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Abstract: Multiple sclerosis (MS) is a heterogeneous disease of the central nervous system that is
governed by neural tissue loss and dystrophy during its progressive phase, with complex reactive
pathological cellular changes. The immune-mediated mechanisms that promulgate the demyelinating
lesions during relapses of acute episodes are not characteristic of chronic lesions during progressive
MS. This has limited our capacity to target the disease effectively as it evolves within the central
nervous system white and gray matter, thereby leaving neurologists without effective options to
manage individuals as they transition to a secondary progressive phase. The current review highlights
the molecular and cellular sequelae that have been identified as cooperating with and/or contributing
to neurodegeneration that characterizes individuals with progressive forms of MS. We emphasize
the need for appropriate monitoring via known and novel molecular and imaging biomarkers that
can accurately detect and predict progression for the purposes of newly designed clinical trials that
can demonstrate the efficacy of neuroprotection and potentially neurorepair. To achieve neurorepair,
we focus on the modifications required in the reactive cellular and extracellular milieu in order to
enable endogenous cell growth as well as transplanted cells that can integrate and/or renew the
degenerative MS plaque.

Keywords: multiple sclerosis; oligodendrocyte; myelination; inflammation; microglia; macrophage;
biomarkers; imaging diagnostics

1. Introduction

Multiple sclerosis (MS) pathology presents as several multifocal lesions characterized
by inflammation and demyelination within the central nervous system (CNS) [1]. These
pathological hallmarks reported during the initial stages of the disease are often accompa-
nied by the clinical manifestation of functional relapses followed by remission, also known
as relapsing–remitting multiple sclerosis (RRMS). Hence, the heterogeneity of this disease
governs the course and severity of the neurological outcomes in patients with MS [2,3].
Although the exact cause is unknown, the infiltration of peripheral inflammatory lympho-
cytes and myeloid cells degenerate the myelin sheath along axons [4–7]. The destruction
of myelin deposits biological debris in the extracellular milieu within the CNS, further
resulting in axonal dystrophy, synaptic injury, and gliosis, as observed in patients who
transition into the progressive stage of MS [1,8–10].

The severity and frequency of relapses during the RRMS phase can be alleviated
to some extent by currently available disease-modifying treatments (DMTs) such as fin-
golimod, which modulates immune cell trafficking. Despite the significant therapeutic
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impact of DMTs in improving the symptoms of RRMS, the conversion to secondary pro-
gressive MS (SPMS) remains a prognostic outcome with further neurological progression
governed by the lack of treatment options. Therefore, treatment for progressive MS remains
a major unmet medical need [11–14].

The urgent need for novel and/or repurposed therapeutics has been highlighted
by a recent retrospective study conducted in Iran that predicted 93% of RRMS patients
would transition into SPMS within a span of 30 years despite receiving early intensive
DMTs or escalation treatment [15]. Another clinical study conducted by Kalincik et al.
showed a smaller proportion of RRMS patients advancing to the progressive stage with
the administration of DMTs compared to the control group, with no significant effect from
DMTs in progressive MS patients [16]. Therefore, to address the gap in the treatment of
progressive MS, potential therapies that attempt to limit demyelination of axons and restore
axonal function may have a positive therapeutic outcome in ameliorating MS chronic
disease progression.

In this review, we discuss the comprehensive cellular and molecular mechanisms
involved in the progressive stages of MS, with particular focus on the role of phagocyto-
sis in promoting remyelination and axonal regeneration within the CNS. Moreover, we
highlight the benefits of using cellular delivery strategies, such as genetically modified
hematopoietic stem cells (HSCs) that can express potential therapeutic proteins capable of
crossing the blood–brain barrier (BBB) to repair the CNS environment during progressive
MS. Furthermore, we address the lack of cellular and molecular biomarkers used in MS
diagnosis and in the assessment of progression by exploring novel potential biomarkers as
a means of monitoring neuroreparative strategies designed for clinical translation during
trials of recruited individuals living with SPMS.

2. Pathogenesis
2.1. Alterations in the Blood–Brain Barrier during MS

Structurally, the BBB is a tightly regulated biophysical cellular barrier consisting
of cerebral endothelial cells, pericytes, and a basement membrane that interacts with
astrocyte end-feet (for review, see [17]). This barrier separates the CNS from the systemic
circulation and can selectively restrict molecules and cells from passively entering the CNS
environment (for review, see [17]). Due to these non-permissive barriers imposed by the
tight junctions of the brain vascular endothelial cells, a key feature required when designing
drug delivery to the CNS is to overcome the sealed lateral membrane inter-endothelial
cleft of the BBB. In RRMS, abnormalities in tight junctions located in the blood vessels
of active lesions can cause a temporary disruption to the BBB [18,19]. This alteration to
the BBB is accompanied by modulation of the vascular endothelial cytoskeleton and the
tight junctions, attributed to the release and accumulation of pro-inflammatory cytokines
secreted from differentiated T cells and activated macrophages [20]. Additionally, the
interaction between endothelial cells and monocytes produces reactive oxygen species
(ROS), which further contribute to decreased BBB integrity, consequently making it more
susceptible to increased migration and infiltration of inflammatory cell-trafficking into the
CNS [21,22] and potentially promulgating axonal and neuronal damage [23].

Other pathogenic factors that are upregulated within the extracellular milieu include
matrix metalloproteinases (MMPs), which regulate the cleavage of the extracellular matrix
(ECM) proteins and penetrate and mobilize innate and adaptive leukocytes throughout the
CNS tissue [24]. The importance of these findings of the pathogenic involvement of MMPs
during inflammatory demyelination relates to the propagation of perivascular cells and
microglia expanding neuroinflammatory lesions [24,25].

Throughout the neuroinflammatory lesions, the cytokines generated by differentiated
T cells that can drive MMP activity within the pathogenic milieu can include tumor necrosis
factor-alpha (TNF-α) and interleukin (IL)-17, which can stimulate MMP-9 transcription
to degrade the ECM [26]. This would imply that a mutual promotion of MMP activity
and recruitment of immune cells exists [26]. Intriguingly, Kanesaka et al. previously



Int. J. Mol. Sci. 2023, 24, 11112 3 of 38

reported that MMP-3 serum levels were higher during the relapsing stage of MS than
in remission [27], implicating MMP-3 as a molecular biomarker for the acute phase of
inflammatory demyelination.

The relationship of MMP activity during lesion formation in active MS demonstrates
a dysregulation of MMP-1, -2, -3, -7, and -9 expression by demyelinating macrophages.
When these lesions progress to the chronic state, macrophages display a downregulation of
MMP expression [28,29]. Alexander et al. found that the decrease in MMP-8 and MMP-9
serum levels correlated with a reduction in the number of gadolinium-enhancing magnetic
resonance imaging (MRI) lesions [30], suggesting that the identification of reduced levels of
these MMPs may be an appropriate marker that defines neurodegenerative change during
progression. Consequently, cellular-mediated alterations of the BBB may provide clues to
identifying the principal cells driving MS pathology and, therefore, may assist in developing
cell-based therapeutic vehicles to limit BBB permeability and immune cell infiltration.

2.2. Experimental Evidence for Autoreactive Proinflammatory T-Cell Entry across the
BBB during MS

Immune cell infiltration across the BBB may well be the primary target for future thera-
peutics to limit pathogenic T-cell subsets from perpetuating the cycle of neuroinflammation.
Recent evidence has implicated the dual immunoglobulin domain-containing cell adhesion
molecule (DICAM) as a prominent receptor expressed on invading T-helper (Th) cell 17+
lymphocytes during RRMS and progressive MS [31]. Importantly, these investigators
identified the ligand for DICAM, the αvβ3 integrin, to be expressed in the BBB endothelial
cells during inflammatory disease activity in MS demyelinating lesions identified from
archival tissue. DICAM is a member of the CTX family of adhesion proteins, of which the
extracellular Ig domain 2 was unrelated to the arginyl–glycyl–aspartate (RGD)-binding
domain of the αvβ3 integrin [32]. The binding of DICAM expressed on CD4+ T cells to
the αvβ3 integrin expressed on endothelial cells at the BBB can promote the inhibition of
Akt signaling, leading to integrin β3/focal adhesion kinase (FAK) activity with resultant
actin cytoskeletal rearrangement [33] to transiently open up the tight junctions, allowing
for transendothelial cell migration of the Th17+ pathogenic lymphocytes [31]. Indeed, by
antagonizing DICAM interaction with endothelial αvβ3 integrin, it was demonstrated
that the clinical course of experimental autoimmune encephalomyelitis (EAE) could be
reduced in severity, which correlated with a reduction in the transendothelial cell migration
across the BBB [31]. The data suggest that DICAM plays an integral role in the traffick-
ing of pathogenic Th17 cells across the BBB during active inflammatory demyelinating
lesions in MS.

2.3. Outside-in vs. Inside-out Hypotheses Characterizing the Pathogenesis of MS

Currently, there are two competing hypotheses that explain the etiopathogenesis of
MS: the inside-out and outside-in models, which manifest similar clinical presentations (for
review, see [34]). These models operate simultaneously in MS patients to form inflammatory
demyelinating lesions (Figure 1). The outside-in model can be described as dysregulation
of peripheral immune cells that results in an autoimmune attack against myelin within
the CNS [35–37]. Classically, myelin antigen-activated immune cells such as circulating T
lymphocytes, B lymphocytes, and activated monocytic cells traverse the disrupted BBB and
infiltrate the CNS to target putative myelin epitopes (for review, see [38]). Although this
hypothesis highlights the prominent role of immune cells promulgating inflammation and
demyelination in MS, it fails to explain the underlying cause that initiates the autoimmune
response [2]. Investigational inference may be derived from a recent genome-wide analysis
mapping the X chromosome from 47,429 MS patients, which demonstrated that gene
variants for MS susceptibility were enriched in human microglia, along with peripheral
immune cells that include the C-type lectin-like protein (CLECL1), as an example [39].The
CLECL1 protein is important for self-recognition, with its 20-fold reduction in MS cortical
tissue highlighting that microglia may be central to autoimmune-dependent demyelination.
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This study suggests that both the adaptive immune response and resident glial cells play a
collaborative role in MS etiopathogenesis. Therefore, the outside-in model, which primarily
supports the role of the adaptive immune system in propagating ongoing inflammation,
cannot be the sole explanation for the heterogeneous pathogenesis that manifests in MS.
In contrast, the inside-out hypothesis maintains that the pathology of MS is initiated and,
importantly, progresses, as a result of the degeneration of oligodendrocytes in the CNS
governed by altered signaling of microglia and astrocytes, which is responsible for innate
immunity [40,41]. The slow degradation of oligodendrocytes may cause antigenic myelin
proteins that are citrullinated to be released into the circulation over time, which in turn
activates T- and B-lymphocytic responses that perpetuate an inflammatory cycle [42–44].
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Figure 1. Outside-in and inside-out mechanisms during the pathogenesis of MS. The outside-in
mechanism illustrates the infiltration of reactive CD4+ and CD8+ T cells, along with B cells, that
travel from the periphery, across the BBB, and into the CNS. These cell types target and attack
myelin-associated epitopes on myelinated axons, secreting a myriad of pro-inflammatory cytokines,
which leads to neural cell dystrophy and glial reactive changes to promulgate neurodegeneration.
Conversely, the inside-out mechanism employs the concept of Wallerian degeneration and axonal
and oligodendrocyte dystrophy, whereby remyelination failure in MS is mediated by astrocytes and
peripheral/resident immune cell responses through slowly progressive lesions. CSF: cerebrospinal
fluid; APC: antigen-presenting cell; TCR: T-cell receptor; MOG: myelin oligodendrocyte glycoprotein;
MMP: matrix metalloproteinase; ICAM: intercellular adhesion molecule; ROS: reactive oxygen
species; OCT: optical coherence tomography; MRI: magnetic resonance imaging; DTI: diffusion tensor
imaging; 1H-MRS: proton magnetic resonance spectroscopy; PET: positron emission tomography
(figure created with BioRender).

Recent data by Bjornevik et al. provided evidence that EBV infection may be a
leading cause of MS, but the exact mechanism for disease initiation is still unclear [45].
Possible mechanisms may include the activation of autoreactive B cells and molecular
mimicry, in which CD4+ T cells are able to recognize both EBV and myelin peptides [46–48].
However, these mechanisms are still not well-defined during MS pathogenesis. Serafini
et al. highlighted that EBV infection was evident in the B cells and plasma cells infiltrating
into the brain of MS patients, but the cause of the migration of infected B cells to the site
of injury in the CNS was not explored [49]. Furthermore, Bjornevik et al. showed that the
median time from EBV seroconversion to MS clinical manifestations was 7.5 years [45]. The
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studies suggest that EBV may not be the primary cause of MS and that there is another
cofactor that triggers the initiation of the disease.

Ermin is a component of myelin that contributes to the integrity of myelin sheaths,
and its expression has been shown to be downregulated in mouse brains during cuprizone-
mediated demyelination as well as mutations identified from isolated peripheral immune
cells of individuals from one family that exhibited RRMS [40,50,51]. Bis-cyclohexanone-
oxaldihydrazone (Cuprizone) is a copper chelator that, when given in the feed of rodents for
as little as 3 weeks, promotes the selective dystrophy of mature oligodendrocytes and robust
demyelination in the corpus callosum along with the dorsal fornix [52]. Cuprizone may
downregulate the expression of Ermin, leading to a loss of myelin integrity and disruption
of the oligodendrocyte cytoskeletal architecture [53]. Ziaei et al. described the loss of myelin
sheath integrity in 5-month-old Ermin knockout (KO) mice and axonal damage in 3-month-
old Ermin KO mice [40]. Microgliosis, astrogliosis, oligodendrocytes loss, and upregulation
of inflammatory response genes were also observed in 8-month-old Ermin KO mice [40].
In addition, induction of EAE in Ermin KO mice resulted in a higher number of CD45HI

infiltrating monocytes in the CNS compared to EAE-induced wildtype (WT) mice [40], pro-
viding compelling evidence for the inside-out paradigm of MS etiopathogenesis. However,
the relationship between Ermin and MS etiopathogenesis has not been thoroughly explored
enough to establish causal relationships with oligodendrocyte–myelin dysfunction.

2.4. The Role of Macrophages and Microglia in Driving Neurodegeneration in MS

Macrophages and microglia, arising from hematogenous and endogenous precursors,
are important respondents in MS immunopathogenesis [54]. Microglial cell precursors are
established prior to birth and can undergo self-proliferation in situ [55]. A study by Ajami
et al. showed that blood monocytes gave rise to infiltrating macrophages within the CNS
but not microglia, and these infiltrating monocytes were associated with the progression of
EAE [56], implying that endogenous microglia and monocyte-derived macrophages are
two separate populations. Furthermore, the infiltrating monocytic-derived macrophages
at the peak of EAE were present transiently in the CNS, whereas proliferating microglia
were still detected 3 months later [56]. Mildner et al. described peripheral Ly-6ChiCCR2+

monocytes infiltrated into the CNS and differentiated into resident microglia but only when
the brain and spinal cord of cuprizone or healthy mice were irradiated, highlighting the
need for brain conditioning and BBB disruption before engraftment [57].

Human monocytes can be divided into CD14+CD16− classical, CD14+CD16dim inter-
mediate, and CD14dimCD16+ non-classical monocytes [58]. In mice, the CCR2+CD62L+

CX3C motif chemokine receptor 1 (CX3CR1)-EGFPloLy6C+ monocytes correspond to hu-
man classical monocytes and CCR2−CD62L−CX3CR1-EGFPhiLy6Clo monocytes corre-
spond to human non-classical monocytes [59]. A fate-mapping analysis of the monocyte
origin revealed that classical Ly6C+CX3CR1int monocytes from bone marrow and blood
give rise to nonclassical Ly6C−CX3CR1hi monocytes in both compartments [60]. It is ar-
gued that a more robust measure of assessing classical and non-classical monocytes is to
incorporate further markers such as CD43 and Ly6c to discriminate between these two
phenotypes [59]. CD43 and Ly6c were substantiated to be better monocyte markers in
CX3CR1+/EGFP mice because the expression of the green fluorescent protein (GFP), a pro-
posed marker of CX3CR1 levels in these transgenic mice, in fact did not accurately reflect
the actual monocytic/microglial cell response [61]. In the CNS, chemokine (C-X3-C motif)
ligand 1 (CX3CL1) is mostly expressed in neurons, whereas CX3CR1 expression is detected
in the microglia [62,63]. The deficiency of CX3CR1 in cuprizone-fed mice was shown to
lower triggering receptor expressed on myeloid cells 2 (TREM2) and CD11c expression in
microglia, leading to lower phagocytic activity and clearance of myelin debris [64].

Similar to T lymphocytes, different cytokines and chemokines can induce macrophages
and microglia to release either pro-inflammatory cytokines TNF-α and IL-1β to promote
a pro-inflammatory environment or anti-inflammatory cytokines IL-10 and transform-
ing growth factor (TGF)-β to stimulate regeneration and repair [65,66]. Interestingly, in
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active demyelinating white matter lesions in MS-diagnosed individuals, macrophages
are observed to co-express the proinflammatory marker CD40 (commonly expressed by
antigen-presenting cells) and anti-inflammatory marker CD206 (commonly expressed by
phagocytic macrophages), indicating an intermediate activation status of macrophages [67].
However, in chronic active lesions, macrophages and microglia in slow-expanding edges
co-expressed CD40 and the pro-inflammatory scavenger marker CD163 [67]. The mixed
profile of macrophages governing the inflammatory demyelinating lesion in MS suggests
that these cells are in constant transition between proinflammatory and anti-inflammatory
states during MS pathophysiology and may be very challenging to target to resolve chronic
active lesions. Moreover, this depicts the heterogeneity of macrophages and microglial
cell polarization and highlights the complex classification of microglia and macrophage
phenotypes in MS lesions at different stages of the pathogenic pathway that can be classified
with deeper transcriptional profiling to identify their physiological relevance.

During inflammatory disease, macrophages and microglia attempt to maintain com-
partmentalization of homeostasis through plasma membrane polarization to expedite
phagocytosis of accumulated myelin debris and apoptotic cells within the extracellular
milieu, a pathogenic mechanism that results in physiological inhibition to promote neu-
rorepair during MS [64,68,69]. Under the controlled neuroinflammatory environment of
EAE, Epstein et al. demonstrated that myelin uptake is dependent on receptor-mediated
endocytosis, with evidence of myelin lamellae binding to the coated pits of macrophages,
where a high concentration of ligand–receptor-binding interaction is prevalent prior to
endocytosis [70]. During the pathogenesis of MS, several receptors are expressed on
macrophages/microglia that may be involved in the uptake of myelin, namely, Fc receptors,
complement receptors (CR), and scavenger receptors (SR) [71–74]. A pioneering study by
Ulvestad et al. demonstrated that phagocytic cells in the parenchyma and perivascular
region of active MS lesions strongly expressed Fc receptors (FcR) FcRI, FcRII, and FcRIII,
whereas microglia expressed fewer FcR in normal-appearing white matter (NAWM) [75].
The uptake of myelin is also based on opsonization and epitope recognition by anti-
bodies [76]. There exist data to suggest that circulating anti-myelin basic protein (MBP)
antibodies isolated from the sera of individuals living with MS can act as hydrolyzing
enzymes against histone proteins with high rates of H1 cleavage activity to damage nuclei
of cells [77]. These auto-reactive IgGs, defined as abzymes, have been demonstrated to
hydrolyze up to 17 H1 histones, and the catalytic antibodies have been associated with
expanding disability during MS progression [78], suggesting at the very least that they may
be a good biomarker for MS progression. However, it is not clear how these antibodies
may promote cell death during MS, but anti-DNA hydrolyzing abzymes isolated from
another autoimmune condition, systemic lupus erythematosus (SLE), show cytotoxicity
when incubated with the cultured L929 immortalized adipose cell line [79]. However,
the relevance of myelin-specific antibodies in the pathogenesis of MS remains to be eluci-
dated, as they are not only found in MS patients but are also present in the circulation of
healthy subjects [80,81].

Another receptor responsible for myelin internalization is CR, as confirmed by Love-
less et al., who discovered several phagocytic cells expressing CR in progressive MS
lesions [82]. An active subtype, CR3, was observed to facilitate approximately 80% of
myelin clearance; however, without the presence of an active complement, the myelin
clearance rate dropped to 55–60% [74]. These results highlight how overactivated CR3 can
contribute to myelin clearance. Additionally, in a study that induced EAE in SR-A−/−

mice, demyelination in the CNS and disease severity were significantly reduced compared
to the wild-type control [83]. In the rim of chronic active MS lesions, SR-A1/II was also
found in foamy phagocytes and ramified microglia, suggesting receptor involvement in
the early phase of myelin uptake and demyelination [73]. Therefore, understanding the
function of specific microglial receptors during various stages of the disease may enable the
modification of these receptors to be used as a therapeutic strategy for increasing myelin
debris clearance and promoting anti-inflammatory environment in the lesion sites.
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Another receptor, MER tyrosine–protein kinase (MERTK), is a part of the TAM
family of receptors and can regulate myelin phagocytosis in human monocyte-derived
macrophages and microglia [84]. The TAM receptors consist of TYRO3, AXL, and MERTK
with their known ligands, growth arrest-specific 6 (GAS6) and protein S [85,86]. The TAM
family of receptor tyrosine kinases has been shown to play a role in cell proliferation and
survival, regulation of the immune system, and phagocytosis of cells [87]. In a study
by Binder et al., cuprizone-induced demyelination in GAS6−/− mice was more severe
compared to wild-type mice [88]. Additionally, Weinger et al. identified that levels of
soluble MERTK were higher in chronic active MS lesions, whereas in chronic silent MS
lesions, the level of soluble AXL was elevated compared to healthy controls [89]. Further-
more, elevated levels of soluble AXL and MERTK receptors were accompanied by low
levels of GAS6 in MS lesions, resulting in the dysregulation of GAS6/TAM signaling and
possibly prolonged lesion activity [89]. These studies also imply that polymorphism in the
genes of TAM receptors or their ligands may be associated with an increased risk of MS.
In a candidate gene study conducted by Ma et al., 12 single nucleotide polymorphisms
(SNPs) were found in the MERTK gene, which is associated with MS susceptibility [87].
In a supporting study, Shen et al. established that MERTK was required for activation of
microglia, microglial phagocytosis, and remyelination [90]. A recent study showed that
TREM2 was expressed in MS lesions and that TREM2 on microglia facilitated myelin debris
clearance in cuprizone-fed mice [91]. TREM2 activates downstream spleen tyrosine kinase
(SYK) via phosphorylation of DNAX-activating protein of 12 kDa (DAP12) to promote
microglia activation and phagocytosis of cellular debris (for reviews, see [92,93]). Therefore,
phagocytic activity may indeed regulate the effectiveness of myelin clearance to enable
newly formed myelin to repair denuded axons.

However, a fundamental problem in neuropathology exists when attempting to re-
solve the contribution of peripheral macrophages versus endogenously activated microglia
to the expanding MS lesions that exist in the CNS of people that have lived with MS for pro-
tracted periods of time with variable relapse rates and stages of progression. Phenotyping
peripherally derived macrophages and endogenously activated microglia poses challenges
to investigators defining pathogenesis and outlining therapeutic strategies that can limit
neurodegenerative changes orchestrated by the activities of these cells. An important trans-
membrane protein TMEM119 and the purinergic receptor P2RY12 have been successfully
used as markers to differentiate resident microglia from peripheral macrophages [94–96].
In the gray matter, the numbers of P2RY12+ TMEM119+ microglia in demyelinating lesions
were similar to in normal-appearing gray matter (NAGM), possibly due to less stimula-
tion from locally generated cytokines, a consequence of fewer infiltrating lymphocytes as
compared to inflammatory demyelinating white matter [97]. However, it was proposed
that the morphological differences exhibited by microglial subtypes can be used to differ-
entiate their unique characteristics at specific brain regions. In the white and gray matter
of archival control brain tissue, microglia display a small soma with slender ramified and
elongated fine processes. Whereas in active white matter lesions, the microglia displayed
enlarged amoeboid and thick ramified phenotypes, in the gray matter, some microglia
were rod-shaped [97]. The function of rod-shaped microglia remains elusive, but synaptic
stripping has been proposed [98,99], which may be one mechanism that drives the rate
of demyelination throughout the gray matter. Since the white matter and gray matter
microglia may express distinguishable phenotypes throughout brain lesions of individuals
with MS, identifying specific microglial cell populations and their respective pathogenic
roles during the disease course are important to determining potential targets for disease
chronicity and progression.

In support of this rationale, transcriptomic analysis of microglia has revealed genes
that were not only expressed at region-specific sites but also that were disease-specific [100].
TMEM119 and P2RY12 are expressed in the population of homeostatic microglia, but
expression of the genes variably decreases at brain lesion sites of archival tissue from indi-
viduals that lived with MS or Alzheimer’s disease [101,102]. Moreover, Zrzavy et al. found
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that the increased numbers of active microglia in the NAWM of archival MS brain tissue
exhibited reduced expression profiles of P2RY12 and, importantly, the gene expression was
depleted in active and slow-expanding MS lesion sites. On the other hand, the expression
of TMEM119 decreased in NAWM and, more notably, as the lesion progressed, indicating
that there is a reduction of homeostatic signatures in microglia or, alternately, that lower
numbers of microglia are present within active brain lesions [102]. The microglia isolated
from the gray matter demonstrated elevated expression profiles of genes associated with
the type I interferon response, whereas white matter microglia had a higher expression of
genes related to the nuclear factor kappa B (NF-κB) pathway [100]. These data suggest that
there exist two separate immune regulatory mechanisms that are operative among these
two microglial cell subtypes. Furthermore, microglia that reside in the NAWM of individu-
als living with MS were enriched with genes related to lipid metabolism, the differentiation
of foam cells, the lysosome, and other signaling pathways (ABHD2, LPL, ASAH1, CTSD,
SCARB2). On the other hand, microglia from NAGM were enriched with genes associated
with glycolysis and metal ion homeostasis (ABCB6, SDC1, CCR2, LPAR6, SLC25A37) [100].
Interestingly, the homeostatic genes of microglia in MS NAWM and NAGM were not
affected [100]. The findings imply that lipid processing and iron metabolism pathways
are disrupted early in microglia throughout NAWM and NAGM during MS pathogenesis.
These data provide insights into which therapeutic targets could provide efficacy to limit
ongoing slow-burning demyelinating lesions during MS progression.

2.5. Astrocyte Activity in the Evolution of the MS Plaque

Astrocytes give rise to extensive branches that develop as fibrous foot processes, at-
taching to the blood vessels or shaping the uniform globule located around axons and
synapses of neural cells (for review, see [103]). Given the distribution of astrocytes within
the CNS, they play a prominent role in orchestrating the connection between the vascular
system and neural function, are associated with enhanced neuronal survival, and promote
synaptic plasticity by regulating neuronal circuit activity in response to metabolic and
structural support [104,105]. Intriguingly, studies have shown that astrocytes are not only
neuroprotective but can also be deleterious in certain neurological disorders [106,107].
Abnormal astrocytes have been found in abundance in post-mortem brain tissue from
patients with MS, Alzheimer’s disease, and Parkinson’s disease [107–109]. These studies
suggest that astrocytes alter their function in response to neuropathological insults, es-
pecially under inflammatory conditions, which can transform neuroprotective “resting
astrocytes” into neurotoxic “reactive astrocytes” [110]. Reactive astrocytes were originally
defined in neuropathology as glia that respond during injury and disease to the altered
CNS microenvironment, and mostly exert damage-associated responses but can also exert
neuroprotection. The heterogeneity of the reactive astrocytes can be seen in their tran-
scriptomic profiles during injury and disease to the CNS but generally respond through
proliferation, hypertrophy, and synthesis of proinflammatory and chemical mediators (for
review, see [111]).

It has been identified that astrocytic responses are modulated by canonical signaling path-
ways such as IKK/NF-κB, a classical mechanism implicated in neuroinflammation [112–115].
The NF-κB signaling pathway in astrocytes can be stimulated by various factors, includ-
ing pathogenic extracellular or cellular debris, reactive oxygen species (ROS), and pro-
inflammatory cytokines such as TNF-α, IL-1β, and IL-17 secreted from peripheral immune
cells and resident microglia by activating on their toll-like receptors (TLRs) [114,116]. To
expand these findings, Wheeler et al. found that the astrocytes of EAE-induced mice
and MS patients had a reduced nuclear factor erythroid 2-related factor 2 (NRF2) expres-
sion and a higher MAFG transcription factor level, which promoted DNA methylation
and inflammation in the CNS and limited anti-inflammatory activity [117]. They also
suggested that granulocyte–macrophage colony-stimulating factor (GM-CSF) secreted
by pathogenic T cells might promote pro-inflammatory activity of astrocytes by ampli-
fying the MAFG/MAT2α signaling pathway in EAE-induced mice and in individuals
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living with MS [117]. In addition, previous studies indicated that reactive astrocyte tox-
icity was mediated by secreted proteins, including SPARC, C3, and lipocalin-2 reactive
markers [107,118,119]. Surprisingly, these neurotoxic factors did not cause the apoptosis
of oligodendrocytes within the inflammatory environment. This finding indicated that
the fundamental toxic agent resulting in myelinated cell apoptosis and axonal injury had
not been found [120]. However, the enrichment of apolipoprotein (APO)-E and APO-J in
reactive astrocytes suggests that an altered lipid metabolism in astrocytes may mediate cell
apoptosis during inflammation [120].

Astrogliosis-mediated synaptic phagocytosis could be a compensatory mechanism in-
dependent of microgliosis-dominant engulfment for maintaining CNS homeostasis [121,122].
Synaptic elimination can be achieved via multiple epithelial growth factor (EGF)-like do-
mains 10 (MEGF10)/MERTK phagocytic signaling pathways in astrocytes. MEGF10/MERTK-
mediated astrocytes have been observed to trim synapses, thus promoting the precise
structure of neural circuits and synaptic plasticity [121]. Moreover, in MEGF10−/− mouse
models, elevated levels of neuronal apoptosis and a reduced level of astrocyte phagocytosis
were observed, which suggests that astrocyte phagocytotic function can be modulated by
the complement component 1q (C1q)/MEGF10 signaling pathway [121].

The development of single-cell (sc)-RNA sequencing techniques has uncovered sig-
nificant diversity in astrocyte populations, with spatial and temporal differences under
physiological and pathological stimuli, throughout the CNS [117,123]. Despite this technical
advancement, several challenges have been identified in studies addressing the heterogene-
ity of astrocytes in health, aging, and disease. One of the major hurdles is that only limited
numbers of neuropathogenic astrocytes can be collected from CNS tissues for downstream
cell-signaling analysis. This is primarily due to the lack of reliable surface markers to dis-
tinguish astrocyte subpopulations, thereby preventing any comprehensive exploration of
astrocyte diversity. For example, glial fibrillary acidic protein (GFAP), which is considered a
classic marker of astrocytes, has not been useful in identifying neurotoxic astrocytes isolated
from brain and spinal cord in MS-like animal models such as EAE [117]. Recent studies
have focused on investigating the molecular characteristics of astrocytes at the level of DNA
and mRNA, which may provide an alternative avenue to differentiate cell populations of
interest during the course of neuroinflammatory and neurodegenerative diseases.

Recently, Clark and colleagues identified that the upregulation of the transcription
factor X-box-binding protein 1 (XBP1) can promote the frequency of astrocytic cell-derived
proinflammatory mechanisms exhibited during EAE and MS [124,125]. XBP1 activation is
involved in processes that lead to its mRNA splicing unconventionally when potentiated
by the endonuclease inositol-requiring enzyme 1 (IRE1), expressing the potential to serve
as an mRNA marker for pathogenic astrocytes in MS. However, XBP1 levels determined
by 3′-prime based RNA-sequencing techniques showed inconsistencies, highlighting the
need to address the technical issue of sc-RNA sequencing in regard to low sensitivities
of the detection of potential genetic and transcriptomic markers. Improving the read
depth and enriching targeted reads during RNA sequencing may be the approach to
enhancing the sensitivity. Clark et al. established the FIND-seq protocol, which enriches
the population of rare astrocyte subtypes by specific DNA-barcoded beads and captured
by microfluidic encapsulation [124]. This innovative strategy significantly improves the
detection of gene diversity of pathogenic astrocytes in comparison to the scDrop-seq [126]
and Probe-seq techniques [127].

2.6. Types of MS Lesions

Neuroinflammation damages the BBB and creates macroscopic plaques, whereas neu-
rodegeneration causes injury to neurons and their axonal extensions [1,128]. Mononuclear
perivenular cuffing on the lesion and the infiltration into the adjacent white matter have
also been observed [24,129]. The infiltration of immune cells and activated phagocytic
cells is often associated with the formation of active lesions. The activated microglial cells
are commonly found at the edge of demyelinating lesions, periplaque white matter, and
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NAWM, whereas macrophages are found in the center of active lesions [2,130]. This type of
lesion is more common in patients suffering from acute MS or RRMS [131]. A large portion
of these macrophages appears to exhibit a foamy appearance due to their myelin-loaded
cytoplasm [132]. Furthermore, some of these active lesions exhibit myelinating activity,
with the presence of macrophages containing myelin degradation in their cytoplasm [133].

As individuals living with MS progress through the disease, the frequency of lesions
with mixed morphology of active and inactive characteristics increases. This heterogeneity,
also known as slowly expanding lesions, has centers containing an inactive demyelinated
site filled with myelin debris surrounded by activated macrophages and microglia around
the rim and axonal injury observed in the active rim [134,135]. The slow expansion on these
rims reflects ongoing demyelinating activity [67], whereas in patients with disease duration
of more than 15 years or who have been diagnosed with progressive MS, inactive lesions
are dominant [131]. In chronic lesions, demyelination, reactive gliosis, and the presence of
dense fibrillary scar tissue can be observed between the transected axon space [108,136].
Furthermore, ongoing axonal damage can be identified within inactive lesions, highlighted
by the disruption of the axonal transport [137]. Remyelination plaques are observed
throughout all stages of MS, deemed shadow plaques, whereby axons are wrapped with
new myelin sheaths. However, in chronic stages of MS, even though new myelin is present,
these axons are still prone to damage due to variations of thicknesses between the inner
and outer sheaths, specifically the thinner inner sheaths [138–140].

Interrogation of archived brain tissue derived from individuals who lived with SPMS
has revealed the presence of B cell-like follicles in the meninges and the perivascular space,
suggesting the possibility of trapped immune cells within the CNS after MS relapses in tran-
sition into progressive stages [141]. Compartmentalized inflammation in the progressive
stage of MS is associated with cortical demyelination, slow expanding white matter lesions,
diffuse injury in NAMW, and gray matter demyelination (for review, see [131,141–144]).
These data may suggest that during progressive stages of MS, a requirement for future ther-
apeutics is to reach inflammatory sites located behind the repaired BBB at an appropriate
dose to resolve inflammation within the CNS.

3. Biomarkers of MS

Currently, there are limited biomarkers available to predict MS progression. One of
the most highly researched areas of MS diagnostics need to include the elucidation of novel
biomarkers that can clearly identify MS progression early for clinical management and to
inform therapeutic efficacy [145–148].

3.1. Current and Developing Molecular Biomarkers
3.1.1. Oligoclonal Bands

In MS patients, oligoclonal bands (OCBs) are used as molecular biomarkers for diag-
nosis and prognosis (For review, see [149]). OCBs consist of immunoglobulin G (IgG) and
immunoglobulin M (IgM) produced intrathecally by plasma cells in the CNS (for review,
see [150]). Their identification in cerebrospinal fluid (CSF) samples via isoelectric-focusing
techniques on an agarose gel, followed by immunoblotting, is accompanied by paired
blood sera to demonstrate intrathecal antibody production from differentiated B lympho-
cytes [151,152]. Although CSF-specific OCBs can be detected in more than 95% of MS
patients (for review, see [153]), the presence of OCBs in the CSF is often correlated with the
conversion from a clinically isolated syndrome (CIS) to the onset of MS [154]. Furthermore,
CSF OCBs are not unique to MS, and the diagnosis still requires exclusion of other infectious
and autoimmune diseases such as polyneuritis and optic neuritis (ON) [155,156]. Thus,
CSF is the best representation of intrathecal CNS integrity, but to obtain CSF, an invasive
lumbar puncture needs to be carried out [157,158]. Hence, improved diagnostic biomarkers
with clinical assaying as well as advanced specificity are urgently required.
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3.1.2. Neurofilament Light Chain

Neurofilaments are integral structural components of the neuronal cytoskeleton, com-
posed of three subunits: heavy chain (NfH), medium chain (NfM), and light chain (NfL) (for
review, see [159]). They are found in axons, especially in long-projection axons, and they
contribute to the axonal volume and mechanical strength [160–162]. Both NfL and NfH
levels were shown to be elevated in the CSF of RRMS and progressive patients [163–165].
However, the role of NfH as a biomarker for MS progression is more underrepresented
in biomarkers studies than NfL, which has a higher sensitivity in distinguishing between
control and MS patients than NfH [166,167]. Recently, investigators assessed the potential
of neurofilament light chain (NfL) as a diagnostic and prognostic biomarker for MS. NfL is
the most abundant subunit; it is released from injured axons and becomes soluble in the
CSF and serum (for review, see [168]). Neurofilaments are also released into the circulation
during normal aging (for review, see [169,170]). With the development of a highly sensitive
immunoassay such as the Simoa® assay, the detection of NfL at femtomolar levels in the
serum of MS patients is made possible and may assist with the clinical interpretation of MS
progression [171–173], negating the need to extract NfL from the CSF in these patients.

Despite controversial relevance in neurological progression, recent clinical studies
reported higher serum NfL levels in MS patients than in healthy individuals in relation
to disease progression, potentially highlighting the detection of NfL levels as an ancillary
diagnostic tool for MRI-detected lesions [174,175]. The increase in serum NfL was also
shown to be associated with the loss of brain and spinal cord volume [174]. Experimentally,
NfL levels are a robust detection marker of ascending paralysis at 18 days post-EAE
immunization, whereby the NfL level increased 100-fold higher than the baseline level
of healthy mice [176]. Malmeström et al. observed the highest level of NfL during acute
relapses in RRMS patients, but the level declined within three months [164]. Furthermore,
Salzer et al. discovered that RRMS patients with CSF NfL levels higher than 386 ng/L
were more likely to convert to the secondary progressive phase of the disease compared to
patients with NfL levels lower than 60 ng/L [177]. However, the change in the level of NfL
and its association with disease progression has been inconsistent (for review, see [178]).
In some studies, the NfL level of progressive MS patients was higher compared to RRMS
patients [165,175,179], whereas others reported that the NfL level of progressive MS patients
was lower than RRMS [180,181]. Most of the studies found that there was no significant
difference in NfL levels between RRMS and progressive MS groups [147,182,183]. Therefore,
more studies are required to examine the change in NfL levels in terms of MS progression.

Further experimental evidence identifying the potential clinical activity for NfL levels
during therapeutic intervention included DMT glatiramer acetate, which resulted in a
decrease in serum NfL levels of 81% compared to untreated EAE-induced mice [176]. These
results indicate that NfL levels may serve as a prognostic marker during therapeutic inter-
vention. However, Aharoni et al. detected that EAE induced by myelin proteolipid protein
(PLP) immunization compared to myelin oligodendrocyte glycoprotein (MOG)35-55 dis-
played lower NfL levels at the same time point of clinical progression [176], suggesting that
different myelin peptides induce variable neurodegenerative change, potentially making it
difficult to set NfL limits for different MS histopathologically characterized lesions.

NfL can be safely, easily, and objectively measured; it is sensitive to neuroaxonal
injury; and the level changes depending on the severity of the disease, making it suitable
as a biomarker for the neurodegenerative process [145,184]. However, a major clinical
disadvantage of using serum NfL levels as a biomarker is that the levels do not distinguish
MS from other neurodegenerative diseases such as amyotrophic lateral sclerosis (ALS)
and Alzheimer’s disease, which also exhibit elevated NfL serum and CSF levels [185–187].
Moreover, increases in CSF NfL levels can also be present in healthy subjects with increasing
age, as shown by several clinical studies [169,188]. Indeed, healthy participants enrolled in a
study to assess NfL levels between the ages of 18 and 70 years old displayed increased levels
at a rate of around 2.2% per year of age [175]. Therefore, a better standardization specific
to people living with MS who demonstrate neuronal tissue loss (taking into consideration
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age, sex, and other inclusion criteria) requires reforming to validate serum NfL and CSF
NfL over the course of disease progression. Controversially, these criteria also need to
take into account that some studies observing NfL-level ranges during MS often overlap
with the ranges of NfL concentration in the control groups assessed (for review, see [189]),
suggesting that there may exist a limited window of predictive efficacy for this biomarker.

3.1.3. Chitinase-3-like-1

Chitinase-3-like-1 (CHI3L1) protein has also emerged as a potential biomarker for
MS, and its expression is detected in active demyelinating lesions [190,191]. It is expressed
mainly by reactive astrocytes in the CNS, with its expression upregulated during inflam-
mation with gliosis [148]. The induction of its expression has been suggested to result
from hyper-activated macrophages and microglia that produce inflammatory mediators
that heighten CHI3L1 expression by astrocytes and further stimulate TREM2 [192]. An
in vitro study utilizing the administration of CHI3L1 to cortical neurons exhibited neuronal
function impairment, thus suggesting its neurotoxic properties [193]. The exact role of
CHI3L1 requires further elucidation, but it is undeniably expressed within inflammatory
events throughout the CNS and thus could be considered a surrogate biomarker that is
indicative of MS microglia activity upon neuroinflammation in MS.

Elevated levels of CHI3L1 in CSF have been observed in CIS, RRMS, and progressive
patients [148,192,194]. Patients progressing from CIS to RRMS had an increase in levels of
CHI3L1 present in the CSF [148,195]. In RRMS, the expression of CHI3L1 correlated with
loss of brain volume and advancement of disease activity [196]. However, another study
indicated that an elevated level of CHI3L1 is significantly related to reduced cervical spinal
cord volume but not to brain volume [194]. There is still controversy surrounding whether
CHI3L1 levels could be detected either in CSF or serum to best reflect the disease course.
The levels of CHI3L1 in MS patients were usually increased in the CSF, but another study
observed increased serum levels of CHI3L1 in progressive MS patients [197]. This dis-
crepancy could be explained by the different assays used to measure these levels [148,197].
Surprisingly, in the study by Cantó et al. there was no significant difference between
CHI3L1 plasma levels in the remission and relapsing phase [197]. Nonetheless, studies
have observed a correlation between CHI3L1 levels and NfL levels in the CSF, which were
stronger in RRMS patients compared to SPMS and primary progressive MS (PPMS), further
contributing to the debate about whether CHI3L1 is a suitable biomarker for progressive
MS [198]. This study by Gil-Perotin et al. indicated that increased values of CHI3L1 were
more prominent in progressive MS patients compared to NfL, which was more prominent
in relapsing MS patients [198].

However, utilizing CHI3L1 still requires an invasive lumbar puncture, limiting its
clinical utility. Its expression, like with NfL, has also been detected in other diseases,
such as neuromyelitis optica [199] and Alzheimer’s disease [200]; therefore, it would not
be suitable as a standalone biomarker but rather one that can be used alongside MRI to
assess microstructural changes and diagnose the ongoing neurodegeneration of MS in
patients. Further study is required to assess the role of CHI3L1 in chronic stages of MS to
support the current promising results indicating the potential of CHI3L1 as a biomarker for
neuroinflammation in MS.

3.2. Imaging Diagnostics as Biomarkers
3.2.1. Magnetic Resonance Imaging

MRI is considered the gold standard for imaging diagnostics biomarkers in MS and a
staple in diagnosing and identifying MS progression. The most clinically advantageous
diagnostic measure for using MRI is the visualization of brain atrophy and neural tissue
loss, commonly utilized to assess progression in MS patients. However, brain atrophy
is not just limited to lesioned areas but is also visible in regions of NAWM [201,202].
An effective measurement to assess brain atrophy is the ventricular CSF (vCSF), which
reflects the change in the overall volume of the brain [203]. It provides robust data, as
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vCSF is more commonly utilized across different MRI protocols and thus could possibly
be the universal indicator of brain pathology in the clinical assessment of patients [203].
Nonetheless, brain atrophy changes have been observed to have a strong correlation with
increased disability through the assessment of the objective expanded disability status
scale (EDSS). Eijlers et al. assessed the annual deep gray matter and cortical atrophy
rates in individuals with MS and found a strong correlation between brain atrophy and
cognitive decline [204]. However, there are some factors that need to be considered that
could affect brain atrophy measurements within the MS patient. For instance, an increase
in brain volume, leading to increased atrophy, also occurs as a result of edema during
inflammation [205,206]. Consideration must also be made where brain atrophy can be
affected by factors such as age [207,208].

Although advanced MRI techniques such as diffusion tensor imaging MRI (DTI-MRI)
and magnetization transfer MRI diagnosis are increasingly being used in MS research,
they are still rarely employed in clinical practice [149,209,210]. Fluid-attenuated inversion
recovery (FLAIR), T2-weighted MRI, and post-gadolinium T1-weighted scanning are the
current mainstream diagnostic tools for MS [211–213]. T2-hyperintense lesions in MS
patients are normally found in the periventricular, juxtacortical, infratentorial, and spinal
cord regions [214]. However, T2-hyperintense lesions lack specificity to demonstrate
the severity of the pathologic processes occurring in the lesions, such as inflammation,
de/remyelination, gliosis, or axonal damage (for review, see [215]). Furthermore, T2
lesions show a weak correlation with clinical status, as measured by the EDSS [216–218].
Nevertheless, T2-weighted MRI could be a useful tool to reflect drug efficacy in clinical
trials [219–221]. For example, Radue et al. identified that treating patients with fingolimod
significantly decreased their T2 lesion volume compared to baseline [219].

In the T1-weighted pulse sequence, lipid-predominant structures such as myelin are
displayed as bright spots, whereas water-predominant structures such as cortex are shown
as dark anatomical regions. Indeed, it was recently demonstrated that demyelination and
axonal degeneration reduced lipid content and increased the water content, resulting in
the formation of hypointense signal areas on the T1 images [222]. Gadolinium-enhancing
lesions are often associated with T1 hypo-intensity or “black holes,” which may indicate
a combination of edema and demyelination [223–225]. Within 6 to 12 months, acute
T1-hypointense lesions associated with gadolinium enhancement either convert back to
T1-isointense lesions or remain chronic black holes [226–228]. DMTs such as fingolimod
and glatiramer acetate have been shown to slow down the rate of disease development and
repress the conversion from acute lesions to chronic black holes [229,230]. Compared to the
progressive form of MS, gadolinium enhancement is less frequently seen in RRMS, which
may correlate with the changeable immunoregulation of the innate and adaptive immune
responses during the disease course [231].

However, progression maybe best monitored by the accumulation of extracellular
iron. Dal-Bianco et al. suggested that gadolinium enhancement may not be able to reflect
the characteristics of lesions robustly during both acute and chronic periods of MS [130].
Instead, utilizing iron imaging with 7-T MRI could be a feasible approach that may provide
a more accurate depiction of particular lesions. From observation, there was reduced iron
visibility in areas surrounding NAWM compared to early active lesions, indicating the stage
where gadolinium enhancement is visible. Subsequently, iron accumulation in the CNS led
to the formation of nodular iron spheroids, finally developing into FLAIR-hyperintense
iron rims of microglia and macrophages in smoldering lesions, where gadolinium enhance-
ment is barely detectable [232,233]. Iron-rimmed lesions were deemed more destructive
and indicative of neurodegenerative progression and disease progression, as evidenced
by increasing T1 hypointensity compared to non-iron-rimmed lesions and histological
quantification of axonal damage through axonal spheroids, microglia activation, and Walle-
rian degeneration on areas correlating to these FLAIR-hyperintense regions [130]. In this
longitudinal study of 33 MS patients up to 7 years, RRMS patients had significantly higher
iron-rimmed lesions (17.8%) than SPMS patients (7.2%) [130]. Interestingly, there are studies
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that showed contrasting results as the consequence of variable clinical characteristics of
patients, potential therapeutics that the patient was on, and whether this was done in vivo
or conducted on post-mortem samples [131,234]. However, utilizing iron imaging with 7-T
MRI to observe disease progression still requires more validation, especially with a more
consistent and frequent follow-up on patients.

3.2.2. Diffusion Tensor Imaging

DTI-MRI is principally based on tracking the movement of water within the CNS
tissue and providing connectomics and network analysis of neural fibers. The main DTI
parameters are fractional anisotropy (FA), axial diffusivity (AD), radial diffusivity (RD),
mean diffusivity (MD), and apparent diffusion coefficient (ADC) (for review, see [235]). In
MS patients, usually the FA and AD are decreased, whereas the RD and MD are increased
compared to healthy controls (for review, see [235]). This is related to water mobility, which
is negatively correlated with compact tissue integrity, such as myelin (for review, see [235]).

Upon injury, the longitudinal movement of water along the axons is disrupted, which
is suggested to cause a decrease in AD [236]. Nishioka et al. discovered that AD was
reduced in the optic nerves of EAE-induced mice 4–8 weeks after the induction of the
disease, along with reduced FA and increased RD [237]. Interestingly, a study by Naismith
et al. presented evidence of decreased AD in individuals with acute optic neuritis; however,
after a one-year follow-up assessment, AD had increased, as retinal ganglion cells possibly
demonstrated recovery or repair [238]. Nevertheless, Budde et al. indicated that AD is a
more specific marker of axonal damage in the EAE-induced mouse spinal cord compared to
FA metrics [239]. However, Andersen et al. also found that in the corpus callosum body of
secondary progressive MS patients there was a reduction in FA and an increase in RD [240].
The discrepancy in the change of DTI parameters has been attributed to the variable array
of tissue samples used.

Thus, to identify whether there is a correlation between DTI-MRI metrics and another
promising NfL biomarker, Saraste et al. indicated an increase in serum NfL level accompa-
nied by a variation in DTI-MRI metrics, where a decrease in FA was observed along with
an increase in RD in NAWM in MS patients [187]. DTI-MRI techniques can also describe
3D neural fiber tracts by tomography, which, along with quantitative analysis of these DTI
measurements, greatly enriched the interpretation of microstructural white matter damage.
Moreover, DTI-MRI in combination with serum NfL level analysis could be a valuable
monitoring tool for assessing the degree of the developing neurodegenerative processes
during MS.

3.2.3. Proton Magnetic Resonance Spectroscopy

Proton magnetic resonance spectroscopy (1H-MRS) is often used to investigate neu-
rological disease and has a similar data acquisition process to conventional MRI, with
only a few additional steps incorporated during the pre-scan (for review, see [241]). These
pre-steps include improving the homogeneity in the magnetic field or “shimming,” sup-
pressing the water signal, and choosing the appropriate MRS parameters or techniques (for
review, see [242]). The principle underlying 1H-MRS is the signal detected from hydrogen
protons utilized to measure the concentration of the metabolites in the CNS tissues of
interest (for review, see [241]). In MS, the three metabolites of interest are creatine (Crn),
N-acetyl aspartate (NAA), and choline (Cho). Crn is the marker of energy metabolism
in the brain, and because of its stability, other metabolites are often shown as a ratio rel-
ative to Crn [243,244]. However, altered Crn levels in MS lesions have been detected by
1H-MRS [245–248]. Consequently, expressing other metabolites as a ratio relative to Crn
may introduce more variability into the obtained measurements if the level of Crn is not
stable [249,250]. In the MR spectrum, the peak of NAA can be used to analyze axonal
integrity, whereas the peak of choline can be used to assess the cell-membrane metabolism
(for review, see [10,251]). A lower peak of NAA in white matter signifies axonal damage,
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whereas a higher Cho peak is interpreted as higher membrane turnover, suggesting the
occurrence of gliosis, demyelination, and remyelination events [10,252].

A decrease in the ratio of NAA/Crn in a given region of the brain indicates disrupted
integrity of the tissue and thus has been suggested as a potential marker for neuroaxonal
injury [253,254]. Aboul-Enein et al. observed a significantly reduced NAA/Crn ratio
through 1H-MRS in patients with SPMS compared to RRMS patients in NAWM [255].
However, interestingly, this study observed no significant changes in NAA levels of RRMS
patients compared to healthy individuals. In contrast, other studies have observed a
decrease in this same parameter in NAWM and throughout the whole brain [256,257]. In
addition, increases in Cho/Crn ratios in lesions from patients with RRMS and SPMS have
been observed [258–260]. However, some studies refute this, having observed a decrease
in Cho/Crn ratio [261,262]. The conflicting studies indicate that the different stages of MS
and different regions being measured may affect the level of metabolites detected using
1H-MRS. Furthermore, the detection of limited metabolites through MRS does not reflect
the full heterogeneity of MS lesions and thus could be utilized in support of other imaging
biomarkers [255]. Additionally, when performing MRS, tissue or adjacent tissue with high
susceptibility differences may result in the appearance of artifacts due to an non-uniform
field (for review, see [241]).

3.2.4. Optical Coherence Tomography

The vulnerability of the retinal ganglion cells and axons in MS leads to impairment of
vision as a common symptom exhibited in MS patients. The onset of these visual symptoms
could manifest as a result of optic neuritis, with 20% of these patients going on to develop
MS, or as a result of lesions in their visual pathway (for review, see [263]). Although the
exact mechanisms that bring about these degenerative outcomes require further elucidation,
it is evident that there are morphological changes in retinal ganglion cells from the visual
pathway as MS progresses [264,265]. These neurons and thin axons can be visualized
through optical coherence tomography (OCT) imaging, which utilizes infrared light to
create cross-sections to form a 3D image of the retinal layers. It is widely used to quantify the
peripapillary retinal nerve fiber layer (pRNFL), which comprises ganglion cell axons before
they coalesce to form the optic nerve [266]. Another measurement utilized clinically is the
ganglion cell–internal plexiform layer (GCIP), which is the combination of the ganglion cell
layer and the inner plexiform layer but is difficult to distinguish via imaging [267]. The
accelerated rate of GCIP thinning was evident in early MS patients with ON, making GCIP
a suitable marker for prognosis [268].

As a part of the CNS, the retina has the unique anatomical characteristic of its
axons commencing from the anterior retinal nerve fiber layer being unmyelinated, al-
lowing visualization of axonal degeneration without factoring in the myelin membrane
disruption [269,270]. The thinning of pRNFL and GCIP has been associated with neurode-
generation and a reduction in ganglion cells compared to a healthy person or during normal
aging [107]. Studies have identified a decrease in pRNFL layer thickness in MS patients
with or without ON compared to healthy individuals [271–275]. In the same individu-
als, GCIP thickness decreased twice as fast in the MS patients compared to the healthy
controls [275]. These studies were limited largely to only include RRMS patients, with a
limited number of studies looking at OCT as an imaging biomarker in progressive MS
patients. Hence, further investigations in a randomized control design should be explored.

Although OCT in a non-invasive manner can measure and monitor the axonal injury,
there are some considerations that need to be clarified. Firstly, these studies have been
conducted on defined populations and cannot be extrapolated to other ethnicities due to
their differences in pRNFL levels and levels of thinning [276]. This could result from the
prevalence of MS in different ethnicities, but further research is required to understand how
epidemiological factors affect their morphological differences. Another factor with OCT is
the variability from different software algorithms, as there are different versions of OCT
imaging. Older studies mainly used time-domain OCT, which assesses the thickness of
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RNFL, whereas current studies utilize the spectral domain, which offers higher resolution
and allows for the use of automated software algorithms to separate the layers of the
retina [277–279]. Recently, more studies have used OCT angiography, which assesses the
density of the retinal microvasculature [280,281], reducing the variability generated by
technical errors. This suggests that the clinical use of OCT could be paired with other
measures such as MRI assessments of brain atrophy and volume or visual acuity tests, or
in correlation with the EDSS score for disease progression. However, the association of
pRNFL with these factors requires further extrapolation, as studies show no correlation
between these factors [282]. pRNFLs decreasing in thickness is also observed in other neu-
rodegenerative diseases such as Alzheimer’s and Parkinson’s disease [283–285]; therefore,
it may be insufficient as a specific diagnostic biomarker for MS but could be used as one to
track neurodegeneration and monitor the disease progression with treatment.

3.2.5. Positron Emission Tomography Scan

Positron emission tomography (PET) imaging allows for non-invasive assessment
of MS pathological activities using radioligands that target the tissue or molecules driv-
ing lesional expansion. PET may be combined with tomography imaging in the pres-
ence of the 18 kDa translocator protein (TSPO) biomarker to detect microglial activa-
tion in MS, which provides an avenue to explore the pathophysiological outcomes of
slow-burning lesions [286,287]. TSPO is an outer mitochondrial membrane protein, and
high expression of TSPO is correlated with neuroinflammation and density of activated
microglia [231,288,289]. The radioligands that have been used to target TSPO are
[11C]PK11195 [290], [11C]PBR28 [291], [18F]FEPPA [292], and [11C]ER176 [293].

In a study conducted by Rissanen et al., an increase in the binding of [11C]PK11195
in lesions and NAWM in SPMS patients was reported, which is associated with ongoing
microglial activity [294]. However, [11C]PK11195 has poor BBB permeability and high
non-specific binding, whereas other tracers displayed heterogeneous binding to TSPO (for
review, see [295]). Consequently, specific targets that can bind to the radiotracers need to
be investigated. Examples of other targets currently under investigational trials include
cannabinoid receptor 2, purinergic P2X7 receptor, and MERTK (for review, see [296]).
Another limitation is that TSPO can also be expressed in activated astrocytes and endothelial
cells [289], which decreases the specificity of evolving microglial activity. Furthermore,
Nutma et al. discovered that in brain tissue from patients with MS, the increase in TSPO
signal is associated with a higher density of microglia and astrocytes [286] but not the
activation state of these cells, as seen in rodent studies [231,297]. This means that the
interpretation of PET signals using TSPO depends on the design of the studies.

Thioflavin T derivatives, such as Pittsburgh Compound-B (PiB), have also been used in
PET imaging to detect amyloid pathology in Alzheimer’s patients due to its binding affinity
for myelin, making such tracers potentially useful in assessing demyelination and even
remyelination in MS [298,299]. Stankoff et al. presented evidence that the uptake of [11C]PiB
was higher in NAWM compared to gray matter, and there was a lack of [11C]PiB uptake
in the lesion sites of RRMS patients [300]. Similarly, Bodini et al. demonstrated dynamic
changes of [11C]PiB binding in MS lesions over time using PET imaging, suggesting that
it may demonstrate remyelination within MS lesions [299]. However, the tracers are
derivatives modified from Aβ peptide tracers, where Aβ trafficking can influence the PET
signals in white matter, thus influencing these measurements [301,302]. Pietroboni et al.
suggested that these signals may not be derived from within white matter but rather from
Aβ present in the CSF [302].

4. Potential MS Treatments

The current unmet medical need in treating progressive MS is limited due to CNS-
specific pathological lesions separated in time and space with low efficacy of targeted
agents to cross the BBB, especially in the secondary progressive phase, during which the
BBB reseals. Once therapeutics can reach the CNS compartment with appropriate bioavail-
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ability, they must achieve efficacy by either limiting the pathogenetic mechanisms that
propagate neurodegeneration or potentiate neurorepair. As such, phagocytosis of myelin
debris that may contain inhibitory factors for remyelination could be key to improving
neurorepair and limiting neurodegeneration during progressive MS. With the development
of cellular therapies, the transplantable cells may remodel the inhibitory and inflamma-
tory endogenous environment that ensues during MS. These novel therapeutic strategies
may be designed to target ECM deposited during the evolution of pathogenic lesions or
alternatively to cellular-based therapies targeting immune cells, glial cells, and neuronal
responses that may initiate neurorepair.

4.1. Bruton’s Tyrosine Kinase Inhibitors: An Exciting New Development in Clinical Trials for
People Living with Progressive MS

Recent developments in neurotherapeutic outcomes during secondary and primary
progressive MS have emanated out of efficacy studies using Bruton’s tyrosine kinase
(BTK) inhibitors to limit B-cell development and signaling [303,304]. The clinical rationale
for utilizing selective BTK inhibitors during MS, which now include the CNS penetrant
evobrutinib and tolebrutinib, relates to the changing conceptual focus on MS pathogenesis
over the last decade, whereby B cells associated with intrathecal follicle-like structures may
govern the brain atrophy associated with progressive MS [305]. Moreover, the efficacious
clinical use of CD20 monoclonal antibody biologicals such as ocrelizumab and rituximab
demonstrating B cell reduction may limit MS progression [306,307], suggesting that B cells
may propagate neurodegenerative changes and are central to MS pathogenesis.

The complex interplay between the innate and adaptive immune mechanisms that
govern chronic neuroinflammation (for review, see [308]) can involve intrathecally localized
B cells perpetuating a cycle of inflammatory mediators. These mediators may include the
B lymphocyte-associated factor (BAFF) and a proliferation-inducing ligand (APRIL) that
may regulate the endogenous astrocytic responses commonly associated with progressive
MS [309]. Alternatively, or simultaneously, the activation of the (constitutively or induced)
BTK enzyme may regulate microglial cell-specific Fc receptor activation, which is critical for
innate immune system demyelinating outcomes [310]. The new generation of selective BTK
inhibitors such as tolebrutinib have been identified in phase 2b safety and efficacy studies
to regulate the activity of gadolinium-enhancing lesions over a 12-week treatment period
in a crossover trial design [304], clearly demonstrating reduced acute inflammation during
MS. However, there has been some development with the possible clinical management of
progressive MS whereby tolebrutinib is currently being assessed over a 12-week period for
PPMS compared with ocrelizumab treatment (Clinical Trial Identifier NCT04544449) or a
more protracted 6-month period in both primary and secondary progressive MS compared
to a placebo (NCT04458051 and NCT04411641, respectively). Primary and secondary
outcome measures do include brain volume imaging and neurodegenerative molecular
biomarkers from baseline right up to study closure. These data may provide insights into
pathogenic mechanisms that drive the chronic expanding lesion with interactions of the
active intrathecal B-cell-like follicles with active microglia, or alternatively may suggest a
totally lymphocyte-independent mechanism driving autoimmune demyelination [311].

4.2. Hyaluronan and Chondroitin Sulfate Proteoglycans

The ECM has been shown to play an important role in leukocyte activation and
infiltration into the CNS. The increase in the production of hyaluronan in the ECM has
been observed in both acute and chronic inflammatory sites, especially in the demyelinated
lesions of MS and EAE [312]. Winkler et al. identified that hyaluronan binds to its receptor,
CD44, on CNS endothelial cells to facilitate the migration of T lymphocytes into the
CNS during EAE pathogenesis [313]. In support of this evidence, Kuipers et al. found
that treatment of EAE-induced mice with 4-methylumbelliferone (4-MU), an inhibitor of
hyaluronan production, limited T lymphocyte migration into the CNS parenchyma and
reduced astrogliosis associated with disease progression [314]. They also demonstrated that
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4-MU administration decreased the severity of EAE and promoted the differentiation of T
lymphocytes to a Th2 phenotype and forkhead box P3 (FOXP3)+ regulatory T lymphocytes
(Tregs) [314]. In addition to facilitating leukocyte migration, a high-molecular-weight
(HMW) form of hyaluronan was produced by astrocytes in chronic demyelinated lesions of
EAE-induced mice, and both HWM hyaluronan and hyaluronan fragments inhibited the
maturation of oligodendrocyte progenitor cells (OPCs) into myelinated oligodendrocytes in
demyelinated sites induced by lysolecithin (a neurotoxicant) [312,315]. Therefore, inhibiting
the synthesis of hyaluronan and bioactive hyaluronan fragments may limit lymphocyte-
mediated inflammation and promote remyelination in MS.

Another component of the ECM includes chondroitin sulfate proteoglycans (CSPGs),
which play a central role in the formation of glial scars, can regulate lymphocyte migratory
responses and remyelination potential with profound effects on axonal regeneration [316–318].
CSPG has been observed to be expressed in brain sections of MS patients and the EAE-
induced animal model [318]. In a study conducted by Stephenson et al., CSPG expression
was found to be elevated in the perivascular spaces of spinal cords during EAE, whereas
decreased production of CSPG with fluorosamine treatment in this animal model led to
inhibited leukocyte infiltration [318]. One of the degradation products of CSPG cleaved
through the activity of chondroitinase ABC (chABC) is chondroitin sulfate proteoglycans-
disaccharide (CSPG-DS). This cleaved product has also been shown by [319] to limit T-cell
migration and cytokine production during the course of EAE. Additionally, Zhou et al. also
found that CSPG-DS prevented EAE onset and limited the disease progression [320]. These
studies showed that reducing the production of CSPG using fluorosamine or degrading
CSPG using chABC prevented T-lymphocyte infiltration into the brain parenchyma, which
reduced the inflammation in the CNS [320,321]. Furthermore, treatment with chABC re-
duced the misdirected growth of axons, allowing for regeneration in rats following nerve
transection [322]. In this rat model of spinal cord injury (SCI), degrading chondroitin sulfate
glycosaminoglycan chain with chABC facilitated the regeneration of the descending corti-
cospinal tract axons, with functional recovery observed [323]. This functional recovery was
also witnessed in a primate model of SCI treated with chondroitinase, where Rosenzweig
et al. noted induced corticospinal axon growth in the gray matter [324].

Additionally, CPSGs have been shown to negatively influence the differentiation of
OPCs in pathological conditions and limit remyelination during inflammatory demyelina-
tion. Siebert and Osterhout discovered that CSPG inhibited neurite outgrowth along with
the differentiation of OPCs in vitro, but treatment with chABC reversed the inhibition [325].
In support of these findings, Lau et al. showed that decreasing the CSPG production with
xyloside promoted remyelination in lysolecithin-treated mice [317]. Therefore, the inhibi-
tion of CSPG could attenuate the inflammatory environment to promote remyelination
in an animal model of MS. However, clinically translating the use of chABC may present
some challenges, such as its thermal sensitivity for its enzymatic activity, which has been
shown to quickly decrease within three to five days at 37 ◦C [326]. Consequently, this has
led to repeated delivery of chABC in animal models of SCI to the lesion sites to reach the
deep regions of the spinal cord to observe therapeutic effects [327]. To try to overcome
the thermal sensitivity, Lee et al. employed another method through thermostabilized
chABC and a hydrogel-microtube scaffold-delivery system to provide sustained release
of chABC locally in vivo in a rat model of SCI [326]. More studies need to be performed
to investigate effective methods of blocking CSPG production, as it can provide future
therapeutic benefits for MS patients.

In progressive MS patients, the most common type of lesion is the slowly expanding
lesion with a hypocellular demyelinated center [140]. The glial scar and the loss of brain
volume need to be replaced with cells, which can be transplanted or sourced from endoge-
nous cells. However, aging affects the proliferation and differentiation capability of stem
cells [328,329]. Since the majority of individuals living with progressive MS are usually of
old age and only a few cells can be derived from endogenous stem cells, transplantation of
inducible pluripotent stem cells (iPSCs) would be preferred. However, the glial scar that
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made up the lesion needs to be broken down first. Hyaluronan and CSPG are present in
the glial scar as inhibitory factors. Thus, removal of CPSG and inhibition of hyaluronan,
especially the high-molecular-weight form, can ameliorate scar formation by rendering the
ECM more responsive to neurorepair and remyelination.

4.3. Cellular-Based Therapeutic Strategies

Cell-based therapies may be a promising approach to support the ongoing efforts
of overcoming the lack of effectiveness of DMTs in patients with progressive MS. The
concept of replacement of autoreactive and pathogenic cells and related output on signaling
pathway regulation are of increasing interest in the research on progressive MS to eliminate
autoreactive immune responses and enhance neurological recovery. Neural stem cells
(NSCs) and autologous HSC-based transplantation has recently reached the clinical trial
phase, opening the possibility of using cellular replacement as a regimen for MS patients.

4.3.1. Neural Stem Cells

NSCs distribute in neurogenic stem cell niches, specifically enriched in the subventric-
ular zone (SVZ) adjacent to the lateral ventricle in the forebrain and the subgranular zone
(SGZ) of the dentate gyrus (DG) interface in the hippocampus (for review, see [330]). As
mentioned earlier, remyelination in anatomical regions of the brain undergoing neurode-
generation is central in the treatment of MS, and this process requires the participation of
endogenous NSCs, which can migrate to specific regions and differentiate into mature oligo-
dendrocytes, restoring impaired neural function [331,332]. NSCs may treat MS through
the modification of the endogenous microenvironment, converting from a neurotoxic to
neurotrophic phenotype [333,334]. Moreover, transplanted NSCs may limit further damage
to the site of injury by promoting cell replacement, immune regulation, nutritional support,
and stimulating the differentiation of neural progenitor cells, alongside maintaining CNS
homeostasis and optimizing the nervous system [335,336].

A major problem in achieving neurorepair through NSC transplantation during MS
is to resolve the pro-inflammatory microenvironment and repopulate the parenchymal
functional cells at the lesion site. However, excessive and disorganized ECM, apoptotic cell
debris, and pro-inflammatory cytokines can affect the viability, differentiation, and migra-
tion ability of NSCs to the lesion site [337–339]. At present, several studies have confirmed
that different in vitro induction methods can enhance the effect of NSC transplantation
in MS. Moore et al. identified that estrogen receptor beta (ERβ) agonists can be used to
enhance oligodendrocyte differentiation in EAE and to improve CNS myelin repair in mice
along with improved clinical outcomes [340]. However, Imamura et al. showed in recent
studies that donepezil, an approved treatment for AD, induced the expression of myelin-
related genes and further stimulated the differentiation of NSC derived from iPSCs into
oligodendrocytes through the ER signaling pathway, thus further improving myelin regen-
eration in the CNS [341]. In addition, some metabolites found in the human body regulated
the effect of NSC transplantation. In vivo experiments also demonstrated that transplanted
NSCs exerted anti-inflammatory action by scavenging succinate through the SUCNR1 sig-
naling pathway, leading to the production of prostaglandin E2 [342]. Moreover, succinate
has been shown to activate the SUCNR1/GPR91 signaling pathway in macrophages, pro-
moting the polarization of macrophages to a pro-inflammatory phenotype and production
of pro-inflammatory IL-1β [343]. Consequently, the uptake of succinate by NSCs resulted in
the induction of prostaglandin E2-dependent anti-inflammatory effects and less succinate
available to activate SUCNR1/GPR91 signaling pathway in macrophages [342]. When
EAE-induced mice were transplanted with Sucnr1−/− NSCs, microglia failed to convert
to an anti-inflammatory phenotype, and only a slight recovery of behavioral outcomes
was observed [342].

Bone marrow-derived NSCs and those derived from the SVZ have been shown to
exert almost the same therapeutic effects in the EAE preclinical models, and interestingly,
the BM-derived NSCs have similar morphological characteristics and similar capability of
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differentiating into neurons and glial cells to SVZ-derived NSCs [344]. Xie et al. injected
bone marrow-derived NSC transfected with TGF-β1 into mice with EAE via the tail vein
and transduced bone marrow-derived NSC inhibited Th1 and Th17 populations, promoting
the production of immunosuppression through Treg cells and cytokine IL-10 from the
periphery, thereby transforming microglia from a classical to an alternative pathway [345].

These results indicate that genetically modifying NSCs can be more effective at in-
hibiting clinical severity, inflammation, and demyelination in the CNS of mice. In addition,
these investigations reported that the total number of neurons and oligodendrocytes in
the CNS was significantly increased in the TGF-β1-transfected NSC transplantation group
compared with the control group injected with normal saline [345]. However, there was no
significant difference between the two groups treated with non-transfected NSCs when
compared with the transfected NSC transplantation group. This suggests that TGF-β1
does not alter the proliferation and differentiation of NSCs, and thus, the more indicative
markers for genetic modification of stem cells should be further identified.

A demonstration of remyelination of the CNS in EAE-induced male mice and an
increased number of CD4+CD25+FoxP3+ Tregs were observed following transplantation
of human NSCs into mice at the chronic stage of the disease [346]. Compared with the
control group of mice induced with EAE, the neuroinflammatory response of mice treated
with human NSC transplantation was significantly reduced [346]. Harris et al. evaluated
the safety and tolerability of autologous bone marrow-derived NSCs for the treatment
of 20 patients with MS in a phase I clinical trial [347]. In the follow-up 24 months post-
transplantation of 20 participants, no new lesions were found on the T2 MRI and no
severe adverse events were reported, serving as the evidence of the safety and tolerability
of transplanted autologous bone marrow-derived NSC transplantation for MS in the
short term [347].

4.3.2. Autologous Hematopoietic Stem Cell Therapy (AHSCT)

HSC transplantation has been shown to be a potential treatment for ameliorating
neurological deficits by promoting neural regeneration and functional recovery [348,349].
The current methodologies for transplantation include AHSC populations extracted from
patients and reconstituted outside of patients’ bodies, characterized by high mobilized
capability and low autoreactivity. Recently, a randomized controlled study (NCT00273364)
reported the significant effect of nonmyeloablative HSCT on extending the time to dis-
ease progression in patients with RRMS compared with conventional DMTs [350]. More
importantly, no death occurred and no adverse events over non-hematopoietic toxicity
grade 4 were observed, confirming the safety, feasibility, and durability of AHSCT on MS
patients [350]. The low incidence of transplant-related adverse events may be contributed
to by the more specific candidate inclusion criteria. In the aging population, due to the
concern of lower effectiveness of HSCs with functional decline (decreased capability of
self-renewal and pluripotency) and the high risk of mortality or complications resulting
from AHSCT, MS participants under 60 years old and with a relapsing–remitting stage
duration of less than 5 years are recruited in most ongoing AHSCT clinical trials.

Gene modification techniques applied to cells (especially stem cells) before cellular-
based transplantation is an ideal strategy that enhances functional cell survival and pro-
motes CNS regeneration in the model of neurodegenerative diseases [351–353]. Currently,
lentivirus (LV)-modified HSCT has been examined in several clinical trials majorly target-
ing immune, neurological, and genetic diseases such as human immunodeficiency virus
(HIV) infection (NCT00002221), cerebral adrenoleukodystrophy (ALD) (NCT01896102),
Krabbe Disease (NCT04693598), adenosine deaminase (ADA) deficiency (NCT01380990),
X-linked severe combined immunodeficiency (SCID) (NCT03601286), and sickle cell disease
(NCT02140554). Some debates continue about mutagenesis resulting from virus-carried
genes integrated into HSCs. However, in the recent clinical trial that utilized gene therapy
with HSCT for ALD, 88% of patients receiving genetically modified HSCT demonstrated
stable long-term hematopoietic reconstitution with modified HSCT maintained in propor-
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tion to the patient’s original immune lineage [354]. Additionally, X-linked SCID patients
transplanted with autologous LV-transduced HSCs showed immune reconstitution, and
the treatment appeared to be safe [355]. Besides using viral vectors to genetically modify
the HSCs, CRISPR-Cas9 is another gene-editing technology that was reported to be a
safer alternative [356].

A signaling cascade that may govern neurodegenerative change within the CNS
has been well established to involve the inhibitory-signaling cascade induced by myelin-
associated inhibitory factors (MAIFs). These MAIFs include Nogo-A, which has the
strongest inhibiting effect on CNS neuronal and myelinated oligodendroglial lineage cells
through binding to Nogo receptor 1 (NgR1) (for review, see [357]). NgR1 and its coreceptors
transmit downstream signaling that involves RhoA/Rho-associated coiled coil-forming
kinases (ROCK) and CRMP2, which elicit profound inhibitory neurite outgrowth and
axonal growth and can thereby limit synaptic plasticity [358,359]. Accordingly, the NgR
ectodomain can be used as a decoy to recognize and bind to myelin debris that harbors the
target antigen such as Nogo-A on their surfaces and further reduce the activation of the
inhibitory downstream pathways related to axonal degeneration. NgR(310)ecto-Fc, the sol-
uble decoy fusion protein, is capable of binding to MAIFs and driving the therapeutic effect
on animal models of glaucoma and SCI [360,361]. Therefore, the NgR(310)ecto-Fc fusion
decoy protein may be a plausible self-activating vector transduced in HSCs to re-establish
the immune system and could be expected to become a novel cell-based therapeutic for
patients with immune-related neurodegenerative diseases.

HSCs can differentiate into various immune cells such as T cells, B cells, and macrophage
(for review, see [362]) and HSC-derived immune cells are capable of crossing into the
CNS [363]. Using gene-editing technology, HSCs can then be utilized as vehicles to deliver
the NgR(310)ecto-Fc decoy protein from the periphery to the target lesions in the CNS. As
mentioned previously, macrophages and microglia are capable of phagocytosing myelin de-
bris, but there seems to be insufficient clearance of this debris in patients with MS [364]. This
myelin debris is well understood to be inhibitory to axonal repair and the differentiation of
OPCs to mature oligodendrocytes, which remyelinate the axons [365,366]. NgR(310)ecto-Fc
may bind to Nogo-A concentrated in myelin debris, and the Fc portion of the fusion protein
can bind to the Fc receptor localized on the cell membranes of macrophages/microglia, fa-
cilitating the clearance of inhibitory myelin debris. Furthermore, NgR(310)ecto-Fc can also
inhibit myelin-mediated axonal degeneration by blocking Nogo-A/NgR signaling [365].
Our recent data demonstrated significant remyelination and axonal repair during EAE
following transplantation with NgR(310)ecto-Fc-transduced HSCs [367].

5. Conclusions

The major cellular players in MS consist of T cells, B cells, macrophages, astrocytes, mi-
croglia, and oligodendrocytes that undergo reactive changes when exposed to pathological
conditions in the CNS. Although diverse immunomodulatory DMTs are being investigated,
they mainly target the T and B cells and aim to resolve inflammation during the acute stage
of RRMS. Moreover, there are only a few approved DMTs for patients with progressive MS
who have suffered from permanent neuronal and behavioral dysfunction due to extensive
demyelination and neurodegeneration. Many studies focus on the clearance of myelin
debris and the removal of inhibitory substrates in the glial scar to promote neuroregenera-
tion, prompting the adaptive immunity- and glia-mediated response to facilitate the neural
repair process.

Histopathologically, acute demyelinating inflammatory lesions substantially develop
into chronic active and chronic inactive plaques, and these chronic lesions are typically
observed in the post-mortem tissue sections of SPMS patients. The distribution of immune
and glial cell populations within chronic plaques in progressives MS is vastly different
from acute lesions in RRMS. The presence of demyelinated axons and reactive gliosis from
activated astrocytic and microglial interactions contributes to the formation of glial scars,
which are observed in chronic MS plaques. Classical MS-like disease models, including EAE



Int. J. Mol. Sci. 2023, 24, 11112 22 of 38

and cuprizone toxin models, have similar immunopathology and glial pathology with MS,
and these models are being used to investigate the complexity of cellular responses during
neurodegeneration. Nonetheless, several limitations, such as the insufficient manifestation
of MS progression and pathophysiological hallmarks in EAE and cuprizone toxin models,
still exist. Hence, a newly developed animal model needs to be investigated, particularly
linking inside-out and outside-in mechanisms to outline a more comprehensive profile
of MS cellular pathology and pathogenesis. A recent study using a newly developed
MS-like model, defined as cuprizone autoimmune encephalitis (CAE), reported that both
endogenous and peripheral immune responses can be activated during lesion formation
and demyelination [368,369]. This finding provides evidence for the inside-out mechanism
in progressive MS that subclinical demyelination triggers the activation of endogenous
immune cells in the CNS and adaptive immune response, thus contributing to further
axonal degeneration. Moreover, this animal model may provide an explanation regarding
why DMTs are ineffective against the progressive stage of MS, as DMTs focus less on
repairing the damage elicited by peripheral inflammatory cells and endogenous glial cells
in the CNS.

One issue in translational research of MS is that there are limited molecular and cellular
biomarkers available for monitoring the disease severity and examining the effectiveness
of the therapies over the course of MS. As a consequence of inconsistent and unpredictable
disease progression in MS patients, it is difficult to find a biomarker with well-evaluated
validity and clinical relevance. From the visualization perspective, advanced MRI tech-
niques provide several imaging biomarkers through the assessment of brain volume and
the thickness of the cortical cortex, which have helped to establish the microstructural
changes in the CNS for MS patients. However, fluctuations in parameters obtained from
MRI techniques in different MS patients highlight the potential risk of results that are rarely
reproducible. The potential strategy of combining molecular biomarkers with imaging tech-
niques to investigate either new therapeutics or disease progression monitoring provides a
feasible way to obtain a more accurate analysis.

Another important consideration to improve the clinical outcomes of MS patients is to
investigate potential therapeutics. Stem cell transplantation combined with genetic modifi-
cation techniques has become a promising option for treating autoimmune diseases and
immunodeficiency disorders. This therapeutic strategy not only replaces the pathogenic
immune cell populations with healthy cells but also produces therapeutic proteins by
genetic-editing techniques on transplanted cells. The delivery of decoy fusion protein
NgR(310)ecto-Fc via genetically modified HSCs directly into the lesions can inhibit neu-
rodegeneration and improve neurorepair, potentially offering long-term neuroprotection
after the progressive stage of the disease. The repair can also be assessed using exist-
ing molecular and imaging biomarkers. In the future, genetically modifying HSCs with
CRISPR-Cas9 to deliver NgR(310)ecto-Fc may improve the safety of the treatment and
possibly offer a new therapeutic option for progressive MS patients.
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