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Abstract: A reaction of acyl chlorides derived from 1,10-phenanthroline-2,9-dicarboxylic acids with
piperazine allows the preparation of the corresponding 24-membered macrocycles in good yield. The
structural and spectral properties of these new macrocyclic ligands were thoroughly investigated,
revealing promising coordination properties towards f-elements (Am, Eu). It was shown that the
prepared ligands can be used for selective extraction of Am(III) from alkaline–carbonate media in
presence of Eu(III) with an SFAm/Eu up to 40. Their extraction efficiency is higher than calixarene-type
extraction of the Am(III) and Eu(III) pair. Composition of macrocycle–metal complex with Eu(III)
was investigated by luminescence and UV-vis spectroscopy. The possibility of such ligands to form
complexes of L:Eu = 1:2 stoichiometry is revealed.

Keywords: phenanthroline; macrocycle; lanthanide; actinide; solvent extraction; DFT; NMR; XRD

1. Introduction

Macrocyclic compounds are a hot topic in many fields of chemistry and related sci-
ences [1–4]. In particular, macrocycles are promising ligands for applied radiochemistry
and radiopharmacy [5,6]. For example, crown esters are key compounds for the selec-
tive separation of strontium-90 and caesium-137 [7,8]. Calix[n]arenes are actively being
investigated as extractants for the isolation of An(III) and Cs(I) from alkaline solutions of
high-level nuclear waste (HLW), which is one of the problems of nuclear heritage in Russia
(Federal State Unitary Enterprise “Mayak Production Association”, Ozersk) and in the
USA (Hanford, Savannah River and Oak Ridge) [9–12]. Pillar[5]arenes [13] and modified
calix[4]arenes are being investigated to isolate alpha-emitting long-lived radionuclides
from spent nuclear fuel (SNF) reprocessing solutions [14,15].

Strategies for the effective design of macrocyclic compounds are constantly being im-
proved [16,17]. 1,10-Phenanthroline is one of the most commonly used nitrogen-containing
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building blocks for the construction of ligands for coordination and organometallic chem-
istry [18,19]. For example, new fluorescent chemosensors for various metal ions can be
developed based on this heterocyclic core [20–23]. A number of macrocycles contain-
ing a fragment of 1,10-phenanthroline have been described. For example, ligands of the
“Phen-O-Ar-” type (Figure 1) have been studied as selective complexing agents for copper
ions [24,25].
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Polyamine macrocycles “Phen-CH2-NH-” are known to behave as multifunctional
receptors for nucleotide anions [20,21,26–28]. Phenanthroline macrocycles containing acety-
lene fragments were described, as well as mixed heterocyclic systems in which either
pyrrole fragments are present or two phenanthroline rings are connected through het-
eroatoms [29]. Some of these macrocycles demonstrated valuable properties. For example,
macrocycles combining fragments of porphyrin and 1,10-phenanthroline are an efficient flu-
orescent sensor for Mg(II) ions [23]. Some phenanthroline macrocycles are efficient ligands,
having been used in catalytic systems [30] for azide-alkyne cycloaddition, as decarboxyla-
tion catalysts of 2-cyano-2-phenylpropanoic acid [31,32] and as DNA intercalators [33] to
inhibit the enzyme that controls the continuous growth of the tumor. Some examples of
phenanthroline-derived macrocycles are given in Figure 1.

So far, a wide range of compounds has been tested for the isolation of various HLW
components: carbomoylphosphinoxides and diglycolamides carrying “hard” oxygen atoms
as binding centers; bis-triazinyl-substituted heterocyclic compounds with “soft” nitrogen
atoms as binding centers and various mixed N,O-donor ligands [34–37].

Diamides of 1,10-phenanthroline-2,9-dicarboxylic acid have been found highly se-
lective extractants for the separation of actinides and lanthanides for the processing and
disposal of SNF [38]. We found in the literature only one example [39] of a macrocyclic 1,10-
phenanthroline-2,9-diamide 7 (Figure 1). This work is devoted to the study of the synthesis
of new macrocyclic 24-membered 1,10-phenanthroline-2,9-diamides, the investigation of
their structure and extraction properties toward Am(III)/Eu(III) pair.

2. Results and Discussion
2.1. Synthesis and Structure of Macrocyclic Ligands

The extraction properties of 1,10-phenanthroline-2,9-dicarboxylic acid diamides to-
ward f-elements can be customized by varying the structure of diamide fragments and the
modification of the phenanthroline core [40–48]. We demonstrated earlier valuable proper-
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ties of diamides prepared from cyclic amines [40–42]. For example, pyrrolidine-derived
ligand L1 (Scheme 1) demonstrated advanced properties in this row [41]. In this study,
piperazine was chosen as the starting amine to construct two first representatives of 24-
membered macrocyclic phenanthrolinediamides L2 and L3. These new macrocycles were
prepared in 43% and 40% yield, respectively (Scheme 1). Macrocycles L2 and L3 are white
powders decomposing without melting at temperatures above 400 ◦C. They are slightly
soluble in chloroform and methylene chloride, and markedly soluble in DMSO and DMF.
Measuring the solubility of L2 and L3 in acetonitrile, chloroform and 3-nitrobenzotrifluoride
(F-3), as well as evaluating their lipophilicity showed that L3 has a noticeable solubility in
F-3 and acceptable lipophilicity (Table 1) for performing the extraction tests (see Section 2.3).
Therefore, most attention in this study was focused on ligand L3. The structures of L2
and L3 were studied both in the solid state (IR spectroscopy and X-ray diffraction) and in
solutions (NMR spectroscopy and dynamic light scattering).
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Table 1. Solubility of macrocycles L2 and L3.

Code X
Solubility, mol·L−1

LogP **
CH3CN CHCl3 F-3 *

L2 H <1 × 10−5 ~1 × 10−4 ~7 × 10−4 −3.78 ± 1.65
L3 Cl ~1 × 10−4 ~2 × 10−3 ~3 × 10−3 −1.00 ± 1.66

* 3-Nitro-benzofluoride. ** The LogP values given in Table 1 were predicted using ACD/LogP software (ACD/Labs
Release: 10.0 Product Version: 10.01).

2.1.1. Spectral Analysis

In the IR spectra of L2 and L3, the CO-bands appear in the range from 1625 to
1640 cm−1 (see Figures S1 and S2 in ESI) and are split which suggests the existence of
different conformers of L2 and L3.

The 1H NMR spectrum of the macrocycle L3 in DMF at 25 ◦C (Figure 2), along with
the signals of the main substance (marked with blue asterisks), contain additional signals of
lower intensity (marked with red asterisks). With gradual heating of the sample, the broad-
ening of all spectrum signals occurs. At 70 ◦C, they merge and shift towards a stronger field.
The observed changes in the spectrum are completely reversible. This behavior indicates
that L3 in solution exists as an equilibrium mixture of conformers, the interconversions
of which proceed fairly quickly on the NMR time scale. This behavior of L3 and other
macrocycles of this type is quite expected. Their structures contain two conformationally
labile piperazine fragments, which can take chair and bath (boat) conformations, as well as
four fairly conformationally labile O=C-Ar bonds. In references [40,48], we have previously
observed conformational transitions at room temperature due to hindered rotation along
O=C-Ar bonds in solutions of 1,10-phenanthroline-2,9-dicarboxylic acid diamides of an
open structure. For more NMR spectra of macrocycles L2 and L3, see ESI (Figures S3 and
S4). HRMS and MALDI analyses further confirm the composition of macrocycles L2 and
L3 (see Figures S5–S7 in ESI).
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Figure 2. 1H NMR (400.1 MHz) spectra of L3 in DMF-d7 (a) after sample preparation, 25 ◦C; (b) at
70 ◦C; and (c) after cooling down to 25 ◦C.

The tendency of macrocycles L2 and L3 to self-aggregation will be discussed in
Section 2.1.3 [49–51].

2.1.2. Crystal Structures of L2 and L3 Solvates

The structure of macrocycles L2 and L3 was unambiguously confirmed by X-ray
analysis. Recrystallization of L2 from DMF gave single crystals of L2· as a solvate with
DMF, whereas recrystallization of L3 from chloroform and DMF gave crystals of L3·
solvated with CHCl3 and DMF, respectively. All solvate molecules were partially or
completely disordered. Crystallographic characteristics of these solvates and the results of
their structure determination are presented in Table S1 (see ESI). The molecular structures
of the studied compounds are presented in Figures 3 and 4.
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by SQUEEZE. Atoms marked with apostrophes are related to others by the C2 axis (−x, y, 3/2 − z).

In all structures, the bond dimensions are within the expected ranges [52]. In L2•xDMF
and L3•yDMF, the phenanthroline fragments are essentially planar, with dihedral angles
subtended by mean planes of pyridine rings being within the range from 0.5(3) to 1.46(9)◦,
whereas in L3•zCHCl3, one of these fragments (N1 . . . N2) is almost planar, but another
one (N1A...N2A) deviates from planarity, with dihedral angles formed by the mean planes
of pyridine rings of 2.4(2) and 10.6(2)◦, respectively. All macrocyclic molecules are bent,
the dihedral angles formed by the mean planes of two phenanthroline fragments being
85.74(4), 90.0(1) and 84.6(1)◦ for L2•xDMF, L3•zCHCl3 and L3•yDMF, respectively (see
Figure 4b). The amide oxygen atoms located at the greatest distance from each other form
the basal plane of macrocyclic molecules.

In all three structures, the piperazine rings adopt chair conformations, but they link
the phenanthroline fragments in a different manner. In L3•yDMF, the macrocyclic molecule
lies at the crystallographic two-fold axis, in L2•xDMF, the molecular geometry is close to
C2 symmetry, whereas in L3•zCHCl3, the molecular structure is close to Cs symmetry, with
the mirror pseudoplane passing through the centers of phenanthroline fragments. The
corresponding conformational transformation of macrocyclic molecule can be considered
as a result of a 180-degree turn of one piperazine ring around the N···N direction. It should
be noted that the L3 molecule adopting the Cs conformation has the largest bending angle.

The three-dimensional structures of the studied macrocyclic molecules in crystals are
stabilized due to the non-classic hydrogen bonds of C-H···O type and, in some cases, by
stacking interactions between the aromatic rings. In L2•xDMF, each molecule is linked
to six neighbors by hydrogen bonds (Figure S8, Table S2). In addition, the inversion-
related molecules (symmetry operations 2 − x, 2 − y, 1 − z and 1 − x, 1−y, 2 − z) are
joined by stacking interactions into chains along the [1 1 −1] direction (Figure S9). In
L3•zCHCl3, the molecules are joined by C-H···O contacts into chains along the b-axis
direction (Figure S10 and Table S2). Significant stacking interactions are absent from this
structure. In L3•yDMF, the molecules of L3 are connected by C-H···O contacts into layers
parallel to (0 1 0) (Figure S11). Furthermore, stacking interactions join the pairs of inversion-
related molecules (symmetry operation −x, 1 − y, 1 − z) into dimers (Figure S12). The
macrocyclic molecules are not tightly packed in the crystals, and all structures contain
voids filled by solvent molecules. In the triclinic (Z = 2) crystal structure of L2•xDMF, there
is only one void of 478 Å3 per unit cell centered at 0.0, 0.5, 0.5. In the monoclinic (Z = 4)
crystal structure of L3•zCHCl3, there are two symmetry-related voids per unit cell, each of
565.5 Å3 (Figure 5b).
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In the orthorhombic (Z = 4) crystal structure of L3•yDMF, there are four symmetry-
related voids per unit cell, each of 157.4 Å3. The voids are elongated along the b-axis
direction (Figure 6).
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2.1.3. Dynamic Light Scattering (DLS)

Previously, the formation of aggregates has repeatedly been shown for many macro-
cyclic systems [49–51,53,54]. DLS is a commonly used method to measure hydrodynamic
diameters of proteins, nanoparticles, micelles, and emulsions from several nanometers
up to several micrometers [55]. This method is based on the measurement of dynamic
fluctuations in light scattering intensity caused by the Brownian motion of particles. The
determination of the diffusion coefficients of particles can be obtained by the analysis of
the intensity fluctuations. From the diffusion coefficient measurements, one can determine
the Stokes hydrodynamic radius via the Stokes–Einstein equation [56].

The behavior of macrocycle L3 in solution was investigated in the different solvents: F-
3, chloroform, acetonitrile, DMSO. In F-3, the size of particles was studied more thoroughly
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to realize what form of the particles takes part in the solvent extraction process (see
Section 2.3). The distribution diagrams were obtained such as average results from three
scans of one solution. The ultrasonic treatment of the organic phases based on different
solvents leads to different results. We investigated the size distribution of L3 solutions via
DLS with all of the solvents used in our work. As can be seen from Figure 7, in all cases,
the macrocycle forms clusters (L3)n where the value of n can vary very widely.
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ethanol in F-3 diluent. PFBA = pentafluorobenzoic acid.

Apparently, the macrocycle in a solution has been performed with molecules’ aggre-
gates with a median size of 80 nm, while a single L3 molecule has a diameter of about
2 nm, according to XRD studies. It was found that the way the macrocycle was isolated
affects the clusters size. Depending on the solvents used (e.g., ethanol, chloroform) the size
and number of types of aggregates differed. The size of aggregates was decreased after
ultrasonic enforcing. It should be noted that ethanol media increase the polydispersity of
the samples. In this case, the DLS analysis becomes more complicated and decreases in
accuracy. The presence of pentafluorobenzoic acid (PFBA) strongly affects the aggregation
and size distribution of the (L3)n particles and should be considered in cases when PFBA
is used for solvent extraction as phase compatibilizer. In our extraction experiments (see
Section 2.3), the average size of L3-aggregated particles was in the range of 400 to 800 nm
(Figure 7). Thus, using the DLS method, we have shown that the studied macrocycle L3
is subject to self-assembly. In addition to the ultrasonic effect, the size of the associates is
strongly influenced by both the type of solvent and the presence of PFBA in the system.
The DLS cumulative fits the age given in Figures S13–S25 in ESI.

2.2. Complexation of L3 with Eu(III) Trinitrate in Acetonitrile Solutions

To study the coordination properties of new macrocyclic ligand L3, its complexation
with Eu(III) trinitrate in acetonitrile was investigated by luminescence and spectrophoto-
metric titration methods. L3 contains two coordination cavities; so, theoretically, it can bind
two metal cations. As a consequence, the experimental data were processed taking into
account the formation of metal/ligand stoichiometries of 1:1 and 2:1. The investigation of
Eu(III) fluorescence in the system “acetonitrile—L3—europium nitrate” was carried out
under excitation at 300 nm. At this wavelength, the Eu(III) nitrate solution in acetonitrile
is practically not excited, and the excitation of the complexes is due to the transfer of
excitation energy from the ligand to the europium cation. Thus, the fluorescence bands in
the range 570–720 nm (ESI, Figure S26) correspond exclusively to Eu(III)-ligand complexes.

The observed peaks in the fluorescence spectrum correspond to the following transi-
tions: 695 nm—5D0 → 7F4, 650 nm—5D0 → 7F3, 616 nm—5D0 → 7F2, 592 nm—5D0 → 7F1
and 579 nm (5D0 → 7F0) [57]. It is known [58] that by changing the type and number of
ligands in europium (III) complexes in aqueous solutions, including in titration, the line
corresponding to the 5D0 → 7F4 transition at 695 nm can change shape [59].
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Figure 8a shows the region of the fluorescence spectrum in the range 660–730 nm,
corresponding to this transition, with normalization from zero to one in this range:
Inorm = (I − Imin)/(Imax − Imin). As the nitrate complex in the absence of L3 does not excite
and does not luminesce, the band shape observed at the lowest concentration of europium
(the yellow-green line in Figure 8a) that is at a large excess of ligand corresponds to the
first stoichiometry—L3:Eu 1:1. As the relative concentration of europium increases, the
band shape changes, indicating the formation of a new complex, which corresponds to
stoichiometry L3:Eu 1:2 and is observed in excess of europium(III) (the dark blue line in
Figure 8a). The spectra at intermediate concentrations are a weighted sum of the spectra
observed at the highest and lowest concentration of europium, as there is a gradual shift in
the equilibrium ratio of the concentrations of these two forms.
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changes in the shape of the strip 5D0 → 7F4 occur in sync.  

In addition to the visible changes described above, there are also some that are less 
pronounced. In particular, the fluorescence band maximum corresponding to the transi-
tion 5D0 → 7F2 is shifted from 616 to 618 nm. The third region corresponds to the saturated 
complex concentration that does not change with Eu(III) addition due to the exhaustion 
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Figure 8. Changes in the stoichiometry of the europium complexes observed on the fluorescence
spectra. (a) Normalized fluorescence spectrum in the region of 670–720 nm upon 300 nm excitation;
(b) normalized dependence of line intensity in the region of 616 nm on concentration (blue circles).
The solid line corresponds to a linear interpolation of the initial part of the concentration dependence.

The dependence of the maximum intensity of the spectrum (line 616 nm) on the
concentration of europium, when normalized to a value at maximum concentration, is
shown in Figure 8b. The intensity dependence in Figure 8b shows that the concentration
range in question can be divided into three regions: (1) initial linear growth 0:1–0.5:1;
(2) growth at an increasing rate in the concentration range 0.5:1–1:1; and (3) plateau in the
range 1:1-2.5:1. This dependence can be explained as follows. In the first area, there is a
complex of presumably L3:Eu 1:1 stoichiometry; and the second region corresponds to
the formation of a second complex with a higher quantum yield of luminescence. As the
intensity curve in this area runs above the linear extrapolation of the intensity growth for
the first complex (the dotted line in Figure 8b).

Changes in the maximum intensity corresponding to the transition 5D0 → 7F2, and
changes in the shape of the strip 5D0 → 7F4 occur in sync.

In addition to the visible changes described above, there are also some that are less
pronounced. In particular, the fluorescence band maximum corresponding to the transition
5D0 → 7F2 is shifted from 616 to 618 nm. The third region corresponds to the saturated
complex concentration that does not change with Eu(III) addition due to the exhaustion
of ligand binding sites (Figure 8b). Thus, the dependences of the fluorescence intensity
and the changes in the shape of the spectra, observed when the ratio of the europium(III)
concentration to the ligand is in the range 0.03:1–2.5:1 changes, confirm the formation of
two complexes, L3•Eu(NO3)3 and L3•[Eu(NO3)3]2.
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We performed spectrophotometric titration of L3 with europium nitrate in acetonitrile
(Figure 9).
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CH3CN).

The absorption maximum for the complex L3•Eu(NO3)3 occurs at 291 nm. We pro-
cessed the titration data in the HypSpec2014 program and calculated the binding constants,
obtaining logβ values for L3•Eu(NO3)3 and L3•[Eu(NO3)3]2 equal to 5.61 ± 0.05 and
8.45 ± 0.06, respectively. The values of the binding constants for the 1:1 complexes of the
macrocyclic ligand L3 and linear diamide L1 are close [40]. A comparatively low complexa-
tion constant for the second tetradentate binding site of L3 (logK2 = logβ2:1 − logβ1:1 =
2.84) is probably caused by steric hindrance.

2.3. Solvent Extraction of Am(III) and Eu(III)

In the initial extraction tests, it was found that the third phase is formed when the
solution of L3 in F-3 is brought in contact with water. This is probably a consequence of
the amphiphilicity of the L3 and its propensity to self-aggregate. To prevent the formation
of the third phase we used organosoluble pentafluorobenzoic acid (PFBA) with a pKa of
1.48 [60]. The addition of anion-generating compounds is a common practice in the study
of solvent extraction [14,61,62].

First, we conducted a blank experiment in order to establish the extracting ability of
the PFBA itself. When using 0.5 mol/L PFBA solution in F-3, no extraction of Am(III) and
Eu (III) was observed in either the acidic nor in the alkaline medium.

Next, we performed extraction experiments from nitric acid solutions (3 mol/L) and
highly alkaline–carbonate media (pH = 11.0–13.8). Previously acyclic diamides of N-
heterocyclic acids have exhibited efficient and selective extraction of Am(III) from the nitric
acid. However, the distribution coefficient for the macrocycle L3 was only DAm ≈ 0.01
in nitric acid solutions. In addition, we observed a significant increase in the extraction
time. In a study of complexation, we found that the binding constants to europium nitrate
have close values for L1 and L3. So, this decrease in the distribution ratios may be due
to the lower concentration of L3 (0.002 mol/L in solution versus 0.01–0.05 mol/L for
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L1 [41]). Improving the solubility of this class of compounds will further enable this class
of compounds to be used for the extraction of americium from nitric acid solutions.

A practically important result was obtained in the extraction from alkaline–carbonate
media. We studied the effect of pH, PFBA and ligand concentrations in solution on the
extraction of Am(III) and Eu(III). The effective extraction of Am(III) was observed: the
distribution ratios were in the range 1–100. It should also be noted that high SFAm/Eu
selectivity factors in the range of 10–40 are observed under these conditions (Figure 10).
Based on the slope analysis data, one can see the formation of a 1:1 complex where both
OH− and PFBA act as counter-anions.

Thus, efficient extraction is observed only when extracting from alkaline–carbonate
solution and in the presence of PFBA. We compared the effectiveness of the extraction
system based on macrocycle L3 with the rare literature of examples based on calixarenes [63]
under identical conditions. To our delight, the proposed new system is not inferior in its
characteristics to the best representatives of this class, such as brominated tetrahydroxy-p-
tert-butylthiacalix[4]arene (Figure 11).

To elucidate the reasons for the peculiarities of the extraction behavior of L3, we
carried out DFT modelling of the structures and formation energies of its complexes with
lanthanum nitrate and hydroxonium ion (see ESI) (Equations (1) and (2)).

L + La(NO3)3 = LLa(NO3)3 (1)

L + (H3O)+ = [L(H3O)]+ (2)

The calculations showed that the most stable L3 conformer (major conformer) has a
highly symmetrical bowl structure in which both piperazine rings are in the chair confor-
mation. This geometry (Figure 12a) is very close to that observed in the crystal (Figure 4a).
Differences in bond lengths and bond angles obtained in the calculation and in the L3 X-ray
diffraction analysis do not exceed ±0.05Å and ±6◦, respectively.
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structure of one of its minor conformers.

To bind the La3+ cation, the macrocycle must acquire a geometry in which there is
at least one planar fragment with the syn orientation of both amide carbonyls, capable
of acting as the N,N′,O,O′-tetradentate ligand. The potential energy surface (PES) of L3,
as shown by our calculations, contains several local minima that meet this requirement.
Among them, the most stable is the conformer whose structure is shown in Figure 12b. It is
very likely that one of the minor conformers whose signals were observed in the 1H NMR
spectrum has such a structure (Figure 2).

The calculated structures of complex L3La(NO3)3 and complex [L3(H3O)]+ are shown
in Figure 13. The calculated ∆G of complex L3La(NO3)3 formation is −18.1 kcal/mol.
This is much less than the ∆G energies for the formation of other 1,10-phenanthroline-2,9-
dicarboxamides complexes with lanthanum nitrate, which vary in the range from −36 to
−44 kcal/mol [40–45]. The energy of L3 preorganization, which must be expended in order
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for the formation of complex L3La(NO3)3 to become possible, was found as high as 19.6
kcal/mol. It was calculated as a difference between the energy of a ligand in a complex
and the energy of the major conformer of the ligand.
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In an acid medium, the formation of a complex with a metal cation and the protona-
tion of L3 are two competing reactions. The formation of [L3(H3O)]+ proceeds without
the participation of oxygen atoms of the amide groups due to only nitrogen atoms of the
phenantroline core (Figure 13). It does not require considerable structural reorganization of
L3. The formation energy is much higher (−62.1 kcal/mol) than the energy of complexation
with La(NO3)3. Thus, the results of the calculations allow us to find reasons for the peculiar-
ities of the extraction behavior of L3. In an acidic medium, the energy of preorganization of
the rigid structure of the macrocycle L3 hinders the formation of the complex with a metal
cation. The energetic preference for the formation of the complex with the hydroxonium
ion makes this direction preferable. However, the switch to an alkaline medium and the
addition of hydrophobic C6F5COO− anions to the system facilitates the transfer of the
resulting complexes with L3 to the organic phase to make extraction efficient.

3. Materials and Methods
3.1. General Information

Chemical reagents such as Eu(NO3)3·6H2O and other inorganic/organic reagents
and solvents were of analytical grade. Deuterated solvents for NMR spectra registra-
tion were purchased from commercial sources and used without further purification.
3-Nitrobenzotrifluoride (“F-3”) analytical grade was purchased from P&M Invest (Moscow,
Russia) and was used as a solvent in the extraction experiments without further purifica-
tion. All syntheses were performed in an argon-inert atmosphere. Dichloromethane was
purified by distillation over calcium hydride prior to use. Triethylamine was purified by
simple distillation, previously held for 12 h over sodium hydroxide. NMR spectra were
recorded using standard 5 mm sample tubes on an Agilent 400-MR spectrometer with
operating frequencies of 400.1 MHz (1H) and 100.6 MHz (13C). IR spectra in the solid state
were recorded on a Nicolet iS5 FTIR spectrometer (Thermo Fisher Scientific, Waltham, MA,
USA) using an internal reflectance attachment with diamond optical element−attenuated
total reflection (ATR) with a 45◦ angle of incidence. When the resolution was 4 cm−1, the
number of scans was 32. Positive ion MALDI mass spectra were registered using a Bruker
AutoFlex II reflector time-of-flight device (N2 laser, 337 nm, 2.5 ns pulse). Trans-2-[3-(4-tert-
butylphenyl)-2-methyl-2-propenylidene]malononitrile (DCTB, ≥98%, Aldrich, St. Louis,
MO, USA) was used as a matrix, the matrix-to-analyte molar ratio in spotted probes being
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above 1000/1. HRMS ESI−mass spectra were recorded on the MicroTof Bruker Daltonics
and Orbitrap Elite instruments. The luminescence measurements were performed on a
Fluoromax-4 spectrofluorometer (Jobin Ivon). Excitation of the complexes was performed
at a wavelength of 300 nm, the spectral slit width was 0.1 nm. Registration of spectra was
carried out in the range of 370–720 nm, and the spectral slit registration width was 1 nm. A
BS-7 filter was used to cut off the second order of scattered excitation radiation. UV-Vis
absorption spectra were recorded at temperature 25.0 ± 0.1 ◦C in the wavelength range of
300–600 nm on a spectrophotometer (Shimadzu UV 1800) with a thermostatic attachment
(Shimadzu TCC-100) using quartz cuvettes with an optical path length of 10 mm.

A series of samples with varying europium concentration and fixed ligand concentra-
tion were prepared to evaluate the coordination changes in the europium–ligand system.
The ligand concentration was chosen to be 10−5 mol/L and the europium concentration
varied between 0.032 and 2.5 × 10−5 mol/L. The cuvette size (2 mm along the excitation
beam) was chosen to eliminate the effect of an internal filter.

Single crystals of L3•CHCl3 were obtained upon slow isothermal (25 ◦C) recrystalliza-
tion of L3 from chloroform. Single crystals L2•DMF and L3•DMF were obtained by heating
the suspension of 3 mg of corresponding macrocycle in 1 mL of DMF to complete the disso-
lution, followed by cooling the resulting solution to room temperature. X-ray diffraction
data for single crystals of L3•CHCl3 and L3•DMF were collected at 295 K with a Stadi Vari
diffractometer (Stoe, Darmstadt, Germany) using Cu Kα radiation (=1.54186 Å). The struc-
tures were determined using SHELXT [64] and refined with SHELXL [65] programs. All
non-hydrogen atoms were refined in anisotropic approximation, whereas hydrogen atoms
were positioned geometrically and refined isotropically using the riding model. Absorption
correction was performed using the multiscan algorithm [66]. The single-crystal X-ray
diffraction data for L2•DMF were collected on the ‘Belok/XSA’ beamline of the Kurchatov
Synchrotron Radiation Source (National Research Center ‘Kurchatov Institute’, Moscow,
Russian Federation) using a Rayonix SX165 CCD detector at λ = 0.75270 Å. A total of 720
images for two different orientations of the crystal were collected using an oscillation range
of 1.0◦ and ϕ scanning mode. The data were indexed and integrated using the utility iMOS-
FLM from the CCP4 program suite [67] and then scaled and corrected for absorption using
the Scala program [68]. In L2•DMF only one DMF molecule was localized, and disorder
was also observed for it in the 85:15 ratio. In L3•CHCl3, both solvate chloroform molecules
were disordered. In L3•DMF, only two of three DMF molecules were localized. In order to
account for X-ray scattering by disordered molecules, we used the SQUEEZE option of the
PLATON program [69].

CCDC 2247968 (for L2•2.75DMF), 2170206 (for L3•2CHCl3) and 2247971 (for L3•3DMF)
contain the supplementary crystallographic data for this paper.

Dynamic light scattering (DLS) was performed at 25 ◦C with C(L3) = 3.2× 10−3 mol·L−1

on a Malvern Instruments Zetasizer Nano-Z instrument (U.K.) for the characterization of the
size of the particles in the solution. The 4 mW He-Ne 633 nm laser was used to illuminate the
sample, the intensity of light scattered at an angle of 173◦ was measured by the avalanche pho-
todiode. Hydrodynamic diameters of the particles were estimated from the auto-correlation
function, using the Cumulants method. The size distribution curves were obtained through a
Non-Negative Least Square (NNLS) method [70] The holding time of the samples was similar
to the preparation conditions for the extraction experiment—1 h at room temperature. The
experiment was conducted three times for each system.

3.2. Synthesis of the Macrocycles

In a 1 L flask in the argon atmosphere, a dry CH2Cl2 (200 mL) solution of piperazine
(2 mmol, 172.3 mg) and triethylamine (5 mmol, 0.7 mL) in CH2Cl2 (200 mL) and a solution
of corresponding acyldichloride (2 mmol) in 200 mL of dry CH2Cl2 were simultaneously
added dropwise at room temperature under stirring. Then, the reaction mixture was stirred
at ambient temperature for 72 h. Next, the reaction mixture was concentrated in vacuo,
washed with water (3 × 100 mL), dried over sodium sulfate, and the solvent was distilled
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off. The residue was purified by flash chromatography using CH2Cl2/EtOH (3/1) mixture
as an eluent, yielding the desired macrocycle L2 or L3.

Macrocycle L2
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Yield 43% (274 mg), off-white solid, T.decomp. > 400 ◦C. Rf (CH2Cl2/ethanol 3:1) = 0.2.
1H NMR (400 MHz, CDCl3) δ, ppm: 8.39 (d, J = 8.3 Hz, 4H), 8.09 (d, J = 8.3 Hz, 4H), 7.88 (s,
4H), 4.41–4.23 (m, 4H), 4.19–4.04 (m, 8H), 3.93–3.77 (m, 4H); 1H NMR (400 MHz, DMSO-d6)
δ, ppm: 8.63 (d, J = 8.3 Hz, 4H), 8.08 (s, 4H), 7.96 (d, J = 8.3 Hz, 4H), 4.09–3.91 (m, 8H),
3.89–3.78 (m, 4H), 3.70–3.58 (m, 4H); 13C NMR (101 MHz, DMSO-d6) δ, ppm: 167.4 (C=O),
153.1 (Phen-C2,9), 143.3 (Phen-C1′ ,10′ ), 137.8 (Phen-C4,7), 128.8 (Phen-C4′ ,6′ ), 127.4 (Phen-
C5,6), 123.3 (Phen-C3,8), 46.9 (CH2), 41.5 (CH2); IR (cm−1) 3046, 3013, 2916 (C-H stretching
vibrations), 1633, 1622, 1617 (C=O), 1549, 1505, 1470, 1446, 1425 74 (C=C, C=N); HRMS
(ESI-TOF) (m/z) [M+H]+ calculated for C36H29N8O4 637.2306, found 637.2257.
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1H NMR (400 MHz, CDCl3) δ, ppm: 8.44 (s, 4H, Phen-CH5,6), 8.21 (s, 4H, Phen-CH3,8),
4.34–4.18 (m, 4H, CH2), 4.16–4.00 (m, 8H, CH2), 3.94–3.75 (m, 4H, CH2); 1H NMR (400 MHz,
DMSO-d6) δ, ppm: 8.43 (s, 4H), 8.22 (s, 4H), 4.11–3.85 (m, 8H), 3.86–3.70 (m, 4H), 3.69–3.54
(m, 4H); 13C NMR (101 MHz, DMSO-d6) δ, ppm: 166.5 (C=O), 154.3(Phen-C2,9), 144.8
(Phen-C1′ ,10′ ), 143.4 (Phen-C4,7), 127.0 (Phen-C4′ ,6′ ), 124.6 (Phen-C3,8), 124.5 (Phen-C5,6),
55.3 (CH2), 47.2 (CH2); IR (cm−1) 3047, 2977, 2926 (C-H stretching vibrations), 1641, 1635
(C=O), 1573, 1533, 1463, 1447 (C=C, C=N); HRMS (ESI-TOF) (m/z) [M+NH4]+ calculated
for C36H28Cl4N9O4 792.0984, found 792.0979; MALDI (m/z) [M+H2O]- calculated for
C36H25Cl4N8O5 791.0678, found 791.064.

3.3. Solvent Extraction Experiments

The experiment conditions were as follows: 1—organic phase: L3/PFBA/F3, aqueous
phase: Am/Eu spike/pH 1 (0.1M HNO3); 2—organic phase: L3/PFBA/F3, aqueous
phase: Am/Eu spike/pH 2 (0.01M HNO3). The extraction experiment was provided in
the Eppendorf test tube, the volume of organic and aqueous phase was 500 µL. After
shaking with the vortex shaker for 5 min at room temperature, the phases were separated
by centrifugation at 14,000 rpm for 30 s. A total of 350 µL of both phases was taken for
radionuclides determination. The extraction regularity was studied with trace amounts
of 241Am and 152Eu. The amounts of the radionuclides in both phases were determined
radiometrically from the γ-radiation of the corresponding radionuclide. Content of 241Am
(Eγ = 59.5 keV) and 152Eu (Eγ = 121.8 keV) was determined by gamma spectrometry using
a high-pure germanium detector GR 3818 (Canberra Ind.)
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The sample measurement time was chosen so that the uncertainty of radiometric measure-
ments was within 10%. The distribution ratios were calculated by the formula D = Aorg/Aaq,
where A is the specific activity of the radionuclide in the organic or aqueous phase.

3.4. DFT Calculations

First-principles DFT (GGA PBE), scalar-relativistic theory [71] and a relativistic full-
electron basis set of TZ quality were used in the calculations. The stationary points were
identified by the analysis of Hessians. The statistical formulae for a rigid rotator and
harmonic oscillator were used to calculate thermodynamic functions (Gibbs energy, G) at
298.15 K. The atomic charges were calculated according to Hirshfeld [72]. All calculations
were performed using the PRIRODA-19 program developed by D.N. Laikov [73,74].

4. Conclusions

A new class of macrocyclic compounds has been obtained, the structural features
of it most likely representing L3 in the solid phase have been investigated by the X-ray
diffraction method. Using the DLS method, we have shown that the studied macrocycle
L3 is subject to self-assembly. In addition to the ultrasonic effect, the size of the asso-
ciates is strongly influenced by both the type of solvent and the presence of PFBA in the
system. Luminescent titration of the L3 with europium nitrate in acetonitrile was car-
ried out. The formation of EuL3(NO3)3 and Eu2L3(NO3)6 complexes was observed. By
spectrophotometric titration, the complexation constants were determined: it was found
that the first complexation constant coincides with the constant for the acyclic analogue
L1. The conditions for effective Am(III) and Eu(III) extraction by the macrocycle L3 from
alkaline–carbonate media were found. The separation factor for Am(III)/Eu(III) was up
to 40. The efficiency and selectivity of L3 toward Am(III)/Eu(III) separation exceeded
the efficiency and selectivity of other previously described macrocycles—calixarenes. The
experimental data are in perfect agreement with results of DFT calculation, predicting that
in acidic media, the most favorable process is the protonation of the macrocyclic ligand but
not the formation of complex with a metal cation. This compound can be seen as a starting
platform for further development of extraction systems for the extraction of f -elements
from alkaline–carbonate solutions.
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