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Abstract: Nonalcoholic fatty liver disease (NAFLD) is a range of pathologies arising from fat accumu-
lation in the liver in the absence of excess alcohol use or other causes of liver disease. Its complications
include cirrhosis and liver failure, hepatocellular carcinoma, and eventual death. NAFLD is the most
common cause of liver disease globally and is estimated to affect nearly one-third of individuals in
the United States. Despite knowledge that the incidence and prevalence of NAFLD are increasing,
the pathophysiology of the disease and its progression to cirrhosis remain insufficiently understood.
The molecular pathogenesis of NAFLD involves insulin resistance, inflammation, oxidative stress,
and endoplasmic reticulum stress. Better insight into these molecular pathways would allow for
therapies that target specific stages of NAFLD. Preclinical animal models have aided in defining
these mechanisms and have served as platforms for screening and testing of potential therapeutic
approaches. In this review, we will discuss the cellular and molecular mechanisms thought to con-
tribute to NAFLD, with a focus on the role of animal models in elucidating these mechanisms and in
developing therapies.

Keywords: fatty liver; metabolism; ER stress; animal models; nutrition

1. Introduction

Nonalcoholic fatty liver disease (NAFLD) is a spectrum of liver pathologies arising
from excess fat accumulation in the liver in the absence of excess alcohol use or other causes
of liver disease (recently reviewed in [1]). At one end of the spectrum, there is fat accu-
mulation in the liver, or simple steatosis, which progresses to steatosis with inflammation
(nonalcoholic steatohepatitis (NASH)), which can further lead to liver scarring (fibrosis).
Towards the other end of the spectrum, the disease manifestation is severe, with extensive
fibrosis (also known as cirrhosis) and hepatocellular carcinoma. The prevalence of NAFLD
is estimated to be 30–40% worldwide and is projected to exceed 50% by 2040 [2]. This steady
rise in NAFLD is likely due to an increase in its risk factors, which include obesity, type
2 diabetes mellitus, hyperlipidemia, and metabolic syndrome (MetS). Indeed, in people
with type 2 diabetes mellitus and class III obesity (BMI > 40), the prevalence of NAFLD
approaches 90% [3,4]. NASH and fibrosis are also more common in individuals with type
2 diabetes mellitus [5–7]. Based on these co-morbidities, it is thought that NAFLD is the
hepatic manifestation of MetS, with insulin resistance being the main risk factor [8]. Thus,
lifestyle modifications with a loss of more than 5–10% of body weight and improvement
of underlying conditions can potentially reverse NAFLD before fibrosis occurs. There are
currently no U.S. Food and Drug Administration (FDA)-approved drugs to treat NAFLD.
Better insight into the molecular pathways that give rise to NAFLD would allow for the
development of disease-targeted therapies. By studying animal models of NAFLD, re-
searchers have uncovered the roles of insulin resistance, inflammation, oxidative stress,
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and endoplasmic reticulum stress in the disease progression. In this review, we discuss the
roles of these pathways in NAFLD and assess the utility of various models in replicating
NAFLD phenotypes, as summarized in Table 1. Additionally, we highlight treatments
that have proven effective in animal models and humans and focus on potential new drug
targets and important topics for future research.

Table 1. Animal models of nonalcoholic fatty liver disease (NAFLD).

Background Model Description Phenotype Limitations

Genetic models of obesity and insulin resistance

Mouse ob/ob
[9,10]

Spontaneous mutation in
leptin gene (ob)

Obesity
Insulin resistance
Steatosis

Leptin mutations rare in humans,
require second stimulus (high-fat
diet) to progress beyond steatosis

Mouse db/db
[11]

Spontaneous mutation in
leptin receptor gene (db)

Obesity
Insulin resistance
Steatosis

Leptin receptor mutations rare in
humans, require second stimulus
(high-fat diet) to progress
beyond steatosis

Rat
(Zucker)

fa/fa
[12]

Spontaneous mutation in
leptin receptor gene (fa)

Obesity
Insulin resistance
Steatosis

Leptin mutations rare in humans,
require second stimulus (high-fat
diet) to progress beyond steatosis

Mouse
(NOD)

foz/foz
[13] Mutation in Alms1 gene

Obesity
Insulin resistance
High cholesterol
Steatosis

Requires second stimulus (high-fat
diet) to develop NASH, fibrosis

Mouse
(B6SJLF1/J)

aP2-nSREBP-1c
transgenic [4]

Overexpression of
SREBP-1c in adipose tissue

Insulin resistance
Steatosis
Lipodystrophy

No evidence of fibrosis,
liver tumors

Mouse
(C57BL/6J)

Ldlr−/−

[14,15]

Targeted mutation in Ldlr
gene encoding low-density
lipoprotein receptor +
high-fat/high-cholesterol
diet (3 months)

Steatosis
Liver inflammation
Fibrosis
High cholesterol

Mutation does not induce
insulin resistance

Mouse
(C57BL/6J)

Apoe−/−

[16]

Targeted mutation in Apoe
gene encoding
apolipoprotein E +
high-fat/high-cholesterol
diet (7 weeks)

Mild obesity
Insulin resistance
Steatosis
NASH
Fibrosis

Less pronounced obesity

Zebrafish Ducttrip (dtp)
[17]

Mutation in ahcy
gene encoding
S-adenosylhomocysteine
hydrolase

Increased
pro-inflammatory
cytokines
Steatosis

Recessive lethal, does not induce
NASH, fibrosis, or liver tumors

Mouse
(C57BL/6J)

Mat1a−/−

[18]

Mutation in Mat1a gene
encoding methionine
adenosyltransferase 1A

Steatosis
Liver inflammation

No evidence of metabolic
syndrome (MetS) or fibrosis

Dietary models of obesity and insulin resistance

Mouse
(C57BL/6 or ob/ob)

Amylin liver
NASH (AMLN)
[19]

High-fat/high-fructose
diet (40% fat, 22% fructose,
2% cholesterol; 8 weeks)

Obesity
Steatosis
NASH
Fibrosis

No evidence of liver tumors
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Table 1. Cont.

Background Model Description Phenotype Limitations

Mouse
(C57BL/6)

Choline-
deficient +
high-fat diet
[20]

Choline-deficient/high-fat
diet (45% fat; 8 weeks)

Obesity
Steatosis

Choline-deficient diet improves
high-fat diet-induced insulin
sensitivity, no evidence of NASH
or more advanced stages

Mouse
(C57BL/6)

Methionine–
choline-
deficient (MCD)
diet
[21]

Standard chow diet
deficient in methionine and
choline (15 days)

Weight loss
Steatosis
NASH
Fibrosis

Some phenotypes are the opposite
of humans with NAFLD (i.e.,
model induces weight loss,
insulin sensitivity)

Rat
(Sprague–Dawley) NASH diet [22]

High-fat/high-
fructose/high-cholesterol
diet (40% fat, 40%
carbohydrate, 2%
cholesterol; 16 weeks)

Obesity
Steatosis
Fibrosis

No evidence of liver tumors

Mouse (C57BL/6N)

American
lifestyle-
induced obesity
syndrome
(ALIOS)
[23]

High-fat/high-
carbohydrate diet (45% fat,
55% fructose/45% glucose
in drinking water;
26–52 weeks)

Obesity
Insulin resistance
Steatosis
NASH
Fibrosis
Liver tumors

Lengthy feeding time required to
progress to fibrosis and
liver tumors

Mouse (B6/129)

Diet-induced
animal model of
NAFLD
(DIAMOND)
[24]

High-fat/high-
carbohydrate diet (42% fat,
0.1% cholesterol, high
fructose/glucose in
drinking water;
8–52 weeks)

Obesity
Insulin resistance
Steatosis
NASH
Fibrosis
Cirrhosis
Liver tumors

Lengthy feeding time required to
progress to cirrhosis and
liver tumors

Mouse (C57BL/6) Fast-food diet
[25]

High-fat/high-
carbohydrate diet (40% fat,
2% cholesterol, high
fructose in drinking water;
25 weeks)

Obesity
Insulin resistance
Steatosis
NASH
Fibrosis

Liver tumors not reported in
this model

Mouse (C57BL/6)

STAM™
(streptozotocin
+ high-fat diet)
[26]

Perinatal injection of
streptozotocin followed by
high-fat diet (6–20 weeks)

Obesity
Insulin resistance
Steatosis
NASH
Fibrosis
Liver tumors

Only male mice developed
liver tumors

Monkey
(Cynomolgus)

NASH diet
[27]

High-fat/high-
carbohydrate/high-
cholesterol diet (47% fat,
37% carbohydrates, 1%
cholesterol; 10 months)

Obesity
Hyperglycemia
Hyperlipidemia
Steatosis
NASH
Fibrosis

Studies were only performed in
male monkeys
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Table 1. Cont.

Background Model Description Phenotype Limitations

Models of oxidative stress

Mouse

PPARγ deletion
in hepatic
macrophages +
carbon
tetrachloride
[28]

Hepatic
macrophage-specific
deletion of peroxisome
proliferator-activated
receptor γ, liver fibrosis
induced by carbon
tetrachloride

Oxidative stress
Hepatic
inflammation
Fibrosis

No evidence of MetS

Zebrafish

fabp10-CETI-
PIC3 + high-fat
diet
[29]

Over-expression of
pro-inflammatory
cytokines

Insulin resistance
Oxidative stress
Steatosis

No evidence of fibrosis or
liver tumors

Models of endoplasmic reticulum (ER) stress

Mouse
(C57BL/6)

MUP-uPA
transgenic +
high-fat diet
[30]

Transgenic mice expressing
urokinase-type
plasminogen activator
(uPA) under a
hepatocyte-specific
promoter for major urinary
protein (MUP) fed a
high-fat diet (16–40 weeks)

Obesity
ER stress
Steatosis
NASH
Fibrosis
Liver tumors

Lengthy feeding time required for
disease progression

Zebrafish Foie gras (fgr)
[31,32]

Mutation in gene encoding
an analog of trafficking
protein particle complex 11
(TRAPPC11)

ER stress
Steatosis
NASH

Recessive lethal, does not show
full pathogenesis of fibrosis or
liver tumors

Zebrafish hi559
[33]

Mutation in cdipt gene
encoding
phosphatidylinositol
synthase

ER stress
Steatosis

No evidence of NASH, fibrosis, or
liver tumors

2. Pathophysiology of NAFLD

The key drivers of NAFLD progression are insulin resistance and inflammation. In
healthy individuals, free fatty acids migrate to the adipose tissue to be stored as triglyc-
erides, and glucose is taken up by skeletal muscle for glycogenesis. However, in states of
excess nutrient intake, both adipose tissue and skeletal muscle develop insulin resistance,
resulting in reduced lipogenesis and increased lipolysis in adipose tissue and reduced
glycogenesis in skeletal muscle, thus diverting excess substrate to the liver to be stored
there as triglycerides (Figure 1). At the level of the hepatocyte, selective insulin resistance
increases glucose uptake and de novo lipogenesis. Together, increased free fatty acid uptake
and lipogenesis result in an overabundance of fat in the liver. In many cases, fatty liver
is relatively benign and does not progress beyond this stage. However, hepatic steatosis
can progress to NASH upon multiple pro-inflammatory insults from adipose tissue and
the gastrointestinal tract [34]. Inflammation leads to oxidative stress and endoplasmic
reticulum (ER) stress, which are key mediators of hepatocyte damage and destruction in
later stages of liver disease. With this complex pathophysiology in mind, we review models
of NAFLD that demonstrate obesity, insulin resistance, and inflammation in the forms of
oxidative and ER stress.
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Figure 1. Pathogenesis of NAFLD. Insulin resistance stimulates the breakdown of adipose triglyc-
erides into free fatty acids (FFA) that enter the liver and accumulate there as triglycerides. Excess
dietary sugars are converted into additional triglycerides via de novo lipogenesis. Pro-inflammatory
cytokines from the adipose tissue and lipopolysaccharides (LPS) from the gastrointestinal tract con-
tribute directly or indirectly to hepatic inflammation. Cholesterol accumulates in the liver due to
impaired very-low-density lipoprotein (VLDL) secretion and bile formation, as well as increased de
novo biosynthesis of cholesterol. These cellular insults trigger the mitochondria to produce toxic
levels of reactive oxygen species (ROS). Additionally, cellular insults activate endoplasmic reticulum
(ER) stress and the unfolded protein response. Together, these pathways upregulate pro-inflammatory
cytokine expression (IFNγ, TNFα, and IL-6), apoptotic mediators (CHOP and JNK), and immune-
response mediators (NFκB and NLRP3). Ultimately, this results in hepatic inflammation and cell
death, leading to NASH and fibrosis. Image created with Biorender.com.

3. Obesity and Insulin Resistance

Insulin plays an important role in glucose and lipid homeostasis [35]. In adipose tissue,
insulin stimulates glucose uptake and its storage as lipid and inhibits lipolysis, thereby
promoting the accumulation of lipids in adipocytes. Meanwhile, in the liver, insulin
stimulates glucose storage as glycogen or synthesis into triglycerides that are packaged
and exported into circulation. Obesity leads to insulin resistance, thereby disrupting these
critical pathways that maintain lipid homeostasis [36]. This is, in part, due to adipose tissue
release of pro-inflammatory cytokines that inhibit insulin signaling [37]. Upon insulin
resistance, adipocytes release free fatty acids that accumulate in the liver, leading to hepatic
steatosis [38]. Thus, obesity and insulin resistance are important hallmarks of NAFLD.
Purely genetic causes of NAFLD are rare, but deficiencies in these key genes can serve as
suitable animal models of NAFLD. Otherwise, dietary interventions are used to generate
animal models of NAFLD.

3.1. Genetic Models of Obesity and Insulin Resistance

Leptin is a satiety hormone released by adipose tissue to suppress appetite [39]. It
functions to reduce caloric intake, increase hepatic triglyceride export, and block de novo
lipogenesis [40,41]. Therefore, leptin-deficient (ob/ob) mice are an important model of
NAFLD. Ob/ob mice become obese and develop high fasting blood glucose with insulin
resistance [9,10]. Importantly, ob/ob mice show mild to severe steatosis but do not progress

Biorender.com
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to NASH without additional stimuli, such as a diet containing high cholesterol, trans fat,
and fructose (known as the Amylin mouse liver NASH model, or AMLN, diet) [19,42].
Leptin receptor-deficient (db/db) mice are similar to ob/ob mice in terms of obesity, but they
show less steatosis than ob/ob mice [11]. Similarly, Zucker (fa/fa) rats have a spontaneous
mutation in the leptin receptor that leads to hyperphagia, severe obesity, and insulin
resistance [12]. Because human mutations in leptin/leptin receptor are rare [43,44] and
because leptin levels increase with NAFLD severity [45], these models may not accurately
represent the pathogenesis of NAFLD.

Another gene involved in satiety is Alms1 [46]. Mutations in Alms1 are responsible
for Alström syndrome, a rare genetic disorder leading to childhood obesity, severe insulin
resistance, and multiple organ failure [47]. Many of these individuals develop an acceler-
ated form of NAFLD, leading to fibrosis and cirrhosis at an unexpectedly young age [48].
In mice, a truncation mutant of Alms1 (foz/foz) leads to increased weight gain, insulin
resistance, type 2 diabetes mellitus, and steatosis [13]. On a high-fat diet, foz/foz mice
develop NASH due to hepatic cholesterol accumulation [49]. Mutations in Alms1, like
mutations in leptin, are rare in humans. Therefore, there may be key differences in the
pathogeneses of NAFLD in humans and foz/foz mice.

Insulin signaling activates sterol regulatory-element-binding proteins (SREBPs), which
are master transcriptional regulators essential for maintaining lipid homeostasis path-
ways [50]. During insulin resistance, increased plasma insulin levels may lead to overstim-
ulation of these pathways. SREBP-1c is known to upregulate fatty acid synthesis genes [51].
When SREBP-1c is overexpressed in adipose tissue, mice develop hyperglycemia, insulin
resistance, and fatty liver [4]. Insulin also activates SREBP-2, thereby activating genes in-
volved in cholesterol synthesis [52]. SREBP-2 is shown to be upregulated during NASH [53].
Therefore, SREBP-2 may provide a direct link between insulin resistance, cholesterol accu-
mulation, and NAFLD.

It is now recognized that excess hepatic cholesterol, in addition to excess triglycerides,
promotes NAFLD progression [54]. Excess hepatic cholesterol may result from increased
biosynthesis, impaired very-low-density lipoprotein (VLDL) packaging and export, or
impaired biliary excretion. Thus, animal models with defects in cholesterol metabolism are
now being used to study NAFLD pathogenesis. Mice deficient in low-density lipoprotein
receptor (Ldlr−/−), when fed a high-fat/high-cholesterol diet for 3 months, develop hepatic
inflammation, steatosis, and fibrosis [14]. Apolipoprotein E-deficient (Apoe−/−) mice fed
a high-fat diet progress to early stages of fibrosis after 8 weeks [55]. In these models,
excess free cholesterol accumulation in hepatocytes is likely the main driver of hepatic
inflammation.

3.2. Dietary Models of Obesity and Insulin Resistance

Dietary deficiency in choline or defects in methionine metabolism may lead to NAFLD.
Choline, an essential nutrient, is required for the synthesis of phosphatidylcholine, which
is the main phospholipid on VLDL particles [56]. In the absence of phosphatidylcholine,
excess hepatic triglycerides accumulate, as they cannot be packaged into VLDL and ex-
ported into circulation. Therefore, in mice, choline-deficient diets augment hepatic lipid
accumulation on a high-fat diet [20]. However, their liver disease does not go beyond
this stage unless they are fed a diet that is also deficient in methionine. Methionine, an
essential amino acid, is another precursor of phosphatidylcholine, acting via methylation
of phosphatidylethanolamine. Mice fed a methionine-choline-deficient (MCD) diet show
weight gain, insulin resistance, and liver inflammation within 4 weeks [57]. However, this
model does not fully mimic the human pathophysiology, as the mice do not develop insulin
resistance [58]. Genetic models that interfere with the utilization of methionine—such as
an S-adenosylhomocysteine hydrolase mutant in zebrafish (ducttrip) [17,59] or methion-
ine adenosyltransferase 1A (MAT1A) deficiency in mice [18]—have also been useful in
studying NAFLD.
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A high-fat, high-carbohydrate, and/or high-cholesterol diet effectively induces in-
sulin resistance in animal models, triggering NAFLD without genetic manipulation [60].
Many diet variations exist, but the typical range is 32–60% fat, 30–50% sugar, and 0.2–1%
cholesterol [60]. In Sprague–Dawley rats, a high-fat diet (60% fat, 20% carbohydrates) or
NASH diet (40% fat, 40% carbohydrates, 2% cholesterol) induces steatosis and inflamma-
tion after 16 weeks [22]. On a high-fructose diet (10% fat, 70% carbohydrates), the rats do
not show the same phenotypes, suggesting that fat and cholesterol are the main drivers of
NAFLD progression [22]. On the American lifestyle-induced obesity syndrome (ALIOS)
diet, which consists of 45% fat (of which 30% is trans fat) plus high-fructose corn syrup
in drinking water, mice develop obesity, insulin resistance, steatosis, NASH, fibrosis, and
hepatic tumors over a 12-month period [23]. Thus, the ALIOS model replicates the human
pathophysiology with striking accuracy. Similarly, in the diet-induced animal model of non-
alcoholic fatty liver disease (DIAMOND), mice fed a high-fat, high-carbohydrate diet (42%
fat, 0.1% cholesterol, high-fructose/glucose water) develop steatosis, NASH, advanced
fibrosis, and liver tumors after 52 weeks [24]. When fed a fast-food diet of 40% fat (12%
saturated fats) and 0.2% cholesterol plus high-fructose corn syrup in drinking water for
25 weeks, mice show effects that are physiologically comparable to humans, including
NASH with fibrosis and markers of cellular stress [25]. However, in this case, liver tumors
were not reported [25]. In many of these studies, the length of time to advanced disease
is a major limitation. To accelerate disease progression, SMC Laboratories developed a
mouse model (STAM™) that progresses to liver tumors in 100% of mice by 20 weeks [26].
STAM™ mice are first injected with the β-cell toxin streptozotocin to induce type 2 diabetes.
Subsequently, the mice are fed a high-fat diet to induce liver disease. In conclusion, dietary
models show the most phenotypic similarity to human NAFLD, although a longer feeding
period may be required to reproduce more severe or advanced stages of liver disease, such
as cirrhosis and liver tumors.

4. Inflammation

Obesity and insulin resistance cause hepatic steatosis, but additional pathogenic insults
are required to progress to NASH. Inflammation drives the progression of NAFLD from
benign fat accumulation to permanent liver damage. Two major sources of inflammation in
NAFLD are oxidative stress and ER stress.

4.1. Oxidative Stress

Reactive oxygen species (ROS) are oxygen-containing molecules that can readily react
with and damage biomolecules. Whereas low levels of ROS act as key signaling messengers,
excess ROS promote oxidative stress. In NAFLD, the accumulation of lipids results in
excess ROS, inflammation, and, ultimately, progression to NASH [61,62]. Both increased
ROS production and impaired antioxidant capacity contribute to elevated ROS.

Most ROS are produced during mitochondrial oxidative phosphorylation, as electrons
escape the electron transport chain, react with oxygen, and form superoxide [63]. During
NAFLD, hepatocytes upregulate β-oxidation to break down excess fatty acids [64,65]. With
this surge in β-oxidation, more reducing equivalents are shuttled into the electron transport
chain, thereby increasing superoxide production and resulting in oxidative stress and
inflammation [66,67]. Impaired activity of the electron transport chain complexes further
exacerbates ROS production and oxidative stress. In NASH, the activity of all electron trans-
port chain complexes is impaired [68]. Another major source of ROS is the mitochondrial
cytochrome P450 (CYP) enzyme CYP2E1, which is elevated in NASH livers [69]. CYP2E1
metabolizes alcohol and, in the process, generates ROS [70]. In mice, CYP2E1 promotes the
development of obesity, insulin resistance, NASH, and fibrosis on a high-fat diet [71–73].
In some studies, free fatty acids were shown to upregulate CYP2E1 [74–76], but other
studies contradict these findings [77,78]. NADPH oxidases (NOXs) are another source
of ROS. NOXs make superoxide at relatively low levels to support normal physiological
functions, such as inflammatory responses and cell signaling [79]. During NAFLD, NOXs
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may become dysregulated and produce excessive amounts of ROS. In the liver, NOX1,
NOX2, and NOX4 are thought to be the most relevant isoforms that contribute to disease
pathogenesis. Indeed, NOX1- or NOX4-deficient mice are protected from liver fibrosis
induced by carbon tetrachloride [80]. Similarly, NOX2-deficient mice are protected against
high-fat diet-induced liver steatosis [81].

In NAFLD, excess ROS can also result from the failure of antioxidant systems. When
high amounts of ROS accumulate, they deplete antioxidants and overwhelm the liver’s
antioxidant enzymes. A key antioxidant pathway involves the redox-sensitive transcription
factor nuclear factor erythroid 2-related factor 2 (Nrf2), which binds to antioxidant response
elements and upregulates detoxifying enzymes and the antioxidant glutathione [82]. Nrf2
plays an important protective role in NAFLD, as Nrf2-deficient mice fed a high-fat diet
are more susceptible to NASH [83]. Conversely, activation of the Nrf2 pathway helps to
resolve NASH and fibrosis in mice fed an MCD diet [84]. Nrf2 upregulates detoxifying en-
zymes, including NAD(P)H:quinone oxidoreductase 1 (NQO1), heme oxygenase-1 (HO-1),
glutathione S-transferase (GST), and superoxide dismutase (SOD), and these have been
shown to protect against NAFLD progression to varying degrees. In mice, overexpression
of NQO1 protects against high-fat diet-induced steatosis [85]. Inducing HO-1 activity pro-
tects against MCD diet-induced steatohepatitis [86]. Loss of GST (mu 2 isoform) results in
hepatosteatosis and fibrosis in mice fed a high-fat diet [87]. Loss of SOD1 increases hepatic
lipids and oxidative damage and eventually leads to hepatocellular carcinoma [88,89]. Nrf2
also upregulates peroxisome proliferator-activated receptor γ (PPARγ) [90–92], a transcrip-
tion factor with anti-inflammatory, antioxidant, and insulin-sensitizing functions [93]. In
adipose tissue, PPARγ promotes lipid uptake and storage, as well as insulin sensitivity [92].
Additionally, in hepatic macrophages, PPARγ protects mice against oxidative stress in-
duced by the liver toxin carbon tetrachloride [28]. These potential benefits have led to
increased interest in using PPARγ agonists to treat NAFLD. However, because liver PPARγ
increases free fatty acid uptake and de novo lipogenesis, its expression in the liver pro-
motes steatosis [94–96]. Therefore, cell-specific targeting of PPARγ would be essential. The
presence of non-enzymatic antioxidants, including vitamins C and E, has been inversely
associated with NAFLD/NASH, suggesting that they also play a role in preventing liver
disease [97,98].

Animal Models of Oxidative Stress in NAFLD

To study the role of oxidative stress in NAFLD, mice are commonly fed an MCD diet.
This diet appears to induce more inflammation, ROS, mitochondrial DNA damage, and
apoptotic cell death than in ob/ob mice [99]. However, there are key differences between
the MCD diet model and the human pathophysiology of NAFLD. Most notably, mice on an
MCD diet become cachectic with a reduced liver-to-body weight ratio and have elevated
liver enzymes, which are not observed in humans with NASH [21]. These key differences
lead us to question whether the MCD diet model is suitable for studying NAFLD. Zucker
rats (fa/fa leptin-deficient model) also show increased markers of oxidative stress when fed
a high-fat diet [100]. However, these fa/fa rats show decreased CYP2E1 with no change
on a high-fat diet [100], which is the opposite response of that seen in humans [69]. In
zebrafish, overexpression of proinflammatory cytokines (IL-1β, TNFα, and IFNγ) increases
inflammation, promotes macrophage infiltration into hepatocytes, and generates excess
ROS [29]. Additionally, this model causes lipid accumulation in hepatocytes and signs
of both insulin resistance and inflammation, similar to the human pathophysiology of
NAFLD [29].

4.2. ER Stress

Hepatocytes are highly secretory cells that produce a variety of proteins to maintain
cellular, metabolic, and lipid homeostasis. These proteins must be properly synthesized,
processed, and folded in the hepatocyte ER. Anything that disrupts ER function can
induce ER stress and the accumulation of unfolded or misfolded proteins. In NAFLD,
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many factors drive ER stress in hepatocytes, including free cholesterol accumulation in
the ER membrane [101]. In response, hepatocytes first attempt to reduce ER stress and
promote cell survival, but if unsuccessful they undergo apoptosis. This process is called the
unfolded protein response (UPR), a complex signaling pathway with three stress-activated
sensors: protein kinase R-like ER kinase (PERK), activating transcription factor 6 (ATF6),
and inositol-requiring enzyme 1α (IRE-1α). Chronic activation of the UPR is thought to
contribute to NAFLD.

The master regulator of the UPR is a chaperone protein, glucose-regulated protein
78 (GRP78). Underscoring its protective role in NAFLD, GRP78 overexpression in the
liver of ob/ob mice protects against steatosis [102]. Under unstressed conditions, GRP78
binds to the three UPR sensors, maintaining them in an inactive state. During ER stress,
GRP78 preferentially binds to the unfolded proteins. Released from GRP78, the UPR
sensors enter an active state. Once activated, PERK phosphorylates eukaryotic initiation
factor 2α (p-eIF2α), which shuts down global protein translation to ameliorate ER stress
but also upregulates activating transcription factor 4 (ATF4). Initially, ATF4 activates
genes that promote cell survival, but if ER stress is severe or prolonged ATF4 upregulates
pro-apoptotic C/EBP homologous protein (CHOP). Consistent with a pathogenic role
in NAFLD, ATF4-deficient mice are protected against high-carbohydrate diet-induced
steatosis [103], and ATF4-overexpressing zebrafish developed steatosis [104]. Activated
ATF6 is proteolytically cleaved into its nuclear form, which then upregulates genes involved
in protein folding and lipid synthesis. It was shown that ATF6 deficiency protects against
steatosis in a zebrafish model of chronic hepatic ER stress (i.e., foie gras mutant), whereas
it may potentiate steatosis under acute ER stress [32]. IRE1α has endonuclease activity,
which it uses to splice Xbp1 mRNA, producing an active transcription factor. Spliced XBP1
activates the transcription of ER chaperones [105] and ER-associated protein degradation
components [106] to promote cell survival. Multiple reports have shown that IRE1α
protects against hepatic steatosis [107] via UPR-unrelated pathways that regulate lipid
homeostasis [108,109]. Under severe stress, IRE1α couples with TNF receptor-associated
factor 2 (TRAF2) to activate c-Jun N-terminal kinase (JNK) [110] or IκB kinase (IKK) [111],
thereby promoting inflammation. More recently, IRE1α was shown to be involved in
NLRP3 inflammasome assembly and production of the pro-inflammatory cytokine IL-
1β [112]. Therefore, under the right conditions, IRE1α signaling may promote progression
from simple steatosis to NASH.

When the UPR fails to relieve ER stress, it triggers apoptosis through various prote-
olytic caspases, potentially including a combination of caspases 12, 3, 6, 7, 8, and 9 [113].
Another caspase (caspase 2) may be activated by ER stress, but is not believed to play a role
in ER stress-mediated apoptosis [114]. Instead, in the MUP-uPA mouse model of hepatic ER
stress, caspase 2 cleaves site-1 protease, thereby activating SREBPs [115]. As discussed, the
SREBPs are master regulators of lipid homeostasis and play a role in NAFLD progression.
In a fructose-induced mouse model of NAFLD, studies have linked ER stress to SREBP-1c
activation and lipid accumulation [116]. Inhibiting SREBP-2 overactivation in vitro im-
proves hepatic autophagy and relieves ER stress in mice fed a high-fat diet [117]. However,
activating SREBP-2 in mice with lovastatin/ezetimibe improves autophagy and reduces
hepatic triglyceride accumulation [118]. More work is needed to assess the role of SREBP-2
in NAFLD and progression to NASH. Moreover, additional studies must disentangle when
the UPR is protective versus when it promotes NAFLD progression, which is an essential
first step in developing NAFLD therapeutics to target ER stress.

Animal Models of ER Stress in NAFLD

To that end, we examined select animal models that may prove useful in studying ER
stress as a pathogenic step towards NAFLD. As previously mentioned, the major urinary
protein urokinase plasminogen activator (MUP-uPA) transgenic mouse is a model of ER
stress and NAFLD progression [119]. The protein uPA is delivered to hepatocytes, where it
accumulates in the ER and induces ER stress [30]. After 24 weeks on a high-fat diet, the
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mice develop NASH, and after 32 weeks, they progress to hepatocellular carcinoma [30].
The MUP-uPA mouse model is one of the better models of NAFLD progression owing
to its ability to faithfully replicate key human phenotypes throughout the entire disease
progression [120]. In zebrafish, deletion of the trafficking protein particle complex subunit
11 (TRAPPC11) analogue (also known as the foie gras gene) disrupts ER and Golgi protein
trafficking and induces ER stress [31]. The foie gras model results in hepatic steatosis
mediated through the ATF6 branch of the UPR [32]. However, because this mutation
can be lethal, the foie gras model progresses neither to liver fibrosis nor to hepatocellular
carcinoma. Therefore, this model does not demonstrate full disease pathogenesis. Also
in zebrafish, deficiency in CDP-diacylglycerol-inositol 3-phosphatidyltransferase (Cdipt)
impairs phosphatidylinositol synthesis, leading to ER stress and hepatic steatosis by an
unknown mechanism [33].

5. Treatment Modalities

The mainstay treatment for NAFLD is lifestyle modification. Beyond diet and exercise,
there are no current FDA-approved or guideline-approved medications to treat NAFLD.
Potential new therapeutics target the underlying causes of NAFLD, which include insulin
resistance, imbalances in lipid metabolism, and inflammation.

5.1. Lifestyle Modifications

The American Association for the Study of Liver Diseases (AASLD) recommends a
body weight reduction of at least 3–5% to reverse steatosis and >7% to improve histologic
features of NASH and fibrosis [121]. The European Association for the Study of the Liver
(EASL) guidelines are similar and recommend a weight reduction of 7–10% for treatment
of NAFLD [122]. For a healthy eating plan that manages MetS, the American Heart
Association (AHA) recommends reducing saturated fat intake to <7% of total calories,
minimizing trans fat intake, and maintaining cholesterol intake at <200 mg per day and
total fat at 25–35% of total calories [123]. For an exercise plan, individuals should aim for at
least 30 min of cardio activity at least 5 days a week [123].

Recent randomized controlled clinical trials have investigated the impacts of diet
composition and meal timing on NAFLD. In the REDUCTION trial, subjects with type 2 di-
abetes mellitus and NAFLD lost weight and improved their glycemic control after 6 months
on a low-carbohydrate, high-fat diet compared to patients on a high-carbohydrate, low-fat
diet [124]. However, these improvements were not sustained at the 3-month follow-up [124].
Long-term adherence often limits the effectiveness of dietary interventions. Although low-
fat diets and Mediterranean diets (low carbohydrate and rich in unsaturated fats) have
both been shown to reduce hepatic steatosis in clinical trials, adherence was better for
the Mediterranean diet [125], suggesting the longer-term benefits of a Mediterranean diet.
Moreover, adherence to a Mediterranean diet has been shown to lower liver inflamma-
tory markers and increase antioxidant pathways [126]. In a US-based study, the effects of
alternate-day fasting with and without exercise were tested on subjects with obesity and
NAFLD [127]. For 3 months, study participants ate one meal at dinnertime on “fast days”
and ate food as desired on “feast days”. At the end of the trial, participants in the group of
alternative-day fasting plus aerobic exercise had decreased body weight, reduced steatosis,
and improved glycemic control [127]. However, more studies are needed to determine
whether exercise provided any benefit over fasting alone. Lastly, the TREATY-FLD trial re-
cently found no additional benefit with time-restricted diets (eating between 8:00 a.m. and
4:00 p.m.) as opposed to a calorie-restricted diet alone [128]. After 12 months, participants
in both groups had reduced and comparable intrahepatic fat measurements [128].

Research has clearly shown that exercise improves NAFLD, even without weight
loss [129]. Despite NAFLD patients preferring exercise over medication, many are unable
to start or maintain exercise programs due to barriers such as fatigue, injury, and shortness
of breath [130]. As NAFLD progresses, these barriers are even more difficult to overcome.
Thus, there is a need to tailor exercise programs (in terms of exercise type, duration, and
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intensity) to address these limitations. A comparative analysis of aerobic and resistance
exercise found that both forms of exercise improved hepatic steatosis [131]. However,
because resistance exercise requires less energy consumption, it may be the better choice
for patients who cannot tolerate aerobic exercise [131].

5.2. Drugs Targeting Insulin Resistance

Thiazolidinediones (TZDs) are a class of drugs that improve insulin sensitivity by
activating PPARγ [132]. Two TZDs, pioglitazone and rosiglitazone, are FDA approved to
treat insulin resistance and improve glycemic control in patients with type 2 diabetes melli-
tus. Unfortunately, these drugs may lead to heart failure [133,134] and weight gain [135].
Thus, there has been interest in developing substitutes with better safety profiles. Recently,
dual PPARα/γ agonists have shown promise in treating NAFLD/NASH, as they not only
improve glycemic control (via PPARγ) but also reduce lipid levels (via PPARα). Thus, they
could target multiple underlying factors of NAFLD pathogenesis while also preventing
side effects such as weight gain. In preclinical studies of Apoe−/− mice on a high-fat/high-
cholesterol diet, the dual PPARα/γ agonist aleglitazar improved glucose tolerance and
lowered hepatic fat content without an increase in body weight [136]. In the AleCardio trial,
aleglitazar reduced hepatic steatosis and fibrosis in subjects with acute coronary syndrome
and type 2 diabetes mellitus [137]. Saroglitazar, another dual PPARα/γ agonist, showed
similar benefits in mouse models of NAFLD/NASH [138] and in a recent phase 2 clinical
trial [139]. However, in the clinical trials, aleglitazar and saroglitazar increased body mass
index and body weight, respectively. A third PPAR family member, PPARδ, was recently
shown to reduce hepatic lipid content via autophagy [140]. Therefore, it was thought that
pan-PPAR agonists (targeting PPARα, PPARγ, and PPARδ) may show additional benefits
over more selective agonists. In preclinical studies of mice fed a choline-deficient, amino
acid-defined, high-fat diet, the pan-PPAR agonist lanifibranor was more potent than single
agonists in improving steatohepatitis and carbon tetrachloride-induced fibrosis [141]. In the
NATIVE trial, the pan-PPAR agonist lanifibranor improved advanced fibrosis in subjects
with type 2 diabetes mellitus [142]. However, much like the more selective PPAR agonists,
lanifibranor also induced weight gain [142]. More studies will be needed to assess the
possible benefits of pan-PPAR agonists over dual agonists and weigh the risks of potential
side effects.

Sodium-glucose cotransporter 2 (SGLT2) inhibitors prevent glucose from being reab-
sorbed into circulation by the kidneys, thus improving hyperglycemia [143]. SGLT2 in-
hibitors result in glucose excretion in urine, and the loss of these calories may be one reason
why SGLT2 inhibitors induce weight loss [144]. Various SGLT2 inhibitors have been FDA
approved to treat patients with type 2 diabetes mellitus, but they are just now being investi-
gated in the context of NAFLD. In a small clinical trial, the FDA-approved SGLT2 inhibitor
dapagliflozin improved glycemic control and hepatic lipid content after 12 weeks of treat-
ment [145]. Similarly, ipragliflozin (a non-FDA-approved drug) helped to resolve NASH
and fibrosis in subjects with type 2 diabetes and NAFLD after 72 weeks [146]. Preclinical
studies tested the combined effects of tofogliflozin (an SGLT2 inhibitor) and pioglitazone (a
PPARγ agonist) on animal models of obesity and type 2 diabetes [147]. Interestingly, the re-
searchers found that tofogliflozin prevented pioglitazone-induced weight gain in mice, and
the combination therapy improved hyperglycemia better than monotherapy [147]. These
effects were also observed in a clinical trial investigating tofogliflozin/pioglitazone combi-
nation therapy, as was a further improvement in steatosis over tofogliflozin monotherapy in
patients with type 2 diabetes and NAFLD [148]. These studies used small cohorts, ranging
from 20–40 participants, so larger-scale studies will need to be conducted to understand
the effects of these medications on NAFLD.

Glucagon-like peptide-1 (GLP-1) analogs are another class of drug commonly used to
treat type 2 diabetes. These drugs, like GLP-1, stimulate pancreatic β cells to secrete insulin.
The GLP-1 receptor agonist liraglutide has shown some promise in decreasing hepatic
fat content in subjects with obesity and/or type 2 diabetes [149,150]. However, a recent
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meta-analysis concluded that the effects of liraglutide were nonsignificant in individuals
with NAFLD [151]. Another GLP-1 receptor agonist, semaglutide, has a similar mechanism
of action to that of liraglutide but with additional weight loss and reductions in glycated
hemoglobin (HbA1c) [152]. In a phase 2 clinical trial, semaglutide resolved NASH in up to
59% of study participants, but its effects on fibrosis outcomes were less clear [153]. There is
ongoing research to understand the mechanisms by which GLP-1 analogs may improve
steatosis and fibrosis.

5.3. Drugs Targeting Lipid Metabolism

Cholesterol is now recognized for its role in NAFLD pathogenesis. Many individuals
with NAFLD also have dyslipidemia and are prescribed statins to lower their cholesterol
levels. Additionally, statins may have anti-inflammatory functions beyond their primary
role in lowering cholesterol [154]. Thus, statins could be effective treatments for NAFLD.
In the ESSENTIAL trial, a combination of the lipid-lowering agents ezetimibe (a non-
statin) and low-dose rosuvastatin was shown to significantly reduce hepatic fat content in
participants with NAFLD [155]. However, longer-term studies will be needed to determine
whether lipid-lowering therapies can improve NASH and/or fibrosis.

Farnesoid X receptor (FXR) is a nuclear transcription factor that increases bile acid elim-
ination and reduces hepatic triglyceride levels, among various other metabolism-benefiting
functions [156]. Therefore, FXR agonists show promise as therapeutics for NAFLD. In
recent clinical trials, the FXR agonists MET409 [157], tropifexor [158], vonafexor [159],
and cilofexor [160] were shown to reduce hepatic fat content in subjects with NASH. In
an ongoing phase 3 clinical trial, the FXR agonist obeticholic acid improved fibrosis in
people with NASH and moderate to severe fibrosis [161]. Currently, a new drug application
for obeticholic acid is under review by the FDA for treatment of NASH with advanced
fibrosis. Common side effects of FXR agonists include itching and/or increased low-density
lipoprotein cholesterol levels.

Fibroblast growth factor 21 (FGF21) is another broad metabolic regulator that is
being considered as a treatment for NAFLD. In mice fed a high-fat diet, recombinant
murine FGF21 upregulates genes involved in fatty acid oxidation and downregulates genes
involved in lipogenesis, thus leading to a reduction in hepatic steatosis [162]. Multiple
clinical trials have shown that FGF21 analogs, including efruxifermin [163], LLF580 [164],
and pegozafermin [165], reduce hepatic fat content and lead to weight loss. Because these
FGF21 analogs have such a broad range of functions, long-term safety and efficacy studies
will be critical.

More recent studies are investigating thyroid hormone receptor-β (TR-β) agonists as
potential NASH treatments. Synthetic thyroid hormone, or thyroxine, has been shown
to increase lipid metabolism, leading to weight loss [166]. On the other hand, thyroxine
can also lead to heart failure and arrythmias [167]. By targeting the predominant liver
isoform (TR-β), hepatic lipid content can be reduced without adverse cardiac effects [168].
Several TR-β agonists have shown efficacy for NAFLD treatment in animal models [169].
In a phase 2 clinical trial, the TR-β agonist resmetirom was shown to reduce hepatic fat
in individuals with NASH [170]. Although promising, larger studies are still needed to
demonstrate the efficacy and safety of TR-β agonists.

5.4. Drugs Targeting Inflammation

Pentoxyfylline is an FDA-approved anti-inflammatory drug that blocks the production
of pro-inflammatory cytokines such as tumor necrosis factor α (TNFα) [171]. In MCD diet-
induced NASH mice, pentoxyfylline decreases TNFα mRNA expression and markers of
hepatic inflammation [172]. However, pentoxyfylline-treated mice have increased hepatic
steatosis [172]. Despite this observation, a meta-analysis concluded that pentoxyfylline
decreases steatosis, as well as fibrosis and liver inflammation [173]. Larger studies are
needed to confirm these effects.
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Vitamin E is a key antioxidant with anti-inflammatory functions [174]. Based on its
ability to suppress oxidative stress, vitamin E has also been considered as therapy for
NAFLD. Indeed, in mice on an MCD diet, vitamin E reduces hepatic steatosis and markers
of hepatic inflammation [175]. Additionally, the PIVENS trial showed improvement in
steatosis and inflammation in non-diabetic NASH participants treated with vitamin E
compared to placebo [176]. There have been some concerns about vitamin E safety in
the long term, owing to possible links to hemorrhagic stroke and prostate cancer [121].
Nonetheless, the AASLD guidelines advise that individuals with severe fibrosis and without
type 2 diabetes may consider taking a vitamin E supplement [121].

5.5. The Future of Preclinical Testing: Nonhuman Primates as Models of NAFLD

Many drug candidates never succeed in clinical trials because the drug’s effects in
mice and other model systems do not translate to humans. Thus, there is a need for model
systems that better reflect the human pathogenesis of NAFLD. Nonhuman primates have
the potential to more accurately predict how a drug will behave in human studies. NAFLD
has been shown to occur in various nonhuman primates spontaneously [177] or as a natural
result of aging [178]. However, in these animals, the disease can be accelerated or worsened
by feeding special diets. Recently, a new dietary model of NASH in cynomolgus monkeys
was developed by feeding a high-fat, high-fructose, high-cholesterol diet for 10 months [27].
In monkeys, this diet induces hepatic steatosis, inflammation, NASH, and fibrosis that is
strikingly similar to the human NAFLD pathogenesis at the transcriptional level [27]. In
this model system, the tripeptide DT-109 (Gly-Gly-Leu) attenuates NASH and fibrosis by
upregulating fatty acid degradation and downregulating inflammation [27]. An important
caveat in these studies is their use of only male animals, thereby limiting applicability
across the sexes.

6. Conclusions: Translation from Animals to Humans

The demand for animal models to study the pathogenesis of NAFLD is more vital now,
as the prevalence of NAFLD is increasing worldwide and therapeutic candidates need to be
identified and tested. Given the plethora of research that has been done on animal models
to understand the pathophysiology of NAFLD, we now have a better understanding of
the various insults that occur in the progression of disease. This has allowed for the imple-
mentation of specific guidelines for lifestyle modifications and potential pharmacotherapy.
Of all the animal models described here (Table 1), the high-fat/high-fructose diet model
has proven to be most like the human pathophysiology of disease. The hypothesized
mechanisms describing the causal role of fructose in the development of NAFLD include
direct up-regulation of de novo lipogenesis enzymes by fructose breakdown products in
hepatocytes and intestinal wall weakening, leading to increased uptake of endotoxins from
the gut to the liver and driving inflammation. However, most preclinical studies have used
male rodent models, making it is difficult to determine whether sexual dimorphism might
preclude applicability to females. Furthermore, these dietary changes alone are usually
insufficient for demonstrating severe disease. Although some models, such as fa/fa rats
or MCD diet-fed mice, show similar pathophysiology to humans, many of them lack a
key clinical feature of obesity that is seen in humans. The MUP-uPA transgenic mouse fed
a high-fat diet may be the best animal model of ER stress leading to NAFLD. However,
many of the studies discussed earlier were only completed once, leading to the question
of reproducibility. Therefore, animal models to date still have limitations that do not fully
recapitulate human disease.

Taken together, whereas animal models have provided crucial pathogenic insight
into the multiple insults contributing to NAFLD, they only provide a first step towards
identifying new therapies. The further development of non-human primate models and/or
more rigorous studies in humans will be needed to move the field forward. The most
representative animal models must also feature multiple pathogenic insults in order to fully
mimic human NAFLD and reveal new therapeutic strategies. In addition to the pathogenic
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insults described in this review, viral hepatitis may also trigger steatosis and/or accelerate
NAFLD progression, but the mechanisms are just beginning to be explored. In the future, a
multiple-step treatment program may be necessary to fully treat both the factors that lead
to MetS and the inflammatory and oxidative stress pathways that lead to NAFLD.
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