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Abstract: Serotonin (5-HT) has been reported to play an important role in mammary gland involution
that is defined as the process through which the gland returns to a nonlactating state. However, the
overall picture of the regulatory mechanisms of 5-HT and the effects of serotonylation on mammary
gland involution still need to be further investigated. The current study aimed to investigate the
effects of 5-HT on global gene expression profiles of bovine mammary epithelial cells (MAC-T) and
to preliminarily examine whether the serotonylation involved in the mammary gland involution by
using Monodansylcadaverine (MDC), a competitive inhibitor of transglutaminase 2. Results showed
that a high concentration of 5-HT decreased viability and transepithelial electrical resistance (TEER)
in MAC-T cells. Transcriptome analysis indicated that 2477 genes were differentially expressed in
MAC-T cells treated with 200 µg/mL of 5-HT compared with the control group, and the Notch,
p53, and PI3K-Akt signaling pathways were enriched. MDC influenced 5-HT-induced MAC-T cell
death, fatty acid synthesis, and the formation and disruption of tight junctions. Overall, a high
concentration of 5-HT is able to accelerate mammary gland involution, which may be regulated
through the Notch, p53, and PI3K-Akt signaling pathways. Serotonylation is involved in bovine
mammary gland involution.

Keywords: MAC-T cells; transcriptome profiles; serotonylation; mammary gland involution; cell
viability; tight junction

1. Introduction

Mammary gland involution of dairy cows is a complex physiological process involving
extensive cell apoptosis and proliferation that lead to renewal of the mammary epithelial
cell population, which usually takes place at the end of a lactation period. The process of
mammary gland involution actively starts within 2 d after the cessation of milk removal
and seems to be complete after approximately 21 d [1]. This involution is characterized
by a decrease in the synthesis and secretion of milk components, the turnover of mam-
mary epithelial cells, the activation of various proteases, and an increase in tight junction
permeability [2]. Once the involution of the mammary gland is complete, resistance to
bacterial infection improves [3]. Due to the optimization of genetics and management,
milk production in modern dairy cows is increasing dramatically, and a dairy cow can still
produce 25 to 30 kg/d of milk at the time of dry-off [4]. The high milk secretion capacity
delays the transition to the involute state, thereby increasing the risk of acquiring a new
intramammary infection. Rajala-Schultz et al. reported that the risk of intramammary
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infection at calving increases by 77% for every 5 kg of milk produced above 12.5 kg at
drying off [5]. Additionally, the accumulated milk in the udder at the beginning of the
dry period increases the risk of milk leakage [6,7] and causes discomfort and pain to
dairy cows [8]. Therefore, accelerating mammary gland involution, especially in modern,
high-milk-producing dairy cows, would be beneficial to the health and welfare of the
animals.

Serotonin (5-HT) is an indolamine compound synthesized from tryptophan that con-
tains an indole ring and a carboxyl-amide side-chain [9]. It is well established that 5-
HT plays an important role in triggering mammary gland involution through autocrine–
paracrine mechanisms on mammary epithelial cells to regulate mammary gland devel-
opment and milk secretion [10–12]. An increasing concentration of 5-HT was reported to
promote mammary gland involution via the 5-HT7 receptor (HTR7) by disrupting tight
junctions [13]. Field et al. administered intramammary infusions of serotonin precursor
(5-hydroxy-l-tryptophan, 5-HTP) at drying-off and achieved a more efficient involution,
reflected by increased cell death and epithelial tight junction permeability, and down-
regulation of milk protein genes [14]. However, to our knowledge, the effects of 5-HT
on the mammary gland has not been studied using transcriptome analysis. In addition,
recent studies have shown that 5-HT not only acts through receptors but may also play a
physiological role through serotonylation after entering the cells [15]. Serotonylation is the
covalent post-translational modification involving 5-HT, catalyzed by transglutaminases
(TGs), especially by transglutaminase2 (TG2) [15]. Previous studies have revealed that
TG2 regulates cell adhesion, cell signaling, and cell survival in various cell types [16–18].
Monodansylcadaverine (MDC) is a cell-permeable competitive inhibitor of TG2, which is
usually used to inhibit TG2 activity [19]. However, the effects of serotonylation on mam-
mary gland involution are still unclear. In addition, the MAC-T is one of the most often
used immortalized bovine mammary epithelial cell lines to study bovine mammary gland
functions, such as cell proliferation and apoptosis, tight junction permeability, inflamma-
tions, etc. [20–23]. Therefore, the objective of the current study was to investigate the effects
of 5-HT on global gene expression profiles of bovine mammary epithelial cells by applying
transcriptome analysis in MAC-T cells. Further, whether the serotonylation involved in the
mammary gland involution was preliminarily examined using TG2 inhibitor MDC.

2. Results
2.1. Effects of 5-HT on Intracellular 5-HT Concentration in MAC-T Cells

Compared with the control group, the intracellular 5-HT concentrations were increased
in cells treated with 0.2, 2, or 20 µg/mL of 5-HT for 24 h (p < 0.05, Figure 1). The cells treated
with 2 µg/mL of 5-HT exhibited the greatest intracellular 5-HT concentration compared
with other groups. There was no significant difference in intracellular 5-HT concentration
between the control group and cells treated with 200 µg/mL of 5-HT (p > 0.05).

2.2. Effects of 5-HT on Cell Viability in MAC-T Cells

Cell Counting Kit 8 (CCK-8) assay showed that the cell viability was significantly
increased after treatment with 0.2 µg/mL of 5-HT for 24 h (p < 0.05, Figure 2A). There was
no significant difference in cell viability between the control group and cells treated with
2, 20, or 200 µg/mL of 5-HT for 24 h (p > 0.05). However, 200 µg/mL of 5-HT decreased
cell viability more than 0.2, 2, or 20 µg/mL of 5-HT for 24 h (p < 0.05). There was no
significant difference in cell viability between the control group and cells treated with 0.2,
2, or 20 µg/mL of 5-HT for 48 h (Figure 2B) and 72 h (Figure 2C) (p > 0.05), but the cell
viability was significantly decreased after treatment with 200 µg/mL of 5-HT for 48 h and
72 h compared with the control group (p < 0.05).
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Figure 1. Effects of 5-HT on intracellular 5-HT concentrations in MAC-T cells. MAC-T cells were 

treated with the indicated concentrations of 5-HT (0, 0.2, 2, 20, or 200 μg/mL) for 24 h. The values 

represent the mean ± SEM (n = 6). The variant letter indicates a significant difference when p < 0.05. 
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concentrations of 5-HT (0, 0.2, 2, 20, or 200 μg/mL) for the indicated times (24, 48, or 72 h). The values 

represent the mean ± SEM (n = 6). The variant letter indicates a significant difference when p < 0.05. 

2.3. Effects of 5-HT on Transepithelial Electrical Resistance (TEER) in MAC-T Cells 

The MAC-T cells were cultured on Transwell permeable supports for 12 days prior 

to reaching plateau TEER (~6200 Ω cm2). Then, cells were treated with various concentra-

tions of 5-HT, and 200 μg/mL of 5-HT caused a rapid decrease in TEER of MAC-T cell 

monolayer within 24 h (p < 0.05, Figure 3). However, 0.2, 2, or 20 μg/mL of 5-HT did not 

influence the TEER compared with the control group (p < 0.05). 

Figure 1. Effects of 5-HT on intracellular 5-HT concentrations in MAC-T cells. MAC-T cells were
treated with the indicated concentrations of 5-HT (0, 0.2, 2, 20, or 200 µg/mL) for 24 h. The values
represent the mean ± SEM (n = 6). The variant letter indicates a significant difference when p < 0.05.
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Figure 2. Effects of 5-HT on MAC-T cell activity. (A–C) MAC-T cells were treated with the indicated
concentrations of 5-HT (0, 0.2, 2, 20, or 200 µg/mL) for the indicated times (24, 48, or 72 h). The values
represent the mean ± SEM (n = 6). The variant letter indicates a significant difference when p < 0.05.

2.3. Effects of 5-HT on Transepithelial Electrical Resistance (TEER) in MAC-T Cells

The MAC-T cells were cultured on Transwell permeable supports for 12 days prior to
reaching plateau TEER (~6200 Ω cm2). Then, cells were treated with various concentrations
of 5-HT, and 200 µg/mL of 5-HT caused a rapid decrease in TEER of MAC-T cell monolayer
within 24 h (p < 0.05, Figure 3). However, 0.2, 2, or 20 µg/mL of 5-HT did not influence the
TEER compared with the control group (p < 0.05).

2.4. Transcriptional Profile in the MAC-T Cells

Principal components analysis (PCA) plot showed that the first principal component
(PC1) summarized 80.53% of the variability, whereas the second principal component (PC2)
summarized 8.37% of the variability (Figure 4A). The cells treated with 200 µg/mL of
5-HT were clearly distinct from the other two groups (0, and 2 µg/mL of 5-HT) on PC1,
whereas PC2 did not allow any distinction among groups. There were 71 genes that were
significantly differentially expressed in cells treated with 2 µg/mL of 5-HT compared with
the control group, including 36 up-regulated genes and 35 down-regulated genes. A total
of 2477 genes were significantly differentially expressed in cells treated with 200 µg/mL of
5-HT compared with the control group, including 1105 up-regulated genes and 1372 down-
regulated genes (Figure 4B). Venn diagram shows that there are 36 shared differentially
expressed genes (DEGs) between the “200 vs. 0” and “2 vs. 0” comparisons. Totals of
2441 and 35 unique DEGs are in the “200 vs. 0” and “2 vs. 0” comparisons, respectively
(Figure 4C).
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Figure 4. PCA analysis of gene expressions, number of differentially expressed genes, and main
differentially expressed genes in MAC-T cells treated with 0, 2, or 200 µg/mL of 5-HT. (A) The PCA
analysis of gene expressions in MAC-T cells among the three groups. (B) The number of differentially
expressed genes in “2 vs. 0” and “200 vs. 0”. (C) Venn diagram of the altered gene expressions among
three groups. The number of unique and shared expression genes in “2 vs. 0” and “200 vs. 0” were
indicated. (D–G) The KEGG pathways significantly enriched in the unique differentially expressed
genes identified in MAC-T cells in “200 vs. 0”, and differentially expressed genes in main KEGG
pathways. (H) The shared differentially expressed genes identified in MAC-T cells between “200 vs.
0” and “2 vs. 0”. (I) The unique differentially expressed genes identified in MAC-T cells in “2 vs. 0”.
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2.5. Kyoto Encyclopedia of Genes and Genomes (KEGG) Enrichment Analysis

The results of KEGG enrichment analysis for “200 vs. 0” comparison showed that
eight down-regulated DEGs (CDH3, FN1, ITGB4, COL1A1, CDH2, CDH26, TG2, CLDN-8,
and THBS1) and one up-regulated DEG (CDH15) were enriched in biological adhesion
(Figure 4D), seven down-regulated DEGs (TGFB2, NOTCH2, TP53, TGFB1I1, AKT3, MMP9,
and NOTCH1) and one up-regulated DEG (STAT1) were enriched in regulation of signaling
(Figure 4E), two down-regulated DEGs (MYC and MET) and three up-regulated DEGs
(CASP4, CASP7, and EGR1) were enriched in cell death (Figure 4F), and three down-
regulated DEGs (ACLY, FASN, and ACACA) were enriched in fatty acid metabolic process
(Figure 4G).

Among the thirty six shared DEGs observed both in the “200 vs. 0” and “2 vs. 0”,
seven down-regulated DEGs (CLSTN2, FAM83C, NYX, BOLA-DRA, C6H4orf17, TFEC, and
C19H17orf78) and four up-regulated DEGs (HOXA13, CATIP, KIF5C, and CYP1A1) were
observed (Figure 4H). As shown in Figure 4I, five down-regulated DEGs (METRN, DZIP3,
CDH4, MYO3B, and FAM221B) and three up-regulated DEGs (MEIOB, HSPB2, and S100A12)
were observed in “2 vs. 0”.

2.6. Gene Ontology (GO) Enrichment Analysis

The results of GO enrichment analysis for “200 vs. 0” comparison showed that eight
specific pathways related to mammary gland involution were enriched, including the Notch
signaling pathway (DLL1, NOTCH2, NOTCH1, and JAG1, Figure 5), p53 signaling pathway
(GADD45G, CHEK1, CCND1, GADD45B, SESN2, CDKN1A, and TP53), steroid biosynthesis
(LSS, DHCR7, LIPA, SQLE, NSDHL, and DHCR24), cellular senescence (E2F2, MAPK3,
AKT3, CDK6, CDKN1A, CDKN2B, MYC, TGFB2, and TP53), cell adhesion molecules (CLDN-
6, NCAM1, SDC1, CDH2, SDC2, NCAM2, NEO1, CD274, CLDN-1, CLDN-8, SDC3, CD6,
CDH3, and CDH15), ferroptosis (SLC7A11, CYBB, STEAP3, SAT1, FTL, ACSL5, and TP53),
PI3K-Akt signaling pathway (PIK3AP1, MAPK3, BCL2L1, PIK3R5, AKT3, CDKN1A, and
TP53), and cell cycle (CDK6, CDKN1A, CDKN2B, MYC, PLK1, TGFB2, and TP53).
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2.7. Effects of MDC and 5-HT on the mRNA Expressions of Selected Genes

Compared with the control group, 200 µg/mL of 5-HT and MDC increased the mRNA
expression of TGF-β1 (p < 0.05, Figure 6A), while 200 µg/mL 5-HT + MDC decreased the
mRNA expression of TGF-β1 compared to the 200 µg/mL 5-HT group (p < 0.05). The
mRNA expression of Caspase-3 was increased in the 200 µg/mL 5-HT group compared to
the control group (p < 0.05), and the mRNA expression of Caspase-3 was decreased in the
200 µg/mL 5-HT + MDC group compared to the 200 µg/mL 5-HT group (p < 0.05).
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The mRNA expressions of FASN and ACACA were decreased in the 200 µg/mL 5-HT
group compared with the control group (p < 0.05, Figure 6B). The mRNA expressions of
SCD-1 and FASN were increased in the MDC group compared with the control group
(p < 0.05). In addition, the mRNA expression of ACACA was decreased in the 2 µg/mL
5-HT + MDC group compared with the 2 µg/mL 5-HT group (p < 0.05).

Compared with the control group, the mRNA expressions of CLDN-4 was increased
in the 2 µg/mL 5-HT group (p < 0.05, Figure 6C). The mRNA expressions of CLDN-1
and CLDN-8 were decreased in the 200 µg/mL 5-HT group compared to the control
group (p < 0.05). The mRNA expressions of CLDN-4, ZO-2, and E-cadherin were increased
(p < 0.05), and the mRNA expressions of CLDN-1 and CLDN-8 were decreased in the MDC
group compared to the control group (p < 0.05). Compared with the 2 µg/mL 5-HT group,
the mRNA expressions of CLDN-1 and CLDN-8 were decreased (p < 0.05), and the mRNA
expression of ZO-2 was increased in the 2 µg/mL 5-HT + MDC group (p < 0.05). Compared
with the 200 µg/mL 5-HT group, the mRNA expressions of CLDN-1, ZO-1, and E-cadherin
were increased (p < 0.05), and the mRNA expressions of CLDN-4 and ZO-2 were decreased
in the 200 µg/mL 5-HT + MDC group (p < 0.05).

3. Discussion

Accelerating mammary gland involution during the dry period can reduce the inci-
dence of milk leakage, thus reducing the risk of pathogen invasion and the incidence of
intramammary infection [24,25]. It is well established that 5-HT is involved in mammary
gland involution in late lactation [10]. Hernandez-Castellano et al. found that increasing
5-HT concentration in blood through i.v. infusion of 5-HT precursor 5-HTP may inhibit
lactogenesis in bovines [26]. Also, Hernandez et al. reported that intramammary infusions
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of 5-HTP or selective 5-HT reuptake inhibitors caused an increase in the rate of milk decline
in late lactation and accelerated mammary gland involution [27]. In the present study, we
aim to elucidate the function of 5-HT on bovine mammary gland involution by treating
MAC-T cells with 5-HT using transcriptomics.

Our results showed that long-time treatments (48 h or 72 h) with 200 µg/mL of 5-HT
inhibited the proliferation of MAC-T cells. In addition, TEER is an indicator of epithelial
barrier integrity, and the current study showed that 200 µg/mL of 5-HT led to a disruption
of tight junctions of MAC-T cells. This result was in line with Hernandez et al. who
observed that treatment of pBMEC with exogenous FLX resulted in a disassembly of
tight junctions after 24 h [27]. These findings suggest that the high concentration of 5-HT
could accelerate mammary gland involution, as indicated by a decrease in cell viability
and disruption of tight junctions. Moreover, the low concentrations of 5-HT (0.2, 2, or
20 µg/mL) did not influence the tight junction of MAC-T cells in the present study. This
result does not support previous findings that low concentrations of 5-HT promoted the
formation of tight junctions [13]. One of the possible explanations for the inconsistency is
the lower concentration of 5-HT (0.2, 2, or 20 µg/mL) used in the current study compared
with that of the previous study (5 or 7.5 × 10−4 M) [13].

Transcriptomics analysis showed that gene expressions of HOXA13, CATIP, KIF5C, and
CYP1A1 were up-regulated, and the gene expressions of CLSTN2, FAM83C, NYX, BOLA-
DRA, C6H4orf17, TFEC, and C19H17orf78 were down-regulated in both 200 vs. 0 and 2 vs. 0.
Manzella et al. found that 5-HT is a CYP1A1 substrate that competes with aryl hydrocarbon
receptor (AhR) for CYP1A1 degradation, which could regulate tryptophan metabolism by
promoting sustained AhR signaling [28]. The KIF5C is enriched in microtubules and is
necessary for the transport of N-cadherin between the Golgi and the plasma membrane,
facilitating cell-to-cell adhesion [29]. In addition, BOLA-DRA is directly related to the
major histocompatibility complex (MHC) molecules, which promote antigen recognition
and activation of immune responses, and polymorphisms in the BOLA-DR gene relate to
the inhibition of mastitis [30]. The FAM83C family might be associated with increasing
DNA copy numbers [31]. Thus, either low or high concentrations of 5-HT may regulate
some common genes that are involved in tryptophan metabolism, cell adhesion, immune
responses, and signal transduction.

The results of transcriptome analysis of the current study showed that 2441 genes were
differentially expressed in the 200 vs. 0 group, including genes that were enriched in the
biological adhesion, regulation of signaling, cell death, and the fatty acid metabolic process
in response to high concentration of 5-HT treatment. In this study, the gene expressions
of Caspase-4, 7 were up-regulated, which was related to cell death. These results were
consistent with Marti et al. who indicated that the activation of caspases participated in the
pro-apoptosis signaling pathway, thereby involving mammary gland involution [32].

FASN and ACACA were related to the fatty acid metabolic process. Previous studies
found that FASN [33] and ACACA [34] were involved in the de novo synthesis of fatty acids
in mammary epithelial cells, which is one of the main sources of fatty acid in milk [35].
In the current study, the gene expressions of FASN and ACACA were down-regulated,
indicating that the ability of MAC-T cells to synthesize fatty acid was decreased, which
was consistent with Hurley, who reported that mammary gland involution resulted in the
ability of mammary epithelial cells to synthesize milk fat being decreased [1].

The genes which were enriched in the biological adhesion, including CLDN-6, CDH2,
CLDN-8, CDH3, and CDH15, play a central role in the barrier function of the epithelium.
The CLDNs are a large family of membrane proteins whose classic function is to regulate the
permeability of tight junctions in epithelia, and CLDN-8 is localized to the tight junctions,
where it is presumably important in forming the paracellular barrier in epithelia during
lactation [36]. Our results showed that CLDN-8 was down-regulated, indicating that tight
junction permeability was decreased, which was consistent with results of the TEER. In
addition, ZOs are also reported to be involved in composition of tight junctions [37,38], and
Field et al. found that 20 mg/teat 5-HTP intramammary infusions resulted in decreases
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in the mRNA expression of ZO-1, ZO-2, and ZO-3 [14]. In the present study, however,
the gene expressions of ZOs had no significant difference in the 200 vs. 0 group. This
discrepancy could be due to the different form of 5-HT used in the current study.

Mammary gland involution is characterized by apoptosis of mammary epithelial
cells [39], shedding of mammary epithelial cells [40], and reduction in milk component
synthesis [41]. Our results show that most gene expressions related to cell death were up-
regulated, and most gene expressions related to biological adhesion and fatty acid metabolic
process were down-regulated, which were consistent with the mammary gland involution
process. Pai et al. found that 5-HT accelerates mammary gland involution through the
cAMP-PKA pathway [13]. In this study, the results of GO enrichment analysis suggested
that the Notch signaling pathway may also play an important role in the promoting effect
of 5-HT on mammary gland involution. Our results showed that the gene expressions of
NOTCH1 and NOTCH2 were decreased. These genes have been demonstrated to play a bio-
logically important role during cell development [42,43]. It had been shown that the Notch
signaling pathway maintains epithelial cell homeostasis by regulating cell proliferation
and differentiation, and NOTCH1 and NOTCH2 as the key Notch receptors controlling
cell function [44]. Therefore, it can be hypothesized that a high concentration of 5-HT may
inhibit cell proliferation and promote the degeneration of MAC-T cells by inhibiting the
Notch signaling pathway. More studies will have to be conducted to determine the role of
the Notch signaling pathway on mammary gland involution during treatment with 5-HT.

Dizeyi et al. found that 5-HT could induce the up-regulation of the PI3K-Akt signaling
pathway to result in the promotion of cell proliferation [45]. In addition, the p53 signaling
pathway has been shown to be involved in inducing apoptosis [46,47]. These previous
studies were in agreement with the results of our GO enrichment analysis, which showed
that the PI3K-Akt signaling pathway and the p53 signaling pathway were enriched, indi-
cating that the PI3K-Akt signaling pathway and the p53 signaling pathway also play a key
role in regulating mammary gland involution.

In recent years, various studies have gradually confirmed that 5-HT not only acted
through the receptors but also might play a physiological role through serotonylation
after entering the cells [15]. Therefore, in this study, we studied the effects of different
concentrations of 5-HT treatments on intracellular 5-HT concentrations in MAC-T cells
at first. Our results demonstrated that low concentrations of 5-HT (0.2, 2, or 20 µg/mL)
increased intracellular 5-HT concentration and reached a peak level upon treatment with
2 µg/mL of 5-HT, indicating that 5-HT can be taken up into MAC-T cells. 5-HT transporter
(SERT) is the main pathway for cells to actively take up 5-HT from extracellular fluid [48].
In the present study, however, the mRNAs for SERT were not identified by qPCR in
MAC-T cells. It was reported that, in addition to SERT, 5-HT also can be taken up by
other transporters, including the norepinephrine transporter (NET) [12,49], dopamine
transporter (DAT) [12,50–52], organic cation transporters (OCT) [12], and plasma membrane
monoamine transporter (PMAT) [12]. A previous study demonstrated that NET and DAT
may play a more important role when extracellular levels of 5-HT are very high or when
5-HT transporter expression is eliminated [48]. Hence, it is possible that 5-HT can be taken
up into MAC-T cells through other transporters. In addition, treatment with a higher
concentration of 5-HT (200 µg/mL) did not cause significant changes in intracellular 5-HT
concentration compared with the control group. This result might be explained by the fact
that the high concentration of 5-HT caused apoptosis and decreased the capacity for 5-HT
transportation in MAC-T cells.

Serotonylation is a newly recognized, post-translational modification with 5-HT, which
is catalyzed by TGs, especially by TG2 [15]. TG2-mediated changes regulate multiple cel-
lular responses, such as cell adhesion, cell signaling, and survival [16–18]. A previous
study showed that 5-HT can increase TG2 expression [53]. MDC, as an alternative substrate
inhibitor, can exploit the protein-crosslinking activity of TGs, thereby reducing serotony-
lation [19]. Guilluy et al. indicated that MDC could inhibit 5-HT-induced serotonylation
and cell proliferation [54]. Also, Sheftel et al. treated mouse mammary epithelial cells with
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MDC and found that serotonylation was partly involved in the regulation of parathyroid
hormone related-protein (PTHrP) by 5-HT under lactogenic conditions [19]. However,
whether serotonylation plays a role in 5-HT-induced mammary gland involution is unclear.
In this study, we treated MAC-T cells with MDC to inhibit serotonylation in order to
elucidate the function of serotonylation in regulating gene expression.

TGF-β1-induced apoptosis and autophagy of MAC-T cells play an important role
in bovine mammary gland involution [55,56]. Di et al. found that TGF-β1 can induce
MAC-T cell apoptosis by stimulating Caspase-3 activation [57]. Our results showed that
the mRNA expression of TGF-β1 and Caspase-3 was significantly inhibited by MDC in the
high concentration of 5-HT group, indicating that a high concentration of 5-HT-induced
MAC-T cell apoptosis was inhibited by MDC.

The SCD-1 [58], FASN [33], and ACACA [34] play an essential role in fatty acid
synthesis. Our results showed that the mRNA expressions of FASN and ACACA were
inhibited in the high concentration of the 5-HT group, demonstrating that the ability of
fatty acid synthesis was decreased, which was consistent with the results of our KEGG
pathway analysis. However, the current study showed that MDC had no effect on the
mRNA expressions of SCD-1, FASN, and ACACA in MAC-T cells, which were treated
with a high concentration of 5-HT. Thus, the high concentration of 5-HT inhibited gene
expressions related to fatty acid synthesis, especially FASN and ACACA, but the inhibitory
effect of a high concentration of 5-HT may not be influenced by serotonylation. It should
be noted that, compared with the control group, the mRNA expression of SCD-1 and FASN
were up-regulated in the MDC group in this study. But there are few studies about the
effect of serotonylation on fatty acid synthesis, and the mechanism remains unclear.

It is well established that CLDNs [36] and ZOs [37,38] participate in the formation of
tight junctions in epithelial cells. Also, E-cadherin is the main transmembrane adherent
junction protein expressed in luminal cells in the mammary gland [59]. Our results showed
that a high concentration of 5-HT significantly inhibited the mRNA expression of CLDN-
1 and CLDN-8, which were consistent with the results of our KEGG pathway analysis.
In addition, MDC treatment resulted in the up-regulation of the mRNA expression of
CLDN-1, ZO-1, and E-cadherin when cells were treated with a high concentration of 5-HT,
but MDC had no significant effects on CLDN-8 and ZO-2. Our results also showed that
MDC significantly down-regulated the mRNA expressions of CLDN-1 and CLDN-8, and
up-regulated the mRNA expression of ZO-2 in cells treated with a low concentration of
5-HT. These results demonstrated that serotonylation may be involved not only in the high
concentration of 5-HT-induced disruption of tight junctions through the regulation of gene
expression of CLDN-1, ZO-1, and E-cadherin, but also in low concentration of 5-HT-induced
formation of tight junctions through the regulation of genes expression of CLDN-1, CLDN-8,
and ZO-2 in MAC-T cells.

Taken together, we speculated that serotonylation may be involved in 5-HT-induced
cell death, the regulation of fatty acid synthesis, and the formation and disruption of
tight junctions via regulating the expression of related genes. However, the molecular
mechanism involved in accelerating mammary gland involution through serotonylation
remains to be further explored.

4. Materials and Methods
4.1. Cell Culture

Bovine mammary epithelial cells (MAC-T), an immortalized bovine mammary epithe-
lial cell line, were resuscitated and cultured in DMEM/F12 supplemented with 10% FBS
and 1% streptomycin/penicillin in T-25 cell culture flasks (Thermo Fisher, Waltham, MA,
USA) in a humidified atmosphere of 5% CO2 at 37 ◦C. The media was renewed every two
days, and confluent layers of cells were detached with trypsin and replated into new plates
at a ratio of 1:2 for the subsequent experiments when the MAC-T cell monolayer reached
80–90% confluency. Cell washing with PBS was performed before each renewal of media
and passage.
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4.2. Cell Treatment

The MAC-T cells were cultured in DMEM/F12 supplemented with 10% FBS and 1%
streptomycin/penicillin for 24 h, and the mediums were removed. The cells were then
incubated in mediums with different concentrations of 5-HT (0, 0.2, 2, 20, or 200 µg/mL)
for the indicated times. Finally, the cells were routinely harvested for the subsequent
experiments.

For the qPCR analysis, MAC-T cells were incubated in treatment mediums with
different concentrations of 5-HT treatments and MDC (control, 2 µg/mL 5-HT, 200 µg/mL
5-HT, 200 µM MDC, 2 µg/mL 5-HT + 200 µM MDC, or 200 µg/mL 5-HT + 200 µM MDC)
for 24 h.

4.3. Intracellular 5-HT Concentrations

The MAC-T cells were washed twice using PBS and were lysed with lysis buffer
containing 1% deoxycholate, 1% Triton X-100, and 0.1% SDS for 15 min at 4 ◦C. Protein
concentration was analyzed using a BCA protein assay kit according to the manufacturer’s
instructions (Beijing Solarbio Co., Ltd., Beijing, China). The intracellular 5-HT concen-
trations were determined via bovine enzyme-linked immunosorbent assay (ELISA) Kit
(YX-050820B, Sino Best Biological Technology Co., Ltd., Shanghai, China) according to the
manufacturer’s instructions. All assays had an intraassay CV of <10% and an interassay
CV of <5%.

4.4. Cell Viability Assay

Cell viability was determined using Cell Counting Kit 8 (CCK-8) according to the
manufacturer’s protocol (Beijing Solarbio Co., Ltd., Beijing, China). MAC-T cells were
treated with different concentrations of 5-HT (0, 0.2, 2, 20, or 200 µg/mL) in a humidi-
fied atmosphere of 5% CO2 at 37 ◦C for 24, 48, or 72 h. The absorbance was tested via
Microplate reader (Thermo, Varioskan LUX, Waltham, MA, USA) at 450 nm. Cell viability
was expressed as the percentage of control.

4.5. Transepithelial Electrical Resistance (TEER) Measurement

The tight junction permeability of the MAC-T cell monolayer was evaluated by mea-
suring TEER. The MAC-T cells were seeded in DMEM/F12 supplemented with 10% FBS
and 1% streptomycin/penicillin on clear polyester permeable supports (Transwell, Corning;
0.4 mm pores, polyester). Mediums were changed every 24 h. Resistance measurements
were taken daily. The indicated concentrations of 5-HT (0, 0.2, 2, 20, or 200 µg/mL) were
added to the culture medium when TEER reached a plateau. The pure cell culture medium
without MAC-T cells was used as a blank control. The blank resistance (which is usually
~30 Ω/cm2) was then subtracted from the measured resistance to obtain the effective TEER.

4.6. RNA Extraction and Sequencing

MAC-T cells were treated with different concentrations of 5-HT (0, 2, or 200 µg/mL)
for 24 h and were then collected for RNA-Seq. Total RNA (20 µg) was extracted from
MAC-T cells by adding 0.4 mL of Trizol reagent (TIANGEN BIOTECH, Beijing, China)
per 1 × 105–107 cells directly into the cell culture dish according to the manufacturer’s
protocol. RNA degradation and contamination were monitored on 1% agarose gels. RNA
concentration and purity were examined using a NanoDrop spectrophotometer (NanoDrop
Technologies, Wilmington, DE, USA). RNA integrity was assessed using the Agilent 2100
Bioanalyzer (Agilent Technologies, Santa Clara, CA, USA). A total of 9 RNA samples
[3 samples per group × 3 groups (0, 2, or 200 µg/mL of 5-HT)] were sent to Allwegene
Technology Co., Ltd. (Beijing, China) for cDNA library construction and sequencing. Briefly,
the library was constructed using the NEBNext UltraTM RNA Library Prep Kit for Illumina
(NEB) following the manufacturer’s manual. The samples were sequenced on the Illumina
HiSeq-X platform (Illumina, SanDiego, CA, USA) and paired-end reads were generated.



Int. J. Mol. Sci. 2023, 24, 11388 11 of 14

4.7. Library Preparation

A total amount of 1.5 µg RNA per sample was used as input material for the RNA
sample preparations. Sequencing libraries were generated using NEBNext® UltraTM RNA
Library Prep Kit for Illumina® (NEB, Nebraska, NE, USA), following the manufacturer’s
recommendations, and index codes were added to attribute sequences to each sample. A
total of 403,657,472 raw reads were generated. The library preparations were sequenced
on an Illumina Novaseq 6000 platform by the Beijing Allwegene Technology Company
Limited (Beijing, China) and paired-end 150 bp reads were generated.

4.8. Data Processing and Differentially Expressed Gene Screening

Raw data of fastq format were initially processed through in-house perl scripts.
In this step, clean reads were obtained by removing reads containing adapter, reads
containing ploy-N, and low-quality reads from raw data. Q20, Q30, and GC-content
were calculated for the clean data. These clean data were then mapped to the reference
genome sequence using STAR. All the downstream analyses were based on clean data
with high quality. HTSeq v 0.5.4 p3 was used to count the reads numbers mapped
to each gene. Gene expression levels were estimated from fragments per kilobase of
transcript per million fragments mapped (FPKM).

The differential expressed gene among the three groups (three biological replicates per
group) was analyzed using DESeq R package (1.10.1). DESeq provides statistical routines
for determining differential expression in digital gene expression data using a model based
on the negative binomial distribution. The resulting p values were adjusted using the
Benjamini and Hochberg’s approach for controlling the false discovery rate. Genes with an
adjusted p-value < 0.05 found using DESeq were assigned as differentially expressed.

4.9. Quantitative Real-Time PCR (qPCR)

The expression of genes CLDN-1, CLDN-4, CLDN-8, TJP1, TJP2, CDH1, TGF-β1, CASP3,
SCD-1, FASN, and ACACA were detected using quantitative real-time PCR (RT-qPCR).
Briefly, total RNA was extracted using TRIzol reagent (Thermo Fisher Scientific) according
to the manufacturer’s instructions. After the synthesis of first-strand cDNA from 1 µg of
RNA using the PrimeScript RT Reagent Kit (TaKaRa, Dalian, China), qPCR was performed
using TaKaRa SYBR® Premix Ex Taq™ II (Perfect Real Time) on a LightCycler® 480 system
(Roche Diagnostics). The reactions were incubated at 95 ◦C for 30 s, followed by 40 cycles
of 95 ◦C for 5 s, 55 ◦C for 30 s, and 72 ◦C for 30 s. RPS-9 and GAPDH were used as the
endogenous reference genes. All reactions were run in three replicates for each sample. The
primer sequences were listed in Table S1. Analysis was conducted using the 2−∆∆CT method.

4.10. Statistical Analysis

Statistical analysis was performed via one-way ANOVA with Tukey’s post hoc tests
using GraphPad Prism 9 for macOS (Version 9.2.0, GraphPad Software, San Diego, CA,
USA, www.graphpad.com, accessed on 11 November 2022). Sankey dot of GO enrichment
analyses were mapped using a free online platform for data analysis and visualization
(https://www.bioinformatics.com.cn, accessed on 11 November 2022). The results are
presented as means with standard error of the means (SEM). The variant letter indicates a
significant difference (p < 0.05).

5. Conclusions

In summary, our study demonstrated that the effect of 5-HT on MAC-T cell viability
and intercellular tight junctions is concentration dependent. A low concentration of 5-HT
promotes MAC-T cell proliferation, but a high concentration of 5-HT inhibits MAC-T cell
proliferation and causes disruption of tight junctions, thus accelerating mammary gland
involution. A high concentration of 5-HT may promote bovine mammary gland involution
by regulating the Notch, p53, and PI3K-Akt signaling pathways. Serotonylation is involved

www.graphpad.com
https://www.bioinformatics.com.cn
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in 5-HT-induced MAC-T cell death, fatty acid synthesis, and the formation and disruption
of tight junctions, thereby regulating bovine mammary gland involution.
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