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Abstract: Glycine is a non-essential amino acid with many functions and effects. Glycine can bind to
specific receptors and transporters that are expressed in many types of cells throughout an organism
to exert its effects. There have been many studies focused on the anti-inflammatory effects of glycine,
including its abilities to decrease pro-inflammatory cytokines and the concentration of free fatty acids,
to improve the insulin response, and to mediate other changes. However, the mechanism through
which glycine acts is not clear. In this review, we emphasize that glycine exerts its anti-inflammatory
effects throughout the modulation of the expression of nuclear factor kappa B (NF-κB) in many cells.
Although glycine is a non-essential amino acid, we highlight how dietary glycine supplementation is
important in avoiding the development of chronic inflammation.

Keywords: glycine; targets; inflammation; immunomodulator

1. Introduction

Glycine, also known as amino acetic acid, is an important component of many proteins
and plays a crucial role in the synthesis of many biomolecules, including creatine and
purine nucleotides [1]. Glycine was first isolated in 1820 from the acid hydrolysis of
gelatine. Its name is derived from the Greek word glykys, meaning sweet, and it is the
smallest amino acid (with a molecular weight of 75.067 g/mol). It is located in both the
hydrophilic and hydrophobic parts of the polypeptide chain [2,3]. It is abundant in plasma
and represents 11.5% of the total amino acids and 20% of the nitrogen in body proteins and
accounts for 80% of protein [4,5]. The necessary dietary intake of glycine is ~1.5–3 g/day [6]
given that in young men, glycine flux is 34–35 mg/kg/h on average in the fed state; during
the post-absorptive state, the glycine flux is decreased by half (around 18 mg/kg/h) [7,8].
Around 35% of glycine in the body comes from endogenous synthesis [9], and the average
rate of whole-body de novo glycine synthesis is estimated at 12–15 mg/kg/h, contributing
to 81% of the systemic flux [2,7,10]. The physiological glycine plasma concentration ranges
from 200 to 300 mol/L [11].

Glycine is synthesized endogenously by the body from serine, choline, threonine, and
glyoxylate [12,13]; hence, it has been classified as an unessential amino acid for mammals [4]
that has many activities in different systems (Figure 1). Glycine acts as a neurotransmitter
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and modulates neuronal activity [14]; its main activity is related to the inhibition of different
brain regions. For example, in the central nervous system (CNS), glycine binds to chloride-
sensitive ion channels to inhibit postsynaptic neurons [15]. It plays an important role
in the mechanism of pain transmission: pharmacological treatment or genetic deletion
that inhibits glycinergic signaling is sufficient to evoke pain hypersensitivity in living
organisms [16]. Glycine has also been associated with the control of motor functions due
to its ability to ameliorate motor deficiencies after surgery [17]. Glycine also plays an
important role in the regulation of gene expression [18], protein configuration and activity,
and several other biological functions [19]. There are other beneficial activities in which
glycine is involved: as antacid, modulator of growing throughout the regulation of growth
hormone (GH) synthesis; improves muscle tone, collagen synthesis, tissue restore (scar
formation) and delaying muscular degeneration [20], in addition, it has been reported that
glycine also protects the intestine against the harmful effects of radiotherapy in cancer
treatment [21].
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Figure 1. Glycine effects. Glycine is an aminoacid synthetized endogenous and there has been
describe many activities in which it participates that include a variety of systems. Glycine has a
protective effect in lung, brain, stomach, and intestine; participates in metabolic process; modulate
process of the immune system such as tissue regeneration, decrease necrosis, sepsis protection; and
finally, glycine is considerate as a genic expression modulator.

Glycine plays a role in diabetes. It is a secretagogue of glucagon-like peptide-1
(GLP-1) [22], insulin, and glucagon [23] because it has been shown that the effect of ingested
glycine on the postprandial glucose concentration facilitates the secretion of insulin by
other amino acids [24].

Decreased glycine receptor (GlyR) expression in cells from people with type 2 diabetes
mellitus (T2DM) is associated with a disruption of glycine-induced insulin secretion [25].
Clinical studies have shown that higher circulating glycine concentrations help lower the
risk of developing T2DM [26].

The objective of this review is to integrate information from basic and clinical studies
regarding the role of glycine as a therapeutic agent to regulate the low-grade inflammation
associated with disease. We also integrated the possible mechanism throughout glycine
could act as a ligand and it has an effect by activation of different pathways related to
inflammation process in a variety of cells that belong to different systems.
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2. Glycine Targets

According to the International Union of Basic and Clinical Pharmacology (IUPHAR),
glycine has the following natural/endogenous targets: GlyRs (with α1, α2, α3, α4, and
β subunits), a co-agonist of ionotropic glutamate receptors (GluN1, GluN2A, GluN2B,
GluN2C, and GluN2D), G protein-coupled receptor family C group 6 (GPRC6), and trans-
porters, which move this compound across lipid membranes. The transporters include
glycine transporter type 1 and 2 (GlyT1 and GlyT2, respectively), proton-coupled amino
acid transporter 1, vesicular inhibitory amino acid transporter, proton-coupled amino acid
transporter 2, neutral amino acid transport (B0AT1, B0AT2, B0AT3, and NTT4), sodium-
coupled neutral amino acid transporter 1, sodium-coupled neutral amino acid transporter
2, sodium-coupled neutral amino acid transporter 4, and sodium-coupled neutral amino
acid transporter 5 [27–30].

3. Receptors
3.1. GlyRs

GlyRs are ligand-activated pentameric ion channels that belong to the Cys-loop family
of transmitter-activated ion channels (zinc-activated channels). This family also include
γ-aminobutyric acid receptor type A (GABAA); nicotinic acetylcholine receptors; N-methyl-
D-aspartate (NMDA) receptors, which are ionotropic glutamate receptors (iGluRs); and
serotonin receptor 5-hydroxytryptamine type 3 (5HT3R) [15,31,32]. GlyRs are abundantly
expressed throughout the CNS: there are postsynaptic, presynaptic [15], and extrasynaptic
GlyRs [33]. There are four known GlyR α subunits (α1–α4) and a single β subunit in
vertebrates [34]. Normally, the β subunit is part of a heteromultimeric complex with GlyR
α subunits [35].

GlyRs are expressed as homopentamers of five α subunits or as heteropentamers
of three α and two β subunits or two α subunits and three β subunits. The receptor is
an intrinsic anion channel [34,36–38]. As mentioned above, there are four α subunits,
namely, α1, α2, α3, and α4, and a single gene coding for the β subunit [39,40]. The four α
subunits generally share >90% amino acid sequence homology with each other, but their
genes are expressed in specific zones and are developmentally regulated. The α2 subunit
is highly expressed in all layers of the cerebral cortex, brain stem, thalamus, spinal cord,
hippocampus, diencephalon, and cerebellum during embryonic development [41,42]. There
is a change from α2 homomeric GlyRs to α1β heteromeric GlyRs during development [15].
In neonatal period, levels of α1 and α3 expression increase. α1 is prominently expressed in
the hypothalamus, colliculi, the spinal cord, and brain stem cerebellar deep nuclei [43,44].
α3 has a relatively lower level of expression than α1 at all developmental stages [45,46]. α4
is an embryonic GlyR subunit isoform [40] but is presumed to be a pseudogene in humans
due to a premature stop codon upstream of the final TM4 domain. The β subunit gene is
transcribed at all developmental stages and is widely and abundantly distributed in the
spinal cord and brain [47,48]. Its distribution is broader than that of α1. The β subunit is
indispensable for synaptic clustering [49].

When glycine binds to GlyRs, the channel opens (it is formed by the domine 2 of each
subunit of the GlyR) and generates a short-term flux of negative ions into the cell. In this
way, the intracellular chlorine concentration increases temporarily, leading to hyperpo-
larization of the membrane, which prevents the cell from being easily excited (Figure 2).
The net effect is inhibitory [50,51]. GlyRs are involved in several processes, including the
central regulation of orexigenic signals in obesity [52].
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Figure 2. Glycine targets and pathways. According to the International Union of Basic & Clinical
Pharmacology (IUPHAR) glycine has different targets such as Natural/Endogenous Targets: glycine
receptor (consisting of glycine receptor α1, α2, α3, α4 and β subunits), ionotropic glutamate receptors
co-agonist (GluN1, GluN2A, GluN2B, GluN2C and GluN2D) and GPRC6 Receptor. Transporters
moving this compound across a lipid membrane with proton-coupled amino acid transporter 1,
vesicular inhibitory amino acid transporter, Proton-coupled Amino acid Transporter 2, GlyT1, GlyT2,
B0AT1, B0AT2, B0AT3, NTT4, sodium-coupled neutral amino acid transporter 1, sodium-coupled
neutral amino acid transporter 2, sodium-coupled neutral amino acid transporter 4, Sodium-coupled
neutral amino acid transporter 5 [27–30]. These may be the targets involved in the signaling by which
glycine exerts its effect on the different cell lines of living organisms.

3.2. NMDA Receptor

The N-methyl-D-aspartate (NMDA) receptors are iGluRs. They share common charac-
teristics with the other two glutamate receptors, namely, α-amino-3-hydroxy-5-methyl-4-
isoxazolepropionic acid (AMPA) and 2-carboxy-3-carboxymethyl-4-isopropenylpyrrolidine
(kainate) receptors. NMDA receptors are heterotetramers composed of two GluN1 subunits
and two GluN2 and/or GluN3 subunits [53,54]. Currently, eight splice variants of the
GluN1 gene, four GluN2 genes (GluN2A–GluN2AD), and two GluN3 genes (GluN3A and
GluN3B) have been identified [54]. NMDA receptors containing the NR2A, NR2B, and
NR2D. These subunits are commonly expressed on spinal dorsal horn neurons. In contrast,
there are lower levels of expression of NMDA receptors containing the NR2C subunit in
this site [55]. These receptors require the concomitant binding of glutamate and glycine
or D-serine as a co-agonist [56]. Glycine has an excitatory effect on these receptors [57]
(Figure 2).

3.3. GPRC6 Receptor

GPRC6 is a 362 amino acid [58] orphan receptor coupled to a stimulatory Gα subunit
(Gαs). It has been associated with the cannabinoid family, class A (similar to rhodopsin) [58–60],
which phylogenetically belongs to the melanocortin/endothelial differentia-tion/
cannabinoid/adenosine (MECA) [61]. It has been shown in oocytes that GPR6 can be ac-
tivated by glycine, this being a small neutral aliphatic L-α-amino acid that could act as an
endogenous agonist in concentrations of 100 µM [62]. GPR6 was previously known as the
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sphingosine 1-phosphate receptor [63], with sphingosylphosphorylcholine (SPC) considered
to be an endogenous ligand [64]. However, it is still considered an orphan receptor [65]. This
receptor has a high constitutive activation of adenylyl cyclase—leading to the production of
cyclic adenosine monophosphate (cAMP)—and competes with other Gαs-coupled receptors
for their corresponding agonists [59,63,66] (Figure 2). In humans, GPRC6 is highly expressed
in the hypothalamus [67], leucocytes, skeletal muscles, and testes. In adults, it has medium
levels of expression in the heart, kidney, liver, and spleen, and low levels of expression in the
pancreas, placenta, ovary, and lung [68]. In previous studies, we found that in adipocytes,
glycine has an effect on the expression of GPRC6 [69], and even this receptor has been related
to neuroprotective activity [70]; however, there is not much information about the relationship
of that receptor with inflammation.

4. Glycine Transporters

There are several known families of glycine transporters, including solute-carrying
transporter 36 (SLC36; also known as PATs), SLC38, and SLC6 (also known as GlyTs). Of
these families, SLC6 is the only one specific to glycine. The SLC36 family members are
expressed primarily in the intestine; the SLC38 family members are widely distributed
throughout the body; and the SLC6 family members are expressed primarily in the intestine,
kidney, and nervous system [71]. There are two known genes belonging to the SLC6 family,
namely, GlyT1 and GlyT2. There are five variants of GlyT1 (a, b, c, d, and e) that differ at
their N and C termini due to the use of alternative promoters and splicing, and there are
three GlyT2 splice variants (a, b, and c) [37,72–74]. Both transporters use the energy stored
in the transmembrane Na+ and Cl− concentration gradients to transport glycine against
a concentration gradient [75]. The specific stoichiometry is 2 Na+/1 Cl−/1 Gly for GlyT1
(SCL6A9) and 3 Na+/1 Cl−/1 Gly for GlyT2 [76]. These carriers have different mechanisms
through which glycine is transported depending on the membrane voltage [77].

4.1. GlyT1

For GlyT1, most Na+ moves when glycine binds to the transporter, while for GlyT2,
most Na+ charges move after glycine has dissociated into the cytosol (Figure 2) [77]. GlyT1
is expressed mainly in astrocytes, regulating the glycine concentration in the vicinity of
NMDA receptors [78], and oocytes [79]. It is also found in the human intestine and is
responsible for 30–50% of glycine uptake in intestinal epithelial cells, maintaining the
glycine supply in enterocytes and colonocytes [80]. The kinetics of this transporter are
characterized by the transition of the transporter attached to the substrate from the outside
to the inside [77].

4.2. GlyT2

GlyT2 is located at the axon terminals of glycinergic neurons, mainly in the spinal cord
and brain stem. These transporters facilitate glycine reuptake in presynaptic terminals [81].
The GlyT2-dependent influx of glycine allows for the maintenance of vesicular glycine
reserves [82]. GlyT2 kinetics are governed by Na+ binding, which causes a conformational
change [77].

5. Effects of Glycine in the Organism
5.1. Neurotransmission

Glycine participates in the rapid excitatory neurotransmission mediated by NMDA
receptors. Indeed, the full activation of these receptors requires the binding of both gluta-
mate and glycine [83,84]. This activity is necessary for plasticity processes such as learning,
memory, and cognition [85,86]. These receptors are therapeutic targets in counteract-
ing pathologies such as Alzheimer’s disease, Huntington’s disease, amyotrophic lateral
sclerosis, schizophrenia, and other psychiatric diseases [87]. Glycine also modulates neuro-
transmission via GlyT1 and GlyT2 [88–90]. Mice lacking GlyT1 show severe respiratory
and motor deficiencies due to hyperactive glycinergic signaling [91,92]. On the other hand,
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the participation of GPR6 due to glycine stimulation could decrease cAMP in striatal tissues
and increase dopamine (improving movement) [93], showing a possible potential target for
the treatment of Parkinson’s disease [94].

Glycine shows neuroprotective effects on neurons and microglia after ischemic stroke
injury. It can inhibit nuclear factor kappa B (NF-κB) p65 and hypoxia-inducible factor
1α (Hif-1α) by activating AKT and downregulating phosphatase and tensin homologue
(PTEN). This mechanism suppresses ischemia-induced M1 microglia polarization and
inhibits inflammation [95]. Glycine confers protection against neuronal death in in vitro
and in vivo experimental conditions [96], and clinical studies have shown that glycine can
improve the prognosis of patients after ischemic stroke [97].

5.2. Antioxidant

Glycine effectively protects against alcohol-induced hepatotoxicity by reducing blood
alcohol levels and the metabolic products of alcohol, reducing liver damage, and lowering
the gastric emptying rate of ethanol [98]. Kupffer cells increase Ca2+ and release prostanoids
and inflammatory cytokines in response to LPS stimuli, glycine acts by preventing increases
in intracellular levels of Ca2+ in this kind of cell in concentrations comparable to serum lev-
els in glycine-fed animals [99]. Furthermore, this amino acid plays a protective role against
the toxic effects of oxidized oil since it has been observed that the co-administration of
oxidized oils with glycine cause the recovery of liver structure and function, demonstrating
glycine to be a beneficial amino acid that is protective against food toxicity [100].

5.3. Dietary Supplementation

In animal models, dietary supplementation with glycine reduces inflammation, mor-
bidity, and mortality from pathogenic infections [101]. Betaine supplementation is asso-
ciated with circulating levels of dimethylglycine. Betaine metabolism may be hampered
by the activity of dimethylglycine dehydrogenase (DMGDH), which connects betaine to
glycine synthesis via the demethylation of dimethylglycine into sarcosine [102]. Glycine
supplementation has shown beneficial cardiac effects in a burn model [103] and in a skele-
tal muscle ischemia model, with decreased reperfusion-mediated necrosis and increased
metabolic and functional recovery [104]. The protective effects of glycine have been re-
ported for several sepsis models [105,106] and for hemorrhagic shock [107]. Normal levels
of glycine in the body prevent lipopolysaccharide (LPS)-induced endotoxemia by binding
to GlyRs on Kupffer cells [108]. Dietary supplementation with glycine decreases adipocyte
size, adiposity, and the concentrations of free fatty acids and triglycerides in animal mod-
els [109,110]. It also inhibits the nonenzymatic glycation of proteins and hemoglobin in
diabetic rats [111] and patients with T2DM [112,113].

5.4. Immunomodulation

Glycine exerts anti-inflammatory and immunomodulatory effects in several cell
types [114,115]. However, the underlying mechanisms responsible for these beneficial
effects remain unknown. There are some hypotheses about the actions of glycine in living
organisms, and accumulating evidence suggests that glycine protects cells from oxidative
stress-induced inflammation [116,117]. In a mouse model of cancer cachexia, glycine atten-
uated oxidative and inflammatory environments [118]. In a model of acute pancreatitis,
glycine reduced the severity of pancreatic damage [119]. Moreover, glycine suppressed
zymosan-induced joint inflammation [120]. Some studies have shown that supplementa-
tion with glycine can reduce acute and systemic allergic responses. Although the exact
mechanism of action is still unknown, glycine may exert an effect on key effector cells, such
as basophils and mast cells [117].

Glycine inhibits inflammatory responses and modulates the production of cytokines by
many innate cells, including monocytes and intestinal and alveolar macrophages [121–123].
The best-studied glycine signaling pathway involves GlyRs, but glycine may also uti-
lize GlyR-independent pathways to mediate its cytoprotective function, indicating that
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the presence of GlyR subunits is not a requirement for the anti-inflammatory effect of
glycine [124].

Glycine is a potent therapeutic immunonutrient for various kinds of chronic liver
conditions, including alcoholic liver disease [125]. Various insults in the CNS, such as
ischemia, can promote neuroinflammation, with the polarization of microglia, the resident
macrophages [126,127]. Treatment with glycine can attenuate neuroinflammation, sup-
pressing M1 microglia polarization, the pro-inflammatory state [128], and promoting M2
polarization, the primary anti-inflammatory state [129]. Liu et al., 2019 [95], reported this
benefit in an animal model of ischemic stroke: glycine antagonized ischemia-induced M1
polarization and promoted M2 polarization [95].

Glycine mitigates the adverse effects of LPS, peptidoglycans, and peroxisome prolifer-
ators. This amino acid modulates the secretion of cytokines and the activation of proteases
and increased apoptosis in various animal models [130–132].

5.5. Low Glycine Plasma Levels Are Associated with Low-Grade Inflammation

Hyperglycemia or hyperinsulinemia reduce the average rate of glycine synthesis [7].
Based on previous studies, a low plasma glycine concentration is associated with hep-
atic insulin resistance, obesity, and T2DM [133]. This decrease is due to a reduction in
glycine availability via the simultaneous participation of three distinct mechanisms: (a) de-
creased gut absorption, (b) decreased biosynthesis, and (c) increased catabolism or urine
excretion [3].

Obesity and metabolic disorders show elevated plasma glucagon concentrations that
reduce circulating glycine and increase its degradation [134,135]. On the other hand, an
impaired hepatic branched-chain amino acid metabolism in obesity decreases circulating
glycine concentrations [136]. Glycine supplementation (5 g/day or 0.1 g of glycine/kg/day
for 14 days in association with N-acetylcysteine) improves the insulin response and glucose
tolerance in patients with obesity [23,137].

6. The Role of Glycine in Inflammation

A glycine concentration of 1–3 mM triggers the opening of the GlyR ion channel [138],
resulting in rapid hyperpolarization, a decrease in calcium, and a reduction in the syn-
thesis of pro-inflammatory mediators, probably via the tumor necrosis factor α (TNF-α)
receptor signaling pathway [51]. The GlyR-dependent pathway can modulate chronic and
neuropathic pain [35,139,140] and the anti-inflammatory response (Figure 3) [114].

GlyRs are located on different cell types involved in immune responses, such as
macrophages, monocytes, neutrophils, T lymphocytes [114,121,122], hepatic and alveolar
macrophages [108], the pancreas, and Kupffer cells [135,141]. In macrophages, T lympho-
cytes, and neutrophils, GlyR activation suppresses the production of pro-inflammatory
cytokines, thus supporting anti-inflammatory properties [121]. Glycine could modulate the
low-grade inflammatory process through pathways that involve some of its targets that
have already been identified in different cells.

Glycine inhibits the cytokine synthesis stimulated by LPS, reduces serum transam-
inase levels, and decreases intracellular calcium concentrations by modulating chloride
influx inside the cell [125,142]. In addition, there is evidence that glycine administration
reduces the infiltration of inflammatory cells and attenuates the elevated concentrations
of inflammatory cytokines and chemokines in the hepatic cells of mice via the inhibition
of NF-κB [13]. In addition, glycine can upregulate adiponectin expression [143]. Glycine
pre-treatment inhibits the inflammation of alveolar cells in LPS-induced lung injury [13,144].
Glycine bioactivity is anti-inflammatory in the lung and other tissues [12]. There is an
inverse relationship between glycine plasma levels and systemic inflammation [135,145],
and this effect is similar in obesity and diabetes [146].
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the production of its downstream pro-inflammatory cytokines and chemokines [13,149]. 
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Glycine, despite not being an essential amino acid, requires its consumption to maintain adequate
concentrations in the body and to carry out its activity in the different organs. Glycine decreases the
expression of proinflammatory cytokines through the inhibition of NF-kB and favors the expression
of anti-inflammatory cytokines, thus reducing the feedback of the chronic inflammatory process that
occurs in some diseases.

Many researchers have attempted to describe the mechanism through which glycine
exerts its beneficial effects. For decades, glycine has been proposed as an anti-inflammatory
agent [114,121] and used as a therapeutic nutrient to treat inflammation related to diseases
such as arthritis [132], gastric ulcers [147], melanoma [148], alcoholic liver disease [125],
and endotoxic shock [107]. Glycine supplementation inhibits the expression of NF-κB
through the inactivation of IκB, an upstream regulator of NF-κB signaling, as well as
the production of its downstream pro-inflammatory cytokines and chemokines [13,149].
Glycine blocks the activation of NF-κB; hence, it promotes the downregulation of pro-
inflammatory adipokines [107,150].

Glycine inhibits the production of pro-inflammatory cytokines like TNF-α, interleukin-
6 (IL-6), and IL-1β and increases the production of the anti-inflammatory cytokine IL-10 in
activated macrophages, leucocytes [131], and T lymphocytes in a pathological state [151].
During endothelial inflammation, glycine can exert anti-inflammatory effects via the inhibi-
tion of the activation of NF-κB, degrading IκBα and increasing the expression of E-selectin
and the production of IL-6 [152]. Glycine cytoprotection suppresses inflammation by pre-
venting the immunogenic effects of necrosis and directly inhibiting pyroptosis. Moreover,
efforts to understand the basis for glycine cytoprotection have led to the discovery of novel
upstream immunomodulatory effects of glycine to block the primary activation of multiple
types of inflammatory cells. This effect involves receptors that are different from those
involved in glycine cytoprotection [124].

Glycine treatment attenuates the production of pro-inflammatory and Th2-skewing
cytokines such as IL-13, TNF-α, and IL-4 in the RBL-2H3 basophilic cell line. The glycine
effect on the cytokine response following IgE-mediated crosslinking on RBL-cells may
be comparable to effects on mast cells [117]. Some studies have shown that the glycine-
induced downregulation of NF-κB is mediated, at least partially, by NRF2 signaling [13,95].
The anti-inflammatory properties of glycine have been shown in animal models of septic
shock [153]. Moreover, there is evidence that glycine treatment increases adiponectin and
IL-10 messenger RNA (mRNA) expression [154].
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Dietary supplementation with glycine has been proposed as a potential way to treat
conditions with low-grade inflammation, such as obesity [155–157]. This approach has been
proposed due to its ability to increase the mRNA expression of anti-inflammatory cytokines,
such as adiponectin and IL-10 [123,154,158], and because glycine can inhibit the production
of pro-inflammatory cytokines like TNF-α, IL-1β, and IL-6 [131,158]. In one study, 3 months
of glycine treatment attenuated low-grade inflammation by decreasing pro-inflammatory
cytokines [143]. Glycine decreases endotoxin-induced TNF-α production by Kupffer cells
and alveolar macrophages and also reduces IL-1β and TNF-α expression while simulta-
neously stimulating IL-10 expression in LPS-activated monocytes [131]. It also interferes
with TNF-α-mediated NF-κB activation in human coronary artery endothelial cells and
differentiated 3T3-L1 adipocytes [152,156]. In animal models, supplementation with 0.5%
glycine has been used to prevent the infiltration of inflammatory cells; to treat synovial
hyperplasia in joints, edema, experimental arthritis, and lung inflammation [132,141]; and
to inhibit tumor growth [130,148,159].

The pathophysiological mechanisms underlying glycine deficit and its potential clini-
cal repercussions are not yet clear yet. It is important to mention that although glycine is a
non-essential amino acid because it can be synthesized endogenously, glycine supplemen-
tation helps to maintain homeostasis (Figure 4).
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It this review, we described the importance of glycine as an anti-inflammatory amino
acid that not only has beneficial cosmetic effects but is also an alternative medicine for
promoting homeostasis in an organism. It has been demonstrated that glycine can modulate
the inflammatory response, using different targets in many cells in the entire organism.
There are many studies that describe the indirect effects of glycine as a modulator of
responses and mechanisms in the organism via dietary supplementation with glycine
in animal models and in clinical trials. Another option is including the amino acid as a
component of diet using animal models or in clinical trials, finally revealing the indirect role
of glycine in reducing the inflammation process and decreasing some symptoms related to
low-grade inflammation. However, there are few studies that have evaluated and followed
changes due to glycine consumption in the diet over a long period of time, and those that
have evaluated how glycine can decrease the risk or development of some diseases related
to inflammation process or even the direct effects of glycine on cell activity and the response
of cells to specific signals similar to an inflammatory environment.
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