-GH group showed significantly better OS than
the high-GH group, but not PFS [88].

Table 2. Previous studies investigating the association between blood-based markers and outcome.

Blood Markers Related Outcomes Predictive/Prognostic Study Design (n) Reference

AFP ≥ 100 ng/mL Unfavorable PFS Prognostic Retrospective (286) Tada et al. [50]

AFP < 100 ng/mL Favorable OS, PFS Prognostic Retrospective (485) Tada et al. [78]

AFP reduction (≥75%,
6 wks) in HBV subjects Favorable OS, PFS Prognostic Phase Ib and phase III

IMbrave150 (440) Zhu et al. [19]

AFP reduction
(≥50% or 20%, 6 wks) Favorable ORR, PFS Predictive, prognostic Prospective (284) Tamaki et al. [53]

AFP reduction, 6 wks Favorable ORR, OS, PFS Predictive, prognostic Retrospective (58) Kuzuya et al. [54]

Early AFP reduction,
3 wks Favorable ORR, OS, PFS Predictive, prognostic Retrospective (75) Campani et al. [55]

PIVKA-II ≥ 186 mAU/mL Unfavorable OS, PFS Prognostic Retrospective (121) Chon et al. [24]

PIVKA-II ≥ 400 mAU/mL Unfavorable PFS Prognostic Retrospective (75) Ochi et al. [57]

Early increase in PIVKA-II Unfavorable OS, PFS Prognostic Retrospective (69) Unome et al. [31]

High CRAFITY
(CRP + AFP) score

Unfavorable OS, PFS,
frequent AEs Prognostic Retrospective (297) Hatanaka et al. [62]

High CRAFITY
(CRP + AFP) score Unfavorable OS, PFS Prognostic Retrospective (89) Teng et al. [61]

High Neo-GPS
(CRP + ALBI) score Unfavorable OS, DCR Predictive, prognostic Retrospective (421) Tada et al. [64]

NLR > 3.21 Unfavorable ORR Predictive Retrospective (40) Eso et al. [71]

NLR ≥ 3 Unfavorable OS, treatment
discontinuation Prognostic Retrospective (240) Tada et al. [72]

NLR > 3.2 Unfavorable ORR, PFS Predictive Retrospective (100) Jost-Brinkmann et al. [26]

NLR ≥ 3 Hyperprogressive disease Prognostic Retrospective (8) Maesaka et al. [73]

NLR ≥ 5 Unfavorable OS Prognostic Retrospective (296) Wu et al. [74]
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Table 2. Cont.

Blood Markers Related Outcomes Predictive/Prognostic Study Design (n) Reference

NLR ≥ 2.5 Unfavorable OS, PFS Prognostic Retrospective (121) Chon et al. [24]

NLR decrease ≥ 10% (at
1st response evaluation) Favorable OS Prognostic Retrospective (121) Chon et al. [24]

NLR ratio at second
course < 1.97 Favorable ORR, OS, PFS Predictive, prognostic Retrospective (110) Matoya et al. [75]

NLR > 3, PLR > 230 Unfavorable PFS Prognostic Retrospective (48) Wang et al. [76]

PNI (albumin + peripheral
lymphocyte counts) ≥ 47 Favorable OS, PFS Prognostic Retrospective (286) Takaki et al. [78]

High serum interleukin-6 Unfavorable DCR, OS,
PFS Predictive, prognostic Prospective (165) Yang et al. [81]

High serum interleukin-6 Unfavorable ORR, OS, PFS Predictive, prognostic Prospective (64) Myojin et al. [82]

Low baseline PD-1%
on granulocytes Favorable ORR, TTP Predictive Prospective (34) Giovannini et al. [83]

Elevated VEGF-D and
ANG-2 Durable disease control Predictive Retrospective (46) Yang et al. [84]

Low IGF-1 Favorable OS, PFS Prognostic Phase III IMbrave150 (371) Kaseb et al. [86]

Low growth hormone Favorable OS Prognostic Prospective (37) Mohamed et al. [88]

High anti-drug antibodies,
3 wks Unfavorable OS, PFS Prognostic Prospective (174) Kim et al. [89]

High ctDNA Unfavorable ORR, OS, PFS Predictive, prognostic Retrospective (85) Matsumae et al. [90]

TERT mutation within
ctDNA Unfavorable OS Prognostic Retrospective (85) Matsumae et al. [90]

Low CXCL9 within
ctDNA Unfavorable DCR Predictive Retrospective (29) Hosoda et al. [91]

AFP, alpha-fetoprotein; wks, weeks; PFS, progression-free survival; OS, overall survival; ORR, objective response
rate; AEs, adverse events; DCR, disease control rate; HBV, hepatitis B virus; PIVKA-II, protein induced by vitamin
K antagonist-II; GPS, Glasgow prognostic score; ALBI, albumin–bilirubin; NLR, neutrophil–lymphocyte ratio;
PLR, platelet–lymphocyte ratio; PNI, prognostic nutritional index; PD-1, programmed cell death-1; VEGF, vascular
endothelial growth factor; ANG-2, angiopoietin-2; IGF-1, insulin-like growth factor-1; ctDNA, circulating tumor
DNA; TERT, telomerase reverse transcriptase; and CXCL9, chemokine ligand9.

4. Tissue-Driven Biomarkers
4.1. Biomarkers Related to Immune Cells
4.1.1. PD-L1 Expression

Previous studies that have investigated predictive factors using tissue samples are
summarized in Table 3. In the tumor and adjacent liver tissues of HCC, PD-L1 can be
expressed by tumor cells, Kupffer cells, hepatocytes, and sinusoidal cells [92]. Although
its expression is variable across the studies and antibody clones used for immunohisto-
chemistry (IHC), its expression within tumor tissues has been considered to be associated
with macrovascular invasion, poor differentiation, high AFP levels, and poor prognosis
in HCC, as reported previously [93,94]. Its impact on the efficacy of ICI treatment in HCC
patients is controversial. For example, PD-L1 expression measured by IHC on tumor cells
did not affect the outcome of HCC patients treated with nivolumab [95], but the baseline
combined positive score (CPS) of PD-L1 expression was related to ORR in pembrolizumab-
treated patients [96]. In the phase III IMbrave150 trial, PD-L1 expression (clone SP263)
with a CPS ≥ 1% was associated with the benefits of the AB treatment in terms of PFS
and ORR, compared to the sorafenib treatment [17]. However, another experimental study
included 358 patients enrolled in the phase Ib and III IMbrave150 trial, which also used an
SP263 clone for IHC, did not observe a difference in ORR [97]. Therefore, further studies
are needed to validate the role of PD-L1 expression measured by IHC as a biomarker for
AB treatment in HCC. Of note, the standardization for the antibody clone and staining
methods, and adjustment of the cut-off value are mandatory as it is the key target molecule
of AB treatment.
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Table 3. Previous studies investigating the association between tissue-based markers and outcome.

Tissue Markers Related Outcomes Study Design (n) Reference

PD-L1 expression CPS ≥ 1% (IHC,
clone SP263)

Favorable ORR, PFS of
AB compared to SOR

Phase III RCT- IMbrave150
(336) Cheng et al. [17]

Signature associated with the PD-L1
expression (RNA sequencing) Favorable ORR, PFS Phase Ib and phase III

IMbrave150 (358) Zhu et al. [97]

TERT promoter mutation
(whole exome sequencing)

Favorable ORR, PFS of
AB compared to SOR

Phase Ib and phase III
IMbrave150 (358) Zhu et al. [97]

High atezolizumab–bevacizumab response
signature (ABRS)

-PD-L1 and effector T cell signatures
(RNA sequencing)

Favorable ORR, PFS Phase Ib and phase III
IMbrave150 (358) Zhu et al. [97]

High infiltration of CD3/8+ T cells, Granzyme+
T cells, and MHC-I+ tumor cells (IHC) Favorable ORR Phase Ib and phase III

IMbrave150 (358) Zhu et al. [97]

High expression of CD4/8+ T cells, Treg cells,
B cells, and DCs (RNA sequencing) Favorable ORR, PFS Phase Ib and phase III

IMbrave150 (358) Zhu et al. [97]

PD-L1, programmed cell death-ligand 1; CPS, combined positive score; IHC, immunohistochemistry; ORR,
objective response rate; PFS, progression-free survival; AB, atezolizumab + bevacizumab; SOR, sorafenib; TERT,
telomerase reverse transcriptase; MHC, major histocompatibility complex; Treg, regulatory T; and DC, den-
dritic cell.

4.1.2. Immune Cell Infiltrations within Tumor Tissues

Although immune cells including various subsets of T cells, TAMs, and MDSCs
among the TME of HCC might be closely related to the responses to ICI treatment, limited
data have been reported, probably due to the difficulty in obtaining tumor tissues. In
nivolumab-treated HCC patients, higher baseline CD3+ and CD8+ TILs measured by IHC
were related to better OS [69]. Furthermore, higher CD3+ and CD8+ TILs 6 weeks after
tremelimumab treatment for HCC were correlated to the ORR [98], which implicates the
role of tumor biopsy and histologic examinations for immune cell populations before and
after ICI treatment.

Using multiplex IHC staining, a previous study using samples from 358 patients
enrolled in the phase Ib and phase III IMbrave150 trial showed that higher infiltrations of
CD3+ T cells, CD8+ T cells, MHC-1+ tumor cells, and CD3+granzyme B+ T cells, within
tumor tissues were associated with the ORR of AB treatment [97]. They also used xCell
deconvolution analysis from transcriptome data and observed that a higher presence of
CD8+ T cells, CD4+ T cells, Tregs, B cells, and dendritic cells (DCs) is associated with
better ORR and PFS. Further examinations evaluating various immune cell populations
within tumor tissues before and after AB treatment should be performed. In addition, the
baseline evaluation and monitoring of the peripheral immune cell population should also
be considered in future studies.

4.2. Atezolizumab-Bevacizumab Response Signature

The development of novel signatures by tumor tissues that can predict responses
should also be investigated. Using bulk RNA sequencing analyses of tumor tissues, the
authors built an atezolizumab–bevacizumab response signature (ABRS) that contains
genes related to pre-existing immunity, including genes associated with high PD-L1 and
effector T cell signatures using samples from patients enrolled in the phase Ib and phase III
IMbrave150 trial. As a result, a high ABRS was significantly associated with better ORR
and PFS [97].

5. Novel Biomarkers
5.1. Anti-Drug Antibodies (ADA)

Atezolizumab treatment has been reported to induce ADA [99]. Consequently, this
might reduce the level of atezolizumab, but the impact on clinical efficacy has been unclear.
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Serum ADA can be measured by enzyme-linked immunosorbent assays. A recent prospec-
tive multicenter cohort study (n = 174) showed that a higher ADA level in AB-treated HCC
patients at 3 weeks was associated with poor PFS and OS [89]. A high level of ADA against
atezolizumab at 3 weeks after initial treatment was found in 17.4% of the patients, whereas
82.6% of the patients had low or negative results. The levels of ADAs were negatively
correlated with the level of atezolizumab. A high-ADA group had significantly lower OS
and PFS in discovery (HR = 2.84 and 3.30, respectively) and validation (HR = 2.52 and
5.81, respectively) studies. Furthermore, patients with higher ADA levels showed lower
proliferation and cytokine-secreting functions of T cells, suggesting that ADA attenuated
the antitumor immune response. Future studies might be needed to validate this study.

5.2. Liquid Biopsy
5.2.1. Circulating Tumor DNA (ctDNA) Levels and TERT Mutation

The number of ctDNA can be correlated with tumor stage and prognosis in HCC,
and a recent study (n = 85) evaluated its association with prognosis in patients receiving
AB [90]. As a result, a higher level of ctDNA was correlated with poorer ORR, PFS, and OS.
When ultradeep sequencing was performed, the TERT promoter, tumor protein 53 (TP53),
and catenin beta 1 (CTNNB1) were frequently mutated, but TERT ctDNA mutation was an
independent factor predicting poor OS. CTNNB1 mutation was not a significant factor, as
found in another study [100]. These findings imply that measuring and profiling ctDNA
should be researched with a larger sample size in future studies.

5.2.2. CXCL9 within ctDNA

Litchfield and colleagues examined whole-exome and transcriptome data from over
1000 patients undergoing treatment with ICIs and found that a high expression of CXCL9
is among the most significant factors predicting a positive response to ICI therapy [101].
This might be due to the role of CXCL9 in attracting cytotoxic CD8+ T cells to the tumor
site [102]. In a recent Japanese retrospective study (n = 29), authors performed a cytokine
array analysis using ctDNA and found that low CXCL9 levels within the ctDNA were
associated with early PD in discovery and validation cohorts receiving AB [91].

6. Potential but Unproven Markers
6.1. Sarcopenia and Obesity

Sarcopenia refers to the gradual decline in both the amount and power of skeletal
muscles and is associated with the prognosis in HCC patients who underwent surgical
resection [103] and systemic therapies including sorafenib or lenvatinib [104,105]. In a
small-sized retrospective study, there was no association between sarcopenia and prognosis
in AB-treated HCC patients [106]. The association between body mass index (BMI) and
the clinical outcome of ICI treatment is controversial across the cancer types and studies,
and the relationship between BMI and immunotherapy in HCC has not been researched
extensively. One study has shown that a BMI of 25 or higher is linked to better OS, but
not PFS, in patients treated with PD-1 antibody-based therapies [107]. A recent study
investigated whether high BMI is associated with the clinical outcome in patients with the
AB treatment, but there was no significance in OS, PFS, and ORR [108]. Nevertheless, more
data are needed to confirm the role of sarcopenia and obesity in the prognosis of HCC
patients treated with AB.
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6.2. Tumor Mutational Burden (TMB)

TMB has been studied across various human cancers, and a high TMB has been
considered to reflect a high load of tumor neoantigens and responses to the ICI treatment
for cancers, which might be due to more recognition of tumor cells by T cells and enhanced
antitumor immune responses [109]. However, its impact on HCC patients receiving ICIs
has been controversial. A previous study showed that the frequency of patients with a
high TMB was very low (0.8%, 6 of 755 patients with HCC), and was not related to the
response rate [110]. In patients receiving camrelizumab and afatinib, TMB was associated
with the ORR, although the sample size was small [111]. In a recent experimental study
of AB treatment, TMB was not associated with PFS and ORR [17]. However, considering
its impact on antitumor immune responses, larger and multicenter studies are needed
to elucidate the role of TMB in HCC patients receiving the AB treatment. Importantly,
the methods of sequencing and the cut-off value of TMBs should be standardized in
future studies.

6.3. Gene Mutations

Alterations in genes related to the immune function or oncogenic pathways in tumor
tissues have been studied in many types of cancers including HCC. However, there is
a lack of data on HCC patients receiving AB treatment. The immune-exclusion class
characterized by Wnt/CTNNB1 mutation has been known to be associated with resistance
to ICI treatment in HCC [112]. In a previous study, a tumor biopsy occurred before AB
treatment, and expression levels of glutamine synthetase and β-catenin, which are markers
of Wnt/β-catenin signal activation, were measured, but there was no difference in PFS and
ORR between activation and inactivation groups [113]. TP53 gene mutations, which are
related to an immunosuppressive TME in HCC [114], have not been studied in patients
receiving ICI or AB treatments for HCC.

Previous studies showed that telomerase reverse transcriptase (TERT) promoter muta-
tions are associated with poor outcomes in various types of cancers, and are particularly
related to the epithelial–mesenchymal transition [115] and PD-L1 expression [116]. This
might be correlated with a higher TMB and better response to ICIs [115]. Furthermore,
antigens from the TERT protein have been considered to be immunogenic and recognized
by T cells, which is the main effector of ICI treatment [117]. Of note, a recent experimental
study showed that a TERT promoter mutation is associated with the clinical benefit of AB
treatment compared to sorafenib in terms of OS and PFS [97]. Further mechanistic and
validation studies in AB-treated HCC patients should be performed.

6.4. Gut Microbiome

It has been reported that the diversity, composition, and function of the gut microbiome
might be associated with immune responses. Zheng et al. investigated whether the gut
microbiome has an impact on the responsiveness of anti-PD-1 treatment in patients with
HCC [118]. As a result, responders had a higher richness of taxa and gene counts compared
to non-responders, and diversity and stability were maintained after anti-PD-1 treatment
whereas it is not maintained in non-responders. However, their impact on anti-VEGF
treatment, as well as their role as a biomarker in the AB treatment of HCC patients, still
needs to be clarified.

7. Discussion

The IMbrave150 trial represents a significant milestone in the systemic treatment for
advanced HCC and has contributed to further investigations and approvals of ICI-based
combination treatments. As confirmed in the meta-analysis of various types of cancers,
including HCC, ICI treatment can increase the chance of a complete response compared to
conventional treatments [119]. Moreover, the addition of locoregional treatments, including
transarterial radioembolization to the ICI-regimen has also been tried to maximize the
clinical benefit [120]. Nevertheless, a considerable number of patients do not respond to



Int. J. Mol. Sci. 2023, 24, 11799 15 of 22

the treatment, about 70% [121], indicating the need to identify predictive biomarkers to
guide initial and on-treatment decisions in HCC patients receiving AB.

Considering the mechanism of action for AB, it is crucial to develop biomarkers that
accurately reflect the interplay between angiogenesis and immunosuppression within the
TME. Of note, VEGF not only fosters angiogenesis in tumors but also establishes an im-
munosuppressive TME by attracting and inducing immunosuppressive cells, such as Tregs,
TAMs, and MDSCs [11]. Moreover, VEGF hampers DC differentiation and maturation, as
well as effector T cell proliferation, ultimately weakening T cell priming and targeting cell
elimination [11]. In addition, VEGF drives the T cell exhaustion-specific program, which
upregulates transcription factor TOX in the TME [122]. Thus, blocking VEGF signaling
not only inhibits intra-tumoral angiogenesis and normalizes tumor vasculature but also
transforms the TME from immunosuppressive to immune-active, which might enhance the
efficacy of ICIs. These potential synergisms might improve AB efficacy in HCC compared
to monotherapy-based ICIs such as nivolumab and pembrolizumab.

The analysis of biomarkers in HCC has been challenging in various treatment modali-
ties, and no standard or definite predictive biomarkers have been identified for patients
receiving AB treatment. The unique environment involving hepatitis and/or cirrhosis
with different etiologies in HCC might contribute to this challenge. To predict treatment
response more accurately, an integrative approach that combines clinical, histopathology,
imaging, and circulating markers is necessary. The fact that this regimen contains not
only ICI but also VEGF inhibitors, should be considered when developing biomarkers
to optimize therapeutic strategies. Furthermore, baseline biomarkers can help identify
patients who are likely to respond to treatment, whereas dynamic biomarkers, which are
assessed during the therapy, can provide crucial information about treatment efficacy and
the potential need for adjustments.

There are some limitations to the current review. Because many of the previous reports
we have reviewed were small-sized, retrospective studies, there is a possibility of bias,
misrepresentation, or inconsistency. Therefore, data should be interpreted cautiously, and
most biomarkers need to be validated in larger, prospective future studies. In addition, sys-
temic treatment and immunotherapy for HCC is a rapidly evolving field; reviews regarding
its prognostic or predictive biomarkers can also quickly become outdated, necessitating
regular updates.

8. Concluding Remarks

The increasing availability of real-world data from patients treated with AB is expected
to facilitate the development of more accurate predictive biomarkers, ultimately improving
the clinical outcome of first-line systemic treatment for HCC. In addition to the examination
of peripheral blood, tumor tissues, and clinical information, liquid biopsy or microbiome
analysis could also play a role in predicting responses to AB and should be investigated
in future studies. Importantly, the development of biomarkers for the AB treatment of
HCC should consider integrative and dynamic approaches. This comprehensive strategy
may lead to better patient selection, more precise prediction of treatment response, and
optimized therapeutic strategies, ultimately resulting in improved patient outcomes. Fur-
thermore, validation tools other than patient cohorts, such as organoids or patient-derived
xenograft models, could be used in the development of biomarkers in AB treatment and
could also be applied to the agents for novel therapeutic targets of HCC.
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