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Abstract: Colorectal cancer (CRC) is a leading cause of cancer deaths worldwide, and the identifica-
tion of biomarkers can improve early detection and personalized treatment. In this study, RNA-seq
data and gene chip data from TCGA and GEO were used to explore potential biomarkers for CRC.
The SMOTE method was used to address class imbalance, and four feature selection algorithms
(MCFS, Borota, mRMR, and LightGBM) were used to select genes from the gene expression matrix.
Four machine learning algorithms (SVM, XGBoost, RF, and kNN) were then employed to obtain the
optimal number of genes for model construction. Through interpretable machine learning (IML),
co-predictive networks were generated to identify rules and uncover underlying relationships among
the selected genes. Survival analysis revealed that INHBA, FNBP1, PDE9A, HIST1H2BG, and CADM3
were significantly correlated with prognosis in CRC patients. In addition, the CIBERSORT algorithm
was used to investigate the proportion of immune cells in CRC tissues, and gene mutation rates for
the five selected biomarkers were explored. The biomarkers identified in this study have significant
implications for the development of personalized therapies and could ultimately lead to improved
clinical outcomes for CRC patients.

Keywords: colorectal cancer; machine learning; feature selection; biomarker; interpretable machine
learning

1. Introduction

Colorectal cancer (CRC) is the third most commonly diagnosed cancer, with a 10%
global incidence, and is the second most prevalent cause of cancer death, accounting for
9.4% of all cancer deaths [1,2]. Most CRCs arise from non-malignant adenomas, which
can evolve into carcinoma within 10–15 years [3]. Pathways that are responsible for CRC
development are associated with mutations in genes such as APC, KRAS, TP53, DCC,
MLH1, MSH2, PMS1, and PMS2 [4]. Apart from gene mutations, large numbers of genomic
aberrations, such as chromosomal changes and translocations, have been identified using
new genomic technologies. Despite the identification of some molecular biomarkers for
detecting CRC at an early stage, the intra-tumor heterogeneity (ITH) of CRC poses a
challenge [5]. The disease is characterized by high inter-patient heterogeneity and high
ITH, which vary greatly within each UICC TNM stage [6–8]. Recent studies have shown
that even tumor sectors from the same patient can exhibit significant genomic heterogeneity.
Additionally, different distant tumor-adjacent tissues for selecting differentially expressed
genes (DEGs) may not be normalized, which can lead to contradictory results regarding
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the replicability of predictive biomarkers. For instance, The Cancer Genome Atlas Network
identified 41 potential biomarker genes for CRC, but only three of these genes (GUCA2B,
CDH3, and THRB) were consistent with the findings of Hozhabri, H’s work [9,10]. This
heterogeneity has made it difficult to identify reproducible and reliable biomarkers for
predicting the disease.

One factor contributing to the heterogeneity of CRC is the tumor micro-environment
(TME), which is dynamic and complex [11]. The TME contains various cells, blood vessels,
and extracellular cells that interact with CRC tumor cells and affect tumor development [12].
Among the hematopoietic cells, macrophages, T cells, and B cells are those most infiltrated
in CRC tissues [13]. These immune cells interact with the tumor cells and TME, thereby
influencing the molecular characteristics of the tumor [14].

Advances in omics technologies have resulted in an abundance of biological data,
presenting both opportunities and challenges for data analysis [14]. Machine learning (ML)
methods have shown promise in mining omics data to identify prognostic biomarkers
and understand disease processes. For example, Liu et al. [15] combined multiple ML
algorithms with immune-related cells to analyze the prognostic lncRNAs of CRC, while
Fortino et al. [16] used a genetic algorithm to identify biomarkers that distinguish allergic
from irritant contact dermatitis. Biomarkers have also been used to predict cancer types,
survival rates [17], and stages [18], helping to identify biomarkers and better understand
the underlying biological processes behind various diseases. In this research, we com-
bined statistical testing and ML techniques to improve the stability and interpretability of
biomarker identification in CRC.

We use four feature selection algorithms, including Monte Carlo Feature Selection
(MCFS) [19], Boruta [20], Minimum Redundancy Maximum Correlation (mRMR) [21],
and LightGBM [22], to rank features based on relative importance. We then employ four
classification algorithms, including Support Vector Machine (SVM) [23], Extreme Gradient
Boosting (XGBoost) [24], Random Forest (RF) [25], and k-Nearest Neighbors (kNN) [26], to
figure out the optimal number of features for model building.

To address the issue of combining multiple datasets from various sources, we utilize
ML techniques as a powerful data integration and analysis tool [27]. However, most
frequently employed algorithms are black-box models that lack interpretability [28]. To
overcome this, we incorporate Interpretable Machine Learning (IML) [29], which allows for
the visualization of decision “IF–THEN” rules and the creation of undirected networks for
co-predictions. The decision table input structure of the IML algorithm includes a limited
set of features [30].

One of the critical factors affecting the progression and prognosis of CRC is the
immune response. Immune cell infiltration analysis can provide valuable insights into
TME and the potential participation of the immune system in CRC [31]. In this study, we
have identified several co-predictors that are associated with CRC using ML algorithms.
However, the expression of these genes alone may not be sufficient to fully understand
the complicated interactions between tumor cells and the immune system. Therefore,
immune cell populations within TME are crucial to gaining a deeper comprehension of the
interaction between immune cells and key genes in CRC that may potentially contribute to
identify new therapeutic targets. Furthermore, a customized treatment strategy for each
patient based on their unique immune profiles might also be created using this information.

Additionally, survival analysis has demonstrated significant correlations between
INHBA, FNBP1, PDE9A, HIST1H2BG, and CADM3 gene expression levels and the prognosis
of CRC. These findings highlight the potential of these biomarkers as prognostic indicators
in CRC. To gain further insights into TME, the CIBERSORT algorithm was employed to
investigate the proportions of immune cells within CRC tissues. Additionally, the mutation
rates of the five selected biomarkers were explored, providing valuable information on the
genetic alterations associated with CRC.

Compared to previous studies on CRC biomarkers, a variety of feature selection
methods were employed, enhancing the accuracy, stability, and discriminative ability. Addi-
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tionally, the IFS method was used to select optimal feature subsets, and four classifiers were
employed, leveraging the complementary strengths of different algorithms to enhance the
overall model performance. Moreover, rule-based classification was performed, enhancing
the interpretability of the model. This study incorporated comprehensive analyses of
survival analysis and immune infiltration analysis. The potential biomarkers identified
hold significant promise as a valuable reference for the diagnosis and treatment of colorec-
tal cancer. Furthermore, the interpretability of our model provides us with a profound
understanding of its prediction process, allowing us to delve into the underlying biological
mechanisms. Through the visualization of co-predictive rules, we gained insights into the
interactions among key genes, enabling further exploration of the impact of gene expression
changes on disease progression.

Our approach improves the stability and interpretability of biomarker identification for
CRC. We hope that the results of this study will help us better understand the underlying
biological processes and give a theoretical foundation for choosing relevant biomarkers in
CRC. We aim to use ML techniques to analyze TME and its related biomarkers and analyze
the various factors that could affect the progression of CRC, including the cellular and
molecular components of TME, as well as the genetic changes associated with CRC. The
study also aims to develop predictive models that can accurately classify CRC patients
with reference to their biomarkers and TME profiles, with the ultimate goal of improving
diagnosis and treatment of CRC.

2. Results
2.1. Overview of Datasets

Our workflow for identifying biomarkers associated with CRC is depicted in Figure 1.
In addition, a graphical scheme of this study is depicted in Figure 2. Table 1 provides an
overview of the datasets. Specifically, DS1 and DS2 contained 111 and 69 samples, respec-
tively, with a mix of CRC and normal tissue samples, while DS3 comprised 698 samples
consisting of primary solid tumor and solid tissue normal samples. Following data prepro-
cessing, a total of 13,051, 20,283, and 16,724 genes were retained for downstream analysis
in DS1, DS2, and DS3, respectively. Notably, DS3 combined data from TCGA-COAD and
TCGA-READ, and Figure 3 illustrates that the samples in DS3 were closer to each other
after applying the batch effect correction.
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Figure 2. Graphical scheme of the study. (A) Datasets were collected from TCGA-COAD/READ,
GSE44861 and GSE103512; (B) data pre-processing included merging, normalization and batch effect
removal for the TCGA datasets; (C) machine learning algorithms were applied to select optimal
feature number; (D) the interpretable machine learning method was applied to identify co-predictive
features, and the VisuNet framework was used to visualize the co-predictive network; (E) survival
analysis was applied to identify prognostic genes; (F) immune infiltrating analysis was applied to
gain insights into the relationship between genes and cells in tumor micro-environment and gene
mutation analysis was also performed.
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Table 1. Overview of the datasets. The table provides information about the number of samples and
the number of genes in each dataset.

Dataset Source Series No. (CRCs) No. (Controls) No. (Genes)

DS1 Ryan et al., 2014 [32] GSE44861 56 55 22,278
DS2 Maisel D et al., 2018 [33] GSE103512 57 12 20,742

DS3 https://portal.gdc.cancer.gov/ (accessed on 20
February 2023)

TCGA-
COAD/READ 647 51 19,935
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Figure 3. Principal component analysis (PCA) of DS3 samples before and after removing batch effects.
(a) PCA plot before batch effect removal, showing the distribution of CRC and normal samples from
TCGA-COAD and TCGA-READ. (b) PCA plot after batch effect removal. Yellow dots represent CRC
samples from TCGA-COAD, purple dots represent CRC samples from TCGA-READ, blue triangles
represent normal samples from TCGA-COAD, and green triangles represent normal samples from
TCGA-READ.

2.2. Class Balancing and Feature Selection

DS2 and DS3 were characterized by imbalanced class distributions, with a ratio of
57:12 and 647:51 CRC–normal samples in DS2 and DS3, respectively. To address this issue,
we applied the synthetic minority oversampling technique (SMOTE) technique, which
resulted in rebalanced class ratios of 57:60 and 647:663 for DS2 and DS3, respectively. To
prevent overfitting, we subjected the features selected by MCFS to a 10-fold CV procedure.
Among the different methods for choosing relative importance (RI) thresholds, the critical
angle method resulted in a large minimum effective RI and a low number of selected
features, which may introduce noise (Figure 4). The mean and k-means methods showed
similar results. Therefore, we deemed the permutation method to be more appropriate.
The 10-fold CV results showed that the accuracy of the three datasets (Figure 5).

https://portal.gdc.cancer.gov/
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Figure 4. Threshold selection for feature selection using four methods. (a) The minimum relative
importance (minRI) cutoff was used to select features. Four methods were evaluated: mean, k-means,
critical angle, and permutations. The permutation method was chosen as the most appropriate
method for selecting feature thresholds; (b) the “size” of the selected features was defined as the
number of features to be included.
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Figure 5. Cross-validation (CV) results of Monte Carlo Feature Selection (MCFS). (a–c) Histograms
showing the 10-fold CV results of MCFS for the DS1, DS2, and DS3 datasets, respectively. The x-axis
represents the number of top-ranked features, while the y-axis represents the accuracy. Each colored
bar represents a different ML algorithm.

An overview of the results of Boruta is displayed in Table 2. Features defined as
“Tentative” are recalculated by the TentativeRoughFix function in the R package Boruta,
and some of them are selected as “Confirmed”. There were 78, 117, and 213 features selected
by Boruta for DS1, DS2, and DS3, respectively. For results of mRMR and LightGBM, refer
to Tables S1–S3.
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Table 2. Feature types in the three datasets as identified by Boruta. The “Confirmed” column shows
the number of features confirmed as important by Boruta, while the “Tentative” column indicates
the number of features that were not confirmed as important. The “Rejected” column displays the
number of features that were discarded by Boruta. The “Recalculated” column is the sum of the
number of features redefined as “Confirmed” by the TentativeRoughFix function and the original
“Confirmed” features.

Datasets Confirmed Tentative Rejected Recalculated

DS1 51 43 13,329 78
DS2 84 68 20,589 117
DS3 146 268 16,310 213

To determine the optimal number of features for constructing the models, we used
the Incremental Feature Selection (IFS) method, which iteratively adds features one by
one based on decreasing RI. This process started with the first feature ranked by the four
feature selection algorithms and continued to add features up to the 100th feature. Features
ranked by Boruta were added according to the results of “Recalculated”. In DS2 and DS3,
MCC was consistently 1.00 when adding the first features, regardless of the ML algorithm
used, indicating that the features selected in these datasets were of high quality. Therefore,
the union of the top 20 features from the four feature selection algorithms was selected as
the optimal feature set for DS2 and DS3 (Figure 6).
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Figure 6. Venn diagram showing the essential gene sets of the three datasets. The three circles
represent the optimal feature sets of DS1, DS2, and DS3 (a–c), respectively. The number inside each
oval denotes the number of genes in the corresponding feature set. The overlap between two ovals
represents the common genes between the two datasets, while the intersection of all three ovals
represents the shared genes in all three datasets. Different colors represent different feature selection
algorithms, which the purple represents mRMR, the yellow represents Boruta, the green represents
MCFS and the red represents lightGBM.

However, for DS1, it can be seen from Table 3 that MCC did not reach 1.00 when
the first-ranked feature was added and did not begin with a constant value from the first-
ranked feature. Additionally, different classification algorithms had different choices for the
optimal number of features, so we selected the largest number of features under different
classification algorithms to be included in the optimal feature set of DS1, which could avoid
the omission of features. As shown in Table 3, the optimal feature set for DS1 is the union
of these: MCFS.XGBoost, Boruta.kNN, mRMR.SVM, and LightGBM.SVM. As shown in
Figure 6, 33, 52, and 49 genes were selected for the optimal feature sets of DS1, DS2, and
DS3, respectively. We then integrated these genes into a merged gene set for use in IML
analysis. The merged gene set was used to investigate the rules in IML, which were then
used to predict the class of the test samples.
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Table 3. Performance evaluation of optimal classifiers using different feature ranking algorithms and
classification algorithms on the DS1 dataset.

Feature Ranking
Algorithm

Classification
Algorithm No. Features MCC ACC

MCFS

SVM 16 0.756 0.875
XGBoost 22 0.645 0.813

RF 17 0.700 0.844
kNN 20 0.756 0.844

Boruta

SVM 13 0.756 0.875
XGBoost 11 0.776 0.875

RF 21 0.756 0.875
kNN 20 0.756 0.875

mRMR

SVM 10 0.756 0.812
XGBoost 9 0.592 0.781

RF 12 0.756 0.781
kNN 9 0.756 0.844

LightGBM

SVM 12 0.756 0.875
XGBoost 5 0.625 0.813

RF 9 0.814 0.906
kNN 9 0.750 0.844

2.3. Classification Rules

After merging the features from DS1, DS2, and DS3, we obtained sets of 99, 121, and
114 genes, respectively. We found that the PTGDS gene was present in both DS1 and
DS2, and six genes (CDH3, SCGN, INHBA, KRT24, CA7, and SPIB) were shared between
DS1 and DS3. There were no common genes between DS2 and DS3. The merged gene
sets were used to generate rules for IML analysis, and we compared the performance
of models constructed from the original gene sets versus the merged gene sets (Table 4).
We discovered that the original gene set-based model had an average AUC of 0.933 and
an average accuracy of 92.4%. The model based on the merged gene set had an average
accuracy of 89.2% with an average AUC of 0.949, indicating a slight improvement in AUC.
We also observed a decrease in the number of rules, which suggests overfitting in the
original gene set.

Table 4. Results of interpretable machine learning (IML) models built on the original and merged
feature lists. The table displays the average accuracy (accuracyMean) and the average area under the
curve (AUC) of the receiver operating characteristic (ROC) curve of the IML model. The models were
constructed using the original feature list and the merged feature list for each dataset.

Characteristic DS1 DS2 DS3

Original

No. features 33 52 49
No. rules (p ≤ 0.05) 15 38 12

ACC 81.2% 97.5% 98.4%
AUC 0.821 0.979 0.999

Merged

No. features 99 121 114
No. Rules 10 34 19

ACC 84.7% 84.2% 98.6%
AUC 0.918 0.931 0.999

We evaluated the model of rules using the Johnson reduction method, and the data
were divided into three bins (low, medium, and high) using the Equal Frequency method.
After recalculating the rule set using the recalculateRules function, the number of rules did
not change significantly, but the average number of left rule support (LHS) and right rule
support (RHS) increased (Table 5).
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Table 5. Performance evaluation of rules using the Johnson reduction method. The rule statistics
represent the mean values, including the average number of left-hand side (LHS) and right-hand side
(RHS) support, and the average accuracy and AUC of the IML model. The top co-predictors are the
most significant co-predictors, with a Bonferroni-adjusted p-value ≤ 0.05.

CRC Control

Total number of rules 53 45

Rule statistics Basic Recalculated Basic Recalculated

Number of rules (p ≤ 0.05) 31 31 31 32
LHS support 44 75 55 77
RHS support 43 75 53 77

Top co-predictors INHBA,
CADM3

INHBA,
FAM107A

INHBA,
ANK2

INHBA,
ANK2

We selected several significant rules (Bonferroni-adjusted p-value ≤ 0.05) from the
Johnson reduction model to identify the most correlated co-predictors among genes. Addi-
tionally, we selected a total of 63 rules with Bonferroni-adjusted p-value ≤ 0.05 (Table 6),
which highlighted the strong links between the low expression of some genes and the high
expression of others.

Table 6. Set of rules and their statistics from the CRC and Control model. Rules were selected based
on a Bonferroni-adjusted p-value of ≤0.05 using the recalculatedRules function. Genes were divided
into three bins using the equal frequency method: low (1), medium (2), and high (3). The table
provides statistics for each rule, including the number of genes in each rule, the percentage of genes
in each bin, the odds ratio, and the p-value. In the “Decision” column, T represents tumor tissues and
N represents normal tissues.

No. Rule Decision Accuracy RHS Support p Value

1 INHBA = 3, FAM107A = 1 T 1 260 1.90 × 10−93

2 INHBA = 3, CADM3 = 1 T 1 259 5.14 × 10−93

3 INHBA = 3, ANK2 = 1 T 1 249 1.00 × 10−88

4 INHBA = 1, ANK2 = 2 N 1 241 3.69 × 10−82

5 INHBA = 1, FAM107A = 3 N 1 225 8.77 × 10−76

6 INHBA = 1, CADM3 = 3 N 1 219 1.97 × 10−73

7 INHBA = 1, CADM3 = 2 N 1 217 1.18 × 10−72

8 INHBA = 2, FAM107A = 3 N 1 212 1.03 × 10−70

9 INHBA = 2, ANK2 = 3 N 0.9910314 221 2.86 × 10−70

10 INHBA = 1, FAM107A = 2 N 1 209 1.47 × 10−69

11 INHBA = 2, CADM3 = 3 N 1 208 3.56 × 10−69

12 INHBA = 1, ANK2 = 3 N 1 196 1.31 × 10−64

13 INHBA = 2, ANK2 = 1 T 1 188 5.90 × 10−64

14 INHBA = 2, CADM3 = 1 T 1 180 7.18 × 10−61

15 INHBA = 3, CADM3 = 2 T 1 176 2.43 × 10−59

16 INHBA = 3, FAM107A = 2 T 1 175 5.85 × 10−59

17 INHBA = 2, FAM107A = 1 T 1 173 3.37 × 10−58

18 INHBA = 3, ANK2 = 2 T 1 169 1.10 × 10−56

19 IQGAP3 = 3 T 1 41 4.23 × 10−17

20 UBE2T = 3 T 1 41 4.23 × 10−17

21 SQLE = 3 T 1 41 4.23 × 10−17

22 CCT3 = 3 T 1 41 4.23 × 10−17

23 HIST1H2BG = 3 T 1 40 1.92 × 10−16

24 HIST1H2BG = 1 N 1 40 5.75 × 10−15

25 IQGAP3 = 1 N 1 39 2.14 × 10−14

26 UBE2T = 1 N 1 38 7.67 × 10−14

27 CCT3 = 1 N 1 38 7.67 × 10−14

28 SQLE = 1 N 1 37 2.67 × 10−13
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Table 6. Cont.

No. Rule Decision Accuracy RHS Support p Value

29 CENPF = 3, KIAA1199 = 3 T 1 27 2.63 × 10−9

30 AURKB = 3, FAM83H = 3 T 1 25 2.22 × 10−8

31 ARNTL2 = 3, PDE9A = 1 T 1 25 3.33 × 10−8

32 FNBP1 = 1, SQLE = 3 T 1 24 6.26 × 10−8

33 A2LD1 = 2, BMP3 = 3 N 1 23 7.62 × 10−7

34 AURKB = 1, FAM83H = 1 N 1 23 7.62 × 10−7

35 CENPF = 1, KIAA1199 = 1 N 1 23 7.62 × 10−7

36 FNBP1 = 2, SQLE = 1 N 1 22 1.90 × 10−6

37 LOC63928 = 3, SOX4 = 2 N 1 19 6.74 × 10−6

38 INHBA = 3, ANK2 = 3 T 1 21 7.48 × 10−6

39 FNBP1 = 1, SQLE = 2 T 1 19 8.46 × 10−6

40 A2LD1 = 3, BMP3 = 1 T 1 18 2.15 × 10−5

41 FNBP1 = 3, SQLE = 2 N 1 19 2.72 × 10−5

42 LOC63928 = 1, SOX4 = 3 T 0.952381 20 5.37 × 10−5

43 CENPF = 1, KIAA1199 = 2 N 1 18 6.40 × 10−5

44 FNBP1 = 3, SQLE = 1 N 1 18 6.40 × 10−5

45 CENPF = 2, KIAA1199 = 1 N 1 18 6.40 × 10−5

46 AURKB = 1, FAM83H = 2 N 1 18 6.40 × 10−5

47 INHBA = 1, VAV1 = 3 N 1 16 1.02 × 10−4

48 INHBA = 3, VAV1 = 1 T 1 16 1.43 × 10−4

49 LOC63928 = 3, SOX4 = 1 N 0.9473684 18 2.01 × 10−4

50 INHBA = 1, VAV1 = 2 N 1 15 2.45 × 10−4

51 AURKB = 2, FAM83H = 1 N 1 16 3.42 × 10−4

52 ARNTL2 = 1, PDE9A = 3 N 0.9444444 17 4.67 × 10−4

53 AURKB = 3, FAM83H = 2 T 1 14 7.70 × 10−4

54 AURKB = 2, FAM83H = 3 T 1 13 1.82 × 10−3

55 A2LD1 = 1, BMP3 = 2 N 0.9047619 19 2.06 × 10−3

56 ARNTL2 = 2, PDE9A = 3 N 0.9333333 14 5.27 × 10−3

57 INHBA = 3, VAV1 = 2 T 1 11 8.81 × 10−3

58 FNBP1 = 2, SQLE = 3 T 1 11 9.78 × 10−3

59 A2LD1 = 2, BMP3 = 1 T 1 11 9.78 × 10−3

60 A2LD1 = 1, BMP3 = 1 T 1 11 9.78 × 10−3

61 A2LD1 = 3, BMP3 = 2 T 1 10 2.23 × 10−2

62 CENPF = 3, KIAA1199 = 2 T 1 10 2.23 × 10−2

63 A2LD1 = 3, BMP3 = 3 N 1 10 3.89 × 10−2

The highest-ranked co-predictors included high expression of INHBA and low expression
of FAM107A (INHBA = 3, FAM107A = 1). This gene encodes a protein called activin A, which
is a member of the superfamily of transforming growth factor-β (TGF-β). Recent studies have
suggested that activin A may play a role in the development and progression of CRC [34].
FAM107A can activate actin activity and participate in multiple cellular processes, and low
expression of this gene has been linked to various human diseases [35]. Low expression
of CADM3 also co-predicted high expression of INHBA. CADM3 is a calcium-independent
intercellular adhesion protein that has been reported to be a tumor suppressor gene [36].
Other highly ranked co-predictors included “ARNTL2 = 3, PDE9A = 1”, “IQGAP3 = 3”,
“UBE2T = 3”, “SQLE = 3”, “CCT3 = 3”, “HIST1H2BG = 3”, and “INHBA = 3, ANK2 = 1”,
among others. ARNTL2 is a transcriptional activator that is a core component of the circadian
clock, and has been suggested as a potential biomarker in CRC tumorigenesis [37]. PDE9A is
a specific hydrolytic second messenger cGMP, and its low expression in CRC may become a
biomarker related to the prognosis of CRC [38]. IQGAP3 is involved in the regulation of actin
cytoskeleton organization and can promote tumorigenesis as a transmembrane protein [39].
Overexpression of IQGAP3 has been associated with increased cell proliferation, migration,
and invasion in CRC cells. UBE2T catalyzes the covalent attachment of ubiquitin to protein
substrates and has been reported to promote the development of CRC [40]. It is thought that
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CCT3 may promote tumorigenesis by regulating the folding and stability of various oncogenic
proteins involved in CRC, highlighting its potential as a therapeutic target.

2.4. Co-Predictive Network

We also analyzed a co-predictive network using the VisuNet framework to better
understand the interdependence of genes in CRC (Figure 7). The co-predictive network
identified INHBA as a co-predictor with ANK2, CADM3, and FAM107A, suggesting that
these genes may be involved in similar biological processes relevant to CRC. We found
that high expression of INHBA was correlated with low expression of ANK2, CADM3, and
FAM107A, further supporting the idea of a co-predictive mechanism. Importantly, many of
these genes can also be used as individual predictors of CRC.
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Figure 7. Co-predictive network of CRC and Control classes using VisuNet and PPI analysis. (a) Vi-
suNet co-predictive network of CRC samples. Each circle represents a node, where the size of the
circle corresponds to the size of the support sets. The edge and node connections represent the
strength of the co-prediction. (b) VisuNet co-predictive network of Control samples. (c) PPI network
of co-predictors in (a). Each node represents a protein, and the edge represents the interaction be-
tween two proteins. Different colors represent different types of interactions, where the yellow-green
edge represents information mining, the black edge represents co-expression, and the pink edge
represents experimental verification. The PPI network and co-predictive network were combined to
better predict CRC.

To better explore the intersection between co-predictors, we created a protein–protein
interaction (PPI) network using STRING (Figure 7c). The PPI network identified 13 nodes
and 35 edges, highlighting key proteins involved in CRC development. By combining the
co-predictive network with the PPI network, we found that some individual predictors
were also involved in protein–protein interactions. Overall, these findings imply that



Int. J. Mol. Sci. 2023, 24, 11133 12 of 25

understanding the interdependence of genes in CRC may lead to more effective diagnostic
and therapeutic strategies.

2.5. Survival Analysis and Differential Expression Analysis

We performed Kaplan–Meier survival analysis on the genes in Figure 7a to determine
their potential as prognostic biomarkers for CRC. Low and highly expressed genes were
defined, and among the genes in Figure 7a, five were found to significantly distinguish
patients with different CRC tumor viability (p-value < 0.05). The rest of the genes did
not show significant differences. As shown in Figure 8a, INHBA was consistent with the
rules, where the survival rate of patients with high expression was low. This suggests that
INHBA could serve as a potential biomarker for CRC. On the other hand, patients with low
expression of PDE9A had a low survival rate. Furthermore, higher expression of FNBP1,
HIST1H2BG, and CADM3 was correlated with a worse patient survival rate.
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FNBP1, also known as Formin-binding protein 1, is involved in regulating the actin
cytoskeleton and lipid binding [41]. Its low expression was found to be associated with
CRC at a certain time point between 50 and 75 months, but other studies have suggested
that high expression can affect the prognosis of other cancers [42]. HIST1H2BG, a histone
protein, has been proposed as a potential biomarker for the early diagnosis of squamous
cell carcinoma, but its potential as a biomarker for CRC is yet to be determined [43].

Overall, our results suggest that some of the genes we identified could be used as
potential prognostic biomarkers for CRC. Further studies are required to verify these
results and to explore the underlying mechanisms by which these genes contribute to the
development and progression of CRC.

Differential expression analysis was carried out on the three datasets, resulting in the
identification of a total of 1435 DEGs. Specifically, 729 DEGs (543 upregulated and 186 down-
regulated) were detected in DS3 at a threshold of adj. p value < 0.01 and |logFC| > 3, while
387 DEGs (259 upregulated and 128 downregulated) and 319 DEGs (267 upregulated and
52 downregulated) were identified in DS1 (adj. p value < 0.01, |logFC| > 1) and DS2 (adj.
p value < 0.01, |logFC| > 1.5), respectively (Figure 9).
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Figure 9. Volcano plots of differential expression genes (DEGs) in three datasets. Red dots represent
upregulated DEGs; green dots represent downregulated DEGs; gray dots represent non-differentially
expressed genes. (a–c) Volcano plot of DEGs in DS1, DS2 and DS3.

Comparing the DEGs and co-predictors, it was found that some genes could act as
both co-predictors and DEGs, indicating their potential as markers for distinguishing tumor
tissues from normal tissues based on their expression patterns. Notably, certain genes did
not exhibit significant changes in expression across the three datasets, suggesting that
the ML method had identified additional potential biomarkers beyond those detected by
differential expression analysis (Table 7). Overall, these findings highlight the potential
of ML algorithms for identifying novel biomarkers with diagnostic and prognostic value
in CRC.

Table 7. Summary of co-predictors associated with CRC. The table displays the co-predictors identi-
fied by the ML algorithm, along with their corresponding expression changes in the three datasets.
The symbol “/” indicates that there was no significant change in gene expression.

mRNA
Expression Level

Predicted Class
DS1 DS2 DS3

ARNTL2 Downregulated / / CRC
PDE9A Upregulated / / CRC
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Table 7. Cont.

mRNA
Expression Level

Predicted Class
DS1 DS2 DS3

INHBA Downregulated / / CRC
ANK2 Upregulated Upregulated Upregulated CRC

FAM107A / / / CRC
CADM3 / / Upregulated CRC

SQLE Downregulated / / CRC
FNBP1 / / / CRC
CCT3 / / / CRC

CENPF / Downregulated / CRC
KIAA1199 Downregulated Downregulated / CRC

UBE2T / / / CRC
FAM83H / / / CRC
IQGAP3 / Downregulated / CRC

HIST1H2BG / / / CRC
A2LD1 / / / CRC
BMP3 / / Upregulated CRC

AURKB / / CRC

2.6. Immune Infiltrating and Gene Mutation Analysis

We conducted a differential analysis of immune infiltrating cells in CRC and normal
tissues and found that eight immune cell types were statistically different between the two:
Plasma cells, T cells gamma delta, T cells CD8, Macrophage M1, Mast cells activated, B cells
naive, T cells CD4 memory activated and Macrophage M0. Of these, T cells gamma delta,
Macrophage M1, Mast cells activated, T cells CD4 memory activated, and Macrophage M0
were more prevalent in CRC tissue than in normal tissue, while Plasma cells, T cells CD8,
and B cells naive were more abundant in normal tissues (Figures 10, S6 and S8).
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Figure 10. Distribution of immune cells and differential analysis in DS1. The bar plots show the
proportion of immune cell types in normal (red) and tumor (blue) tissues. Statistical analysis was
performed to identify significant differences between the two tissue types. The significance levels
are denoted by the following symbols: ns (not significant); * (0.01 < p < 0.05); ** (0.001 < p < 0.01);
*** (0.0001 < p < 0.001); **** (p < 0.0001).
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To further investigate the relationship between gene expression and differential im-
mune cells, we tested the correlations between INHBA, FNBP1, PDE9A, HIST1H2BG and
CADM3 with these immune cells in each dataset (Figures 11, S7 and S9). In DS1, we
found that INHBA was significantly correlated with all differential immune cells, showing
a negative correlation with Plasma cells, T cells CD8, and B cells naive. PDE9A had no
significant correlation with T cells CD8, but showed significant correlation with the other
seven immune cells. HIST1H2BG had no correlation with any of the differential immune
cells in DS1. FNBP1 showed a negative correlation with Macrophages M1, Macrophages
M0, T cells CD4 memory activated, and T cells gamma delta, and a positive correlation
with B cells naïve. For CADM3 (Entrez gene id 57863), we replaced it with IGSF4B, as it was
not found in DS1, and we found that IGSF4B was negatively correlated with Macrophages
M1 and Macrophages M0 (Figure 11).
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Figure 11. (a) Heatmap showing the correlation between the expression levels of 5 key genes and
the frequencies of differential immune cell types in DS1. The color scale represents the magnitude of
the Pearson correlation coefficient, with red indicating a positive correlation and blue indicating a
negative correlation; *: 0.01 < p < 0.05; **: 0.001 < p < 0.01; ***: 0.0001 < p < 0.001. (b) Gene mutation
status of the five key genes, as determined from genomic sequencing data.

In DS2, we identified ten differential immune cell types, and we found that INHBA was
only positively correlated with Macrophages M0. HIST1H2BG was significantly correlated
with eight cell types. FNBP1 showed a significant positive correlation with Mast cells resting
and B cells naive, and a significant negative correlation with Mast cells activated (Figure S7).

In DS3, apart from Mast cells resting, T cells CD4 naive, Tregs, Monocytes and Den-
dritic cells resting, the other 16 cell types were statistically different between CRC tissues
and normal tissues. We found that PDE9A, FNBP1, and CADM3 were significantly cor-
related with several differential immune cells. PDE9A was negatively correlated with
M0 macrophages and M2 macrophages, and positively correlated with γδT cells. FNBP1
was negatively correlated with γδT cells and positively correlated with M2 macrophages
and CD8 T cells. CADM3 was positively correlated with M0 macrophages. Furthermore,
the results of gene mutation analysis showed that INHBA, FNBP1, PDE9A, HIST1H2BG,
and CADM3 genes all had mutations, with mutation rates of 3%, 3%, 3%, 2%, and 1%,
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respectively (Figure 11b). In DS3, we replaced HIST1H2BG with H2BC8, which was the
corresponding gene name in DS3.

3. Discussion

CRC remains a significant health concern, and there is a pressing need to identify novel
and reliable biomarkers for treatment. We leveraged the power of bioinformatics and ML
techniques to analyze large-scale genomic and transcriptomic data and identify potential
biomarkers for CRC. We analyzed a total of 878 samples, of which 704 were CRC tissue
samples and 174 were normal tissue samples, and addressed the problem of class imbalance
to ensure accurate classification. We employed feature selection algorithms such as MCFS,
Boruta, mRMR, and LightGBM to identify the most relevant features in the gene expression
matrix. Our results indicate that the IFS method effectively optimizes feature selection
for ML models, and the superiority of SVM in accurately classifying CRC and normal
samples. Moreover, we employed an IML framework based on rough set theory to extract
a series of co-predictors, which we found to be strong predictors of CRC. We discovered
a total of 63 rules, and these findings are significant, as they have the potential to enable
early detection of CRC and improve patient outcomes. We further performed survival
analysis and differential expression analysis on the genes. Subsequently, we employed the
CIBERSORT method to investigate the immune infiltrating cells within TME. Furthermore,
we conducted Pearson correlation analysis to examine the potential associations between
key genes and differentially infiltrating immune cells. Lastly, we explored whether the
observed abnormal expression of key genes could be attributed to gene mutations.

Among the potential biomarkers identified in this study, many co-predictors were
obtained, such as INHBA, FAM107A, and CCT3. INHBA is a member of the TGF-β protein
superfamily, and has been associated with the occurrence of some cancers [34]. FAM107A is
involved in multiple cellular processes, such as the negative regulation of the G1/S phase
transition of the mitotic cell cycle, and has been linked to various human diseases, including
neuroblastoma [35]. While CCT3 has not previously been explored as a potential biomarker
for CRC, this study suggests it may have potential as a biomarker. Survival analysis of
these proteins revealed that five genes were significantly correlated with the prognosis
of CRC: INHBA, FNBP1, PDE9A, HIST1H2BG, and CADM3. FNBP1 is a formate-binding
protein that may act as a link between cytoskeletal regulation, binding to lipids such as
phosphatidylinositol 4,5-bisphosphate and phosphatidylserine, and promoting membrane
stuffing and tubule formation [41]. PDE9A is a specific cGMP and HIST1H2BG is a histone
and has shown potential as a biomarker for the early diagnosis and subsequent diagnosis
of squamous cell carcinoma [43]. CADM3 is a calcium-independent intercellular adhesion
protein that is also reported to be a tumor suppressor gene [36]. To contextualize the
significance and clinical relevance of our identified biomarkers, we compared our results
with relevant published data on CRC biomarkers. INHBA was found to be a novel mediator
regulating cellular senescence and immune evasion [44] and as a prognostic predictor for
patients with colon adenocarcinoma [45], consistent with our findings of INHBA as a po-
tential biomarker. For PDE9A, it was shown that its low expression in CRC may become a
biomarker related to the prognosis of CRC [38]. No studies have explored HIST1H2BG’s po-
tential as a tumor biomarker for CRC and low methylation level of CADM3 was associated
with poor survival of CRC [46]. The are no studies demonstrating the mechanism by which
high expression of FNBP1 is correlated with a worse prognosis in CRC. These potential
biomarkers may help us to understand the molecular mechanisms and serve as potential
targets for future therapeutic interventions and these comparative analyses validate the
potential clinical relevance of our identified gene markers and reinforce their candidacy
as valuable indicators in CRC diagnosis and prognosis. However, further validation and
verification of these biomarkers in larger cohorts and in clinical settings is needed to deter-
mine their clinical significance and potential for use in CRC diagnosis and treatment. The
use of bioinformatics and ML methods in this study demonstrates the potential for these
technologies to identify novel biomarkers and advance our understanding of CRC.
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The identification of five key genes in this study opens up the possibility of further
investigating their regulatory mechanisms and how they contribute to the development of
CRC. Interestingly, when PDE9A, CADM3, and FNBP1 were used as co-predictors, they
all showed low expression in tumor tissue, suggesting their potential use as biomarkers
for predicting CRC. However, survival analysis revealed that while low expression of
PDE9A was associated with poor survival rate, low expression of CADM3 and FNBP1
was associated with better prognosis. This phenomenon may be attributed to the fact
that the expression of these genes was upstream of other genes whose high expression
was associated with better survival rates. Furthermore, the mutations of INHBA, FNBP1,
PDE9A, HIST1H2BG, and CADM3 were analyzed, and mutations were found in all five
genes, highlighting their potential role in the progression of CRC.

Previous studies have highlighted the involvement of various immune cell types such
as T cells, B cells, macrophages, and related signaling molecules in CRC development [13].
In this study, the relationship between five key genes (INHBA, FNBP1, PDE9A, HIST1H2BG,
and CADM3) and immune cells was investigated. TME of CRC is highly heterogeneous
among patients, possibly due to molecular variability between sampling sites and sample
size. Interestingly, among the five genes, PDE9A consistently showed a significant negative
correlation with M0 macrophages across all three datasets. Furthermore, our results
suggest that guanylate cyclase activity, which is enriched in PDE9A interacting proteins
(Figure S1), plays a crucial role in the TME [47]. On the other hand, INHBA was found
to be enriched in the TGF-β signaling pathway and inflammatory bowel disease-related
pathways (Figure S2). However, the significance of these findings in the context of immune
infiltration requires further investigation to evaluate their potential as therapeutic targets
(Figures S3–S5). Practical implications of our findings are promising. Identification of these
genes and their correlation with immune cells in CRC could be used to develop targeted
therapies or improve early detection methods. Our research sheds light on possible targets
for immunotherapies, which are becoming more and more essential given the involvement
of immune cells in cancer.

Our study also highlights the benefits of utilizing ML methods to identify cancer-
associated features in comparison to traditional bioinformatics approaches. Combining
ML and bioinformatics methods can help improve tumor diagnosis. Interestingly, our
analysis identified INHBA and FAM107A as important predictors of CRC, despite not being
identified as DEGs in the two datasets (DS2 and DS3). IML algorithm employed in this
study is a powerful modeling method that can discover significant prediction mechanisms
and explain differences between classes.

In addition to the findings, it is essential to acknowledge the limitations of this study.
One limitation is the conversion of the continuous expression data into three intervals
during IML, which may lead to some loss of information. However, this step is necessary
for modeling based on rough set theory. Another limitation is the small gene intersection of
the three datasets after feature selection, which may be due to the sampling of CRC and the
heterogeneity of patient lesions. Additional datasets and larger sample sizes are needed
to improve the generalizability of our findings. Additionally, this study only focused on
the classification of CRC and normal tissues. In future studies, tumor type and stage could
be used as the target of ML classification. Lastly, there are other studies that combine
cell classification with gene expression data and other omics data to predict potential
biomarkers, which could also be explored in future research. Overall, acknowledging the
limitations of this study can help guide future research in this field. While previous studies
have used decision trees to predict rules [48], these rules are usually limited to a single
predictor and cannot be used for co-prediction.

In summary, our study identifies potential biomarkers and provides insight into
the role of immune cells in CRC. Our results demonstrate the power of ML algorithms in
cancer research and suggest potential targets for immunotherapies. In light of the promising
findings presented in this study, it is crucial to outline potential directions for future research
in the field of CRC biomarkers. First and foremost, exploring additional omics data beyond
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transcriptomics, such as proteomics and epigenomics, holds great potential for further
elucidating the molecular mechanisms underlying CRC. Integrating multi-omics data
through advanced computational techniques, such as multi-omics integration algorithms
and network-based approaches, could provide a more comprehensive understanding of the
complex biological processes involved in CRC. The identified biomarkers, INHBA, PDE9A,
FNBP1, CADM3, and HIST1H2BG, hold significant potential for translational applications
and clinical implications in CRC. By assessing the expression levels or mutations of these
biomarkers in patient samples, we can obtain valuable information about the presence
and progression of CRC. Moreover, these biomarkers may have prognostic value, allowing
for the prediction of disease outcome and patient survival. INHBA, for instance, has been
implicated in various cellular processes, including tumor growth and metastasis, making
it an attractive candidate for targeted therapies [44,45]. Developing specific inhibitors or
modulators for these biomarkers could potentially inhibit tumor progression and improve
treatment outcomes. On the basis of our findings, further study may help create more
specific CRC treatments.

4. Materials and Methods
4.1. Data and Preprocessing

To identify potential biomarkers for CRC, we gathered three case–control study
datasets named DS1, DS2, and DS3 from The Cancer Genome Atlas (TCGA) [49] and
Gene Expression Omnibus (GEO) [50]. DS1 (GSE44861) and DS2 (GSE103512) were down-
loaded via the GEOquery (2.66.0) R package [51], while DS3 was created by combining
datasets of TCGA-COAD and TCGA-READ that downloaded via TCGAbiolinks (2.26.0) R
package [52]. Specifically, DS1 and DS2 contained 111 and 69 samples, respectively, with a
mix of CRC and normal tissue samples, while DS3 comprised 698 samples consisting of
primary solid tumor and solid tissue normal samples.

We normalized DS1 and DS2 with functions ReadAffy and rma via affy R (1.76.0)
package [53]. Then, we collapsed multiple probesets with identical gene symbols into
a single row with max mean using the function collapseRows via WGCNA (1.72-1) R
package [54], resulting in 13,051 and 20,283 genes for DS1 and DS2, respectively. DS3
introduced batch effects, and we overcame this by adjusting using Combat function in SVA
(3.46.0) R package [55]. In addition, the RNA-seq raw count from DS3 was normalized by
TMM algorithm in limma (3.54.1) R package [56], resulting in 16,724 protein-coding genes.

4.2. Differentially Expressed Genes

Differential expression analysis was conducted to obtain DEGs. Specifically, we
used the limma (3.54.1) R package with a cutoff of adjusted p-value < 0.01 and |log2
(fold-change)| > 1 for DS1, p-value < 0.01 and |log2 (fold-change)| > 1.5 for DS2, and
p-value < 0.01 and |log2 (fold-change)| > 3 for DS3. The p-value was adjusted using the
Benjamini–Hochberg (BH) method.

4.3. Class Imbalance Correction

To mitigate the effect of class imbalance on model training, we employed SMOTE [57,58]
to balance classes in DS2 and DS3. By employing a randomly chosen sample and one of its
k-nearest neighbors to interpolate fresh sample data, SMOTE creates synthetic samples for the
minority class. The DMwR (0.4.1) R package [59] was used to implement SMOTE, resulting in
well-balanced datasets that are more suitable for classification modeling.

4.4. Feature Selection

The input features in our model training are represented by columns, with samples
represented by rows. However, a prediction model’s performance may be significantly
reduced due to the curse of dimensionality. To solve this problem, we employed feature
selection algorithms to obtain a subset of the original input features for predictive modeling.
The step of feature selection reduces computational costs and improves the accuracy. Four
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feature selection algorithms were employed in this study to access gene features and rank
them in lists: MCFS, Boruta, mRMR, and LightGBM.

4.4.1. MCFS

MCFS is a supervised feature selection algorithm based on decision tree [19], which
randomly selects subsets of features from the original input features many times. Specifi-
cally, MCFS selects s subsets of m features and constructs t trees for each of these subsets.
Then, a score for relative importance (RI) is calculated for each feature, with a near prox-
imity to a tree’s root indicating a feature’s high RI. The ranking list of the top genes was
created using rmcfs (1.3.5) R package [60].

4.4.2. Boruta

The Boruta feature selection algorithm, which is based on the random forest (RF)
algorithm, selects important features using a wrapper method [20]. Boruta seeks to identify
all feature sets that are associated with the dependent variables using two ideas: shadow
features and binomial distribution. Shadow features are constructed by shuffling the
original features, and the RI score of shadow features is used as a reference. If the original
feature is very important, its feature importance is higher than its shadow features, and it
can be retained [61]. If not, the feature is marked as “Tentative” and further iterations using
the binomial distribution are carried out. “Recalculated” is the total count of “Confirmed”
features combined with the features that were initially labeled as “Tentative” but were later
redefined as “Confirmed” by the TentativeRoughFix function. The ranking list of top genes
was created using Boruta (8.0.0) R package [61], and the top-ranked genes were those with
“Confirmed” or “Tentative” markers.

4.4.3. mRMR

mRMR aims to increase the correlation between features and target variables while
reducing the redundancy of features to obtain the best m features [21]. It considers not only
the correlation between features and dependent variables but also the correlation between
features themselves, using mutual information as the metric. The ranking list of top genes
was created using mRMRe (2.1.2) R package [62].

4.4.4. LightGBM

LightGBM uses two methods to deal with large sample size and multi-featured data:
gradient based one-sided sampling and mutually exclusive feature bundling, based on
gradient-boosting decision tree (GBDT) algorithm [22]. The total number of times a feature
appears in the tree indicates how important it is. LightGBM was performed using the
Python module lightGBM (3.3.5) [63].

4.5. Incremental Feature Selection

IFS approach was used to estimate the optimal number of features for constructing
models [64]. By using four different feature selection techniques, four feature ranking lists
were created. IFS was then used to extract the features from each list. IFS creates a sequence
of feature subsets from the sorted feature-ranked list, with the first subset consisting of the
top-ranked features and subsequent subsets, incrementally adding features one at a time.
We train a classifier for each feature subset using four classification algorithms and test it
with 10-fold cross-validation (CV) [65]: SVM, XGBoost, RF, and kNN. We evaluated the
performance of each model using Matthews correlation coefficient (MCC) [66], accuracy
(ACC), and receiver operating characteristic (ROC) [67] area under the curve (AUC).

4.5.1. SVM

SVM is a supervised learning model [23]. The task of SVM is to maximize the geo-
metric margin between the classification line and the data under the premise of correct
classification as much as possible. If such a hyperplane exists, it is called the maximum
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boundary hyperplane, and the linear classifier defined by it is called the maximal margin
classifier. SVM was performed using the e1071 (1.7-13) R package [68].

4.5.2. XGBoost

XGBoost is an improved gradient boosting algorithm [24]. It can train models faster
and more efficiently. The basic element of the XGBoost algorithm is a decision tree, and
the generation of the latter decision tree considers the prediction results of the previous
decision tree. XGBoost was performed using the XGBoost (1.7.3.1) R package [69].

4.5.3. Random Forest

RF is an ensemble learning algorithm that builds a classifier based on several tree
classifiers [25]. For classification problems, each decision tree is a classifier. RF constructs a
forest by randomly selecting samples for training, with no correlation between each tree.
The votes from the tree classifiers are combined to determine the label of a sample. The
randomforest (4.7-1.1) R package was applied to implement RF [70].

4.5.4. kNN

kNN algorithm assigns each sample to a class based on the classes of its k closest
neighbors [26]. In kNN, the distance between points can be calculated using algorithms
such as Euclidean distance and Manhattan distance. The distances are sorted in decreasing
order, and the k points closest to the current point are selected. The category of the new
sample is assigned based on the voting of its k-nearest neighbor samples. The knn function
in the R package class (7.3.21) was applied to implement kNN [71].

4.6. Rule-Based Classification

IML is based on rough set theory, which provides a framework for handling un-
certainty and variability in the data. This makes it well-suited for interpretability, as it
allows for the identification of co-predictive features. A Decision Table is built by marking
the last column of variables as a decision class, and models based on this table can esti-
mate the reduced minimum features set. Additionally, reduction is a major component
in estimating co-predictive features. The equal frequency approach, which separates the
data into intervals of equal frequency, is used in IML to transform the continuous expres-
sion data into three intervals. This allows for the use of rule-based classifiers, which are
inherently interpretable.

Several key terms related to rule-based classification were introduced, such as rule
support and Johnson reducer method, but were not defined. Rule Support (RS) is the
number of samples that meet the rules. Left rule support (RSLHS) corresponds to “IF” and
right rule support (RSRHS) corresponds to “THEN”. To construct rule-based classifiers, the
R package R. ROSETTA (2.2.9) [72] was used. A decision table with each row denoting
a sample and each column denoting a feature is the input for this package. The Johnson
reduction method [73] is used to reduce the number of features and the recalculateRules
function is applied to identify support sets. The Johnson reduction method works by itera-
tively removing features that do not contribute significantly to the classification accuracy.
The recalculateRules function recalculates statistical values after the feature reduction step
to identify new support sets that can be used to construct rules. The overall accuracy of the
model is the average of the accuracies of the rules in the model.

In the study by Lenzerini M. [74], feature subsets from three datasets were integrated
into a merged dataset, as the individual datasets alone were not sufficient for building
accurate classifiers. By integrating multiple datasets, the resulting classifiers were able to
performs better than those built on any single dataset alone in terms of accuracy. This was
done to increase the diversity of features available for classification. The rules of all models
are integrated, and for rules that appear many times, their rule support (RS) and support
sets are accumulated.
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4.7. Co-Predictive Network

We used the R package VisuNet (1.3.5) to display the merged IML model of CRC as a
rule-based network [75]. This allows for the display of co-predictive mechanisms between
features. Additionally, the package offers various filtering methods to highlight the most
relevant components in the network, and enables the rendering of gene expression levels
with predetermined node colors. The resulting graphic representation provides an intuitive
means to identify commonly predicted genes in the merged model.

The co-predictive network can reveal two key features of interest: hub genes and large
nodes. Hub genes may indicate a trait that is frequently involved in co-prediction. On
the other hand, large nodes represent features that there are many samples supporting
them. By identifying hub genes and large nodes, the co-predictive network can aid in the
interpretation of its results. Overall, the use of VisuNet as a tool for visualizing the co-
predictive network provides a powerful means of interpreting the results of the IML model.

4.8. Protein–Protein Interaction Analysis

A PPI network was created using the STRING database (http://stringdb.org, accessed
on 24 April 2023) to get interactive relationships between the genes acquired in the merged
decision table [76].

VisuNet is a visual representation of the co-predictive network that identifies genes
that co-occur in CRC. On the other hand, STRING is a tool that constructs PPI networks
based on experimental and predicted interactions between proteins [77]. By integrating
the co-predictive network and PPI network, you may identify key genes that co-occur and
interact with each other in CRC. It can be a useful strategy to combine VisuNet and STRING
to understand the molecular mechanisms underlying CRC.

4.9. Survival Analysis

To assess the potential prognostic value of the identified genes, we conducted survival
analysis using the Gene Expression Profiling Interactive Analysis (GEPIA) online tool
(http://gepia.cancer-pku.cn/, accessed on 31 March 2023) [78]. Kaplan–Meier [79] curves
were generated to visualize the overall survival of patients in the TCGA-COAD and TCGA-
READ cohorts stratified by high and low expression of the key genes [80]. The statistical
significance of the differences in the survival curves was assessed using a log-rank test,
and a p-value < 0.05 was regarded statistically significant. The survival analysis provides
insight into the potential of the key genes as prognostic biomarkers in CRC.

4.10. Evaluation of Infiltrating Immune Cells

To assess the infiltration of immune cells in CRC patients and their association with
key genes, we utilized the CIBERSORT algorithm [81]. This algorithm estimates the
proportions of 22 individual immune cell subsets in gene expression data using the “LM22”
validated gene-signature matrix. Estimations were made using 1000 permutations, and no
significance filter was used to include all samples in the estimated cell fractions for further
analysis. Pearson correlation analysis was performed to explore the correlations between
the proportions of leukocytes and key genes, and differential analysis of the 22 immune
cells between CRC tissues and control tissues in the three datasets was based on a t-test.

4.11. Gene Mutation Analysis

To find out whether the abnormal expression of key genes was due to gene mutations,
we analyzed the TCGA-COAD and TCGA-READ datasets for genetic mutations. Gene
mutation analysis was conducted using the R package maftools (2.14.0) [82], and the
oncostrip function was utilized to visualize the mutations of these key genes in CRC tissues.

http://stringdb.org
http://gepia.cancer-pku.cn/
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