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Abstract: Fenofibrate (FBR), an oral medication used to treat dyslipidemia, is a ligand of the perox‑
isome proliferator‑activated receptor α (PPARα), a nuclear receptor that regulates the expression of
metabolic genes able to control lipid metabolism and food intake. PPARα natural ligands include
fatty acids (FA) and FA derivatives such as palmitoylethanolamide (PEA) and oleoylethanolamide
(OEA), known to have anti‑inflammatory and anorexigenic activities, respectively. We investigated
changes in the FA profile and FA derivatives by HPLC and LC‑MS in male C57BL/6J mice fed a stan‑
dard diet with or without 0.2% fenofibrate (0.2% FBR) for 21 days. Induction of PPARα by 0.2% FBR
reduced weight gain, food intake, feed efficiency, and liver lipids and induced a profound change in
FAmetabolismmediated by parallel enhancedmitochondrial and peroxisomal β‑oxidation. The for‑
mer effects led to a steep reduction of essential FA, particularly 18:3n3, with a consequent decrease of
the n3‑highly unsaturated fatty acids (HUFA) score; the latter effect led to an increase of 16:1n7 and
18:1n9, suggesting enhanced hepatic de novo lipogenesis with increased levels of hepatic PEA and
OEA, which may activate a positive feedback and further sustain reductions of body weight, hepatic
lipids and feed efficiency.

Keywords: fenofibrate; peroxisome proliferator‑activated receptor α (PPARα); lipid metabolism;
n3‑highly unsaturated fatty acid (HUFA) score; endocannabinoids; N‑acylethanolamines

1. Introduction
Fenofibrate (FBR) is a synthetic amphipathic carboxylic acid of the fibrate class, widely

used to treat dyslipidemia [1–3]. Its biological target is the peroxisome proliferator‑
activated receptor α (PPARα), a nuclear receptor that acts as a transcription factor to regu‑
late the expression of a plethora of target genes encoding proteins involved in lipid, glucose
and amino acid metabolism [4,5]. PPARα maintains lipid homeostasis; it increases lipol‑
ysis and activates lipoprotein lipase [4–6] and regulates genes involved in fatty acid (FA)
uptake andmetabolism,mitochondrial and peroxisomal FA oxidation, ketogenesis, triglyc‑
eride turnover and gluconeogenesis [5,7]. These effects lead to reduced body weight gain,
adiposity, food intake and feed efficiency, as observed in obese rodents treatedwith dietary
FBR [8]. Moreover, PPARα has been shown to possess anti‑inflammatory activity [5,9,10].

PPARα is also a sensing receptor for a variety of exogenous nutritional compounds
and endogenousmetabolites derived from lipidmetabolism, such as FA [6] and their endo‑
cannabinoid (eCB) derivatives, i.e., 2‑arachidonoyl–glycerol (2‑AG) and arachidono
ylethanolamide (AEA), and eCB‑like compounds such as palmitoylethanolamide (PEA)
and oleoylethanolamide (OEA), known to have anti‑inflammatory and anorexigenic ac‑
tivity, respectively [11–14]. PPARα natural ligands include dietary n3‑polyunsaturated
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fatty acids (PUFA), such as docosahexaenoic acid (22:6n3, DHA) and eicosapentaenoic acid
(20:5n3, EPA) [15], and conjugated linoleic acid (CD18:2, CLA), an FA with a conjugated
diene structure naturally present in dairy products [16,17]. In a previous interventional
study in humans, we observed that an increase in PPARα gene expression following CLA‑
enriched cheese intake might contribute to the modulation of FA metabolism [16].

Oosterveer et al. showed that treatment of C57Bl/6 mice with FBR increased the ex‑
pression of gene‑encoding enzymes involved in FA synthesis, elongation and desaturation
and induced hepatic de novo lipogenesis (DNL) and chain elongation for palmitic (16:0,
PA), stearic (18:0, SA) and oleic acid (18:1n9, OA) synthesis [18]. They found that lipogenic
induction was supported by sterol regulatory element‑binding protein 1c (SREBP‑1c) but
not by carbohydrate response element‑binding protein (ChREBP). Although PPAR and
SREBP‑1c act in opposite ways in physiological conditions, it has been shown that the
presence of PPARα is necessary for the proper functioning of Srebp‑1c [18,19], which could
sustain the induction of stearoyl‑coenzymeA desaturase‑1 (Scd1) upon FBR treatment [18].
FBR treatment simultaneously induced lipogenesis and both peroxisomal and mitochon‑
drial FA β‑oxidation, processes that generate acetyl‑CoA and NADH, necessary to sustain
DNL [18].

Based on the recognized ability of FBR to activate PPARα and thus to regulate the ex‑
pression of a range of metabolic genes able to control lipidmetabolism and food intake, we
investigated whether changes in tissue FA metabolism triggered by chronic pharmacolog‑
ical activation of PPARα are able to modulate the biosynthesis of their eCB and eCB‑like
derivatives, which strictly depend on the availability of their FA precursor [20,21] and are
involved in the control of food intake and energy expenditure. Furthermore, among eCB‑
like molecules, PEA and OEA are well‑known PPARα ligands [22,23].

2. Results
2.1. Body Weight, Food Intake and Growth

Mice fed a 0.2% fenofibrate diet (0.2% FBR) for 21 days showed an overall reduction
of food intake with respect to mice fed the control diet (Ctrl) (Figure 1a). The weight of
0.2% FBR mice was increasingly reduced from day 7 until day 21, and accordingly their
feed efficiency was lower with respect to the control (Figure 1b,c).

2.2. Tissue Fatty Acid Profile and eCB‑Like Mediators
The n3‑highly unsaturated fatty acids (HUFA) score was reduced in the liver of 0.2%

FBR‑treated mice with respect to the control mice, while no changes were observed in
visceral adipose tissue (VAT) (Figure 2a,b).

Hepatic total lipids were lower in 0.2% FBRmice with respect to Ctrl, and this pattern
was also observed for n3‑ and n6‑PUFA (Table 1). Arachidonic acid (20:4n6, ARA) and
20:3n6 increased significantly despite the strong reduction of their precursor linoleic acid
(18:2n6, LA) and its∆6 desaturation productγ‑linolenic acid (18:3n6, GLA).α‑linolenic acid
(18:3n3, ALA) was strongly diminished, as was 22:6n3, while 22:5n3 was increased. On the
other hand, mead acid (20:3n9, MA) and its precursor 18:1n9 were increased in 0.2% FBR
mice, as was the 20:3n9/18:1n9 ratio (Table 1).

Acute treatment with the PPARα natural ligand CLA to Ctrl mice (Ctrl‑CLA) or 0.2%
FBR mice (FBR‑CLA) resulted in its increased levels in VAT of 0.2% FBR‑CLA mice com‑
pared toCtrl‑CLAmice (Figure 3d), while its peroxisomalβ‑oxidation product, conjugated
hexadecadienoic acid (CD16:2), was increased in both liver and VAT, and the CD16:2/CLA
ratio was significantly increased in liver (Figure 3b,e,c).
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Figure 1. (a) Mean food intake (g/day); (b) time course of mice weight in g of mice fed a control diet 
(Ctrl, grey) or a 0.2% FBR-supplemented diet (0.2% FBR, green); (c) feed efficiency calculated as 
percentage of weight gain with respect to time 0 (t0) divided by food intake expressed as percentage 
of mice fed the control diet. Data are presented as mean ± SEM of n = 10. * p ≤ 0.05; ** p ≤ 0.01; *** p 
≤ 0.001. 
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Figure 1. (a) Mean food intake (g/day); (b) time course of mice weight in g of mice fed a control
diet (Ctrl, grey) or a 0.2% FBR‑supplemented diet (0.2% FBR, green); (c) feed efficiency calculated as
percentage of weight gain with respect to time 0 (t0) divided by food intake expressed as percentage
of mice fed the control diet. Data are presented as mean ± SEM of n = 10. * p ≤ 0.05; ** p ≤ 0.01;
*** p ≤ 0.001.
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expressed as mean ± SEM of n = 5. ** p ≤ 0.01; ns = not significant. 
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Table 1. Main fatty acids (FA) in liver of mice fed a control diet (Ctrl) or a 0.2% fenofibrate-supple-
mented diet (0.2% FBR). Data are expressed as nmoles/mg of lipids and represent the mean ± SEM 
of n = 5. * p ≤ 0.05; ** p ≤ 0.01; ns = not significant. 
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18:1n9 818.39 ± 49.72 1248.86 ± 21.48 ** 
20:3n9 3.63 ± 0.09 19.99 ± 0.80 ** 
18:3n3 39.19 ± 3.72 5.39 ± 0.33 ** 
20:5n3 6.46 ± 0.46 6.24 ± 0.75 ns 
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Figure 2. n3‑highly unsaturated fatty acid (HUFA) scores of mice fed a control diet (Ctrl) or a 0.2%
fenofibrate‑supplemented diet (0.2% FBR) in (a) liver; (b) visceral adipose tissue (VAT). Data are
expressed as mean ± SEM of n = 5. ** p ≤ 0.01; ns = not significant.

Table 1. Main fatty acids (FA) in liver of mice fed a control diet (Ctrl) or a 0.2% fenofibrate‑
supplemented diet (0.2% FBR). Data are expressed as nmoles/mg of lipids and represent the mean
± SEM of n = 5. * p ≤ 0.05; ** p ≤ 0.01; ns = not significant.

Ctrl 0.2% FBR

Mean SEM Mean SEM

12:0 3.96 ± 0.42 0.75 ± 0.03 **
14:0 28.73 ± 2.67 10.87 ± 0.46 **
16:0 1368.80 ± 117.21 1117.72 ± 15.18 ns
18:0 353.80 ± 45.13 249.95 ± 10.58 ns
20:0 5.94 ± 0.96 1.79 ± 0.34 *
16:1n7 108.82 ± 12.44 159.18 ± 9.57 *
18:1n9 818.39 ± 49.72 1248.86 ± 21.48 **
20:3n9 3.63 ± 0.09 19.99 ± 0.80 **
18:3n3 39.19 ± 3.72 5.39 ± 0.33 **
20:5n3 6.46 ± 0.46 6.24 ± 0.75 ns
22:5n3 7.49 ± 1.59 14.06 ± 1.65 *
22:6n3 191.61 ± 11.24 142.41 ± 11.06 *
18:2n6 1136.45 ± 42.77 568.52 ± 12.42 **
18:3n6 40.39 ± 3.08 13.04 ± 0.60 **
20:2n6 20.33 ± 1.52 18.78 ± 2.50 ns
20:3n6 25.63 ± 1.00 187.26 ± 3.69 **
20:4n6 357.35 ± 25.03 445.65 ± 21.28 *
22:4n6 11.39 ± 0.58 12.74 ± 0.27 ns
22:5n6 15.05 ± 1.09 11.58 ± 0.84 ns
SFA 1 1778.71 ± 160.81 1392.31 ± 23.85 *
MUFA 1 927.21 ± 60.42 1408.03 ± 21.77 **
n3‑PUFA 1 244.76 ± 11.41 168.10 ± 9.47 **
n6‑PUFA 1 1606.59 ± 61.37 1257.58 ± 35.19 **
n3/n6 PUFA 1 0.152 ± 0.002 0.133 ± 0.005 *
16:1n7/16:0 0.080 ± 0.008 0.143 ± 0.010 **
18:1n9/18:0 2.492 ± 0.406 5.032 ± 0.233 **
20:3n9/18:1n9 0.005 ± 0.000 0.016 ± 0.001 **
mg lipids/g tissue 61.84 ± 6.44 45.52 ± 1.25 **

1 saturated FA (SFA), monounsaturated FA (MUFA), polyunsaturated FA (PUFA).
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Figure 3. Hepatic levels of (a) CLA (CD18:2), (b) CD16:2 and (c) CD16:2/CLA ratio; visceral adipose
tissue (VAT) levels of (d) CLA, (e) CD16:2 and (f) CD16:2/CLA ratio of mice fed a control diet (Ctrl‑
CLA) or a 0.2% fenofibrate‑supplemented diet (0.2% FBR‑CLA) treated with a single dose of CLA
(90 µg/10 g of body weight by oral gavage). Data are expressed as nmoles/mg of lipids and represent
the mean ± SEM of n = 5. * p ≤ 0.05, ** p ≤ 0.01; ns = not significant.

As shown in Table 1, hepatic 12:0, 14:0 and total saturated FA (SFA) were reduced in
0.2% FBR mice with respect to Ctrl mice, while no changes were found for 16:0 and 18:0.
In 0.2% FBR mice, palmitoleic acid (16:1n7, POA), the desaturation product of 16:0, was
increased, as was total MUFA; accordingly, there were increased values of the 16:1/16:0
and 18:1/18:0 ratios, considered an expression of ∆9 desaturase activity.

In VAT, levels of 16:1n7, 18:3n3, 18:2n6, and total n3‑ and n6‑PUFA showed the same
significant trend as found in liver; no changes were observed for the other FA (Table 2).

Table 2. Main fatty acids (FA) in visceral adipose tissue (VAT) of mice fed a control diet (Ctrl) or
a 0.2% fenofibrate‑supplemented diet (0.2% FBR). Data are expressed as nmoles/mg of lipids and
represent the mean ± SEM of n = 5. ** p ≤ 0.01; ns = not significant.

Ctrl 0.2% FBR

Mean SEM Mean SEM

16:1n7 133.49 ± 8.40 305.95 ± 30.32 **
18:1n9 1155.96 ± 29.38 1163.60 ± 45.49 ns
18:3n3 42.34 ± 5.66 25.47 ± 1.77 **
22:6n3 4.64 ± 1.25 5.87 ± 1.83 ns
18:2n6 1055.44 ± 33.16 640.98 ± 30.62 **
18:3n6 5.04 ± 0.74 4.83 ± 0.81 ns
20:3n6 16.09 ± 3.38 12.97 ± 1.74 ns
20:4n6 18.63 ± 4.97 16.08 ± 1.93 ns
MUFA 1 1289.45 ± 30.22 1469.55 ± 69.17 ns
n3‑PUFA 1 46.97 ± 5.88 30.16 ± 2.57 **
n6‑PUFA 1 1095.20 ± 36.79 673.89 ± 31.22 **
n3/n6 PUFA 1 0.043 ± 0.006 0.045 ± 0.004 ns
mg lipids/g tissue 477.49 ± 53.25 362.70 ± 60.37 ns

1 monounsaturated FA (MUFA), polyunsaturated FA (PUFA).
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The analysis of eCB and eCB‑like mediators showed that 0.2% FBR treatment strongly
increasedOEA, PEA, 2‑AG, and decreasedAEA levels in liver (Figure 4). In contrast, while
AEA was increased in VAT, no other changes were found (Figure 5).
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Figure 4. Hepatic levels of the endocannabinoids (eCB), arachidonoylethanolamide (AEA) and
2‑arachidonoylglycerol (2‑AG), and the eCB‑like molecules, palmitoylethanolamide (PEA) and
oleoylethanolamide (OEA), in mice fed a control diet (Ctrl) or a 0.2% fenofibrate‑supplemented diet
(0.2% FBR). Data are expressed as nmoles/mg of lipids and represent the mean ± SEM of n = 5.
* p ≤ 0.05; ** p ≤ 0.01.
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Figure 5. Visceral adipose tissue (VAT) levels of the endocannabinoids (eCB), arachi‑
donoylethanolamide (AEA) and 2‑arachidonoylglycerol (2‑AG), and the eCB‑like molecules, palmi‑
toylethanolamide (PEA) and oleoylethanolamide (OEA), in mice fed a control diet (Ctrl) or a 0.2%
fenofibrate‑supplemented diet (0.2% FBR). Data are expressed as nmoles/mg of lipids and represent
the mean ± SEM of n = 5. * p ≤ 0.05; ns = not significant.

3. Discussion
PPARs represent important therapeutic targets for metabolic disorders. PPARα acti‑

vation by FBR, inducing high rates of mitochondrial and peroxisomal β‑oxidation and en‑
hanced lipoproteinlipase activity [24], might decrease the plasma concentrations of
triacylglycerol‑rich lipoproteins, with a consequent hypotriglyceridemic effect [25,26]. In
agreement with other studies showing reduced food intake and body weight following
FBR activation of PPARα [27], we observed that chronic (21 days) dietary treatment with
0.2% FBR was able to reduce food intake by 10.5% in mice. Accordingly, body weight was
reduced by 9% from day 7, with a progressive, more substantial decrease of up to 19% on
day 19.

Reduced weight gain rather than food intake was the main factor responsible for re‑
duced feed efficiency induced by 0.2% FBR, which may increase energy expenditure [28].
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In agreement with this, we also observed a reduction of liver lipids, probably due to en‑
hanced β‑oxidation.

Increased hepatic FA oxidation may strongly influence body weight, as observed in
mPPARα‑deficient mice, which presented dysfunctional expression of the genes required
for FAmetabolism in mitochondria and peroxisomes [29,30]. Indeed, we observed in liver,
and to some extent in VAT, a strong 7‑fold reduction of 18:3n3 and a 2‑fold reduction of
18:2n6, precursors of the n3‑ and n6‑PUFA families, respectively. This resulted in an im‑
balance in the n3/n6 PUFA ratio and a relative reduction of the n3‑HUFA score in liver of
0.2% FBRmice. An important consequence of the strong 18:3n3 β‑oxidation was the reduc‑
tion of 22:6n3, albeit less pronounced than expected, probably due to the PPARα‑induced
enzymes involved in its biosynthesis from 18:3n3, as previously shown [14,18,31].

Our data confirm that the massive liver FA β‑oxidation induced by the pharmaco‑
logical activation of PPARα results in a tissue deficiency of essential FA (EFA). This was
shown by the increase of 20:3n9, which particularly affects n3‑PUFA, since it has been
demonstrated that 18:3n3 is the fatty acid preferentially β‑oxidized in mitochondria [32].
Therefore, pharmacological activation of PPARα should be co‑adjuvated with dietary sup‑
plementation of n3‑PUFA. On the other hand, by feeding obese rats with CLA, a nat‑
ural PPARα ligand, we detected an increase in 22:6n3 biosynthesis and thus of the n3‑
HUFA score in liver [33,34]. Furthermore, in mildly hypercholesterolemic subjects [35]
and healthy adults [16], we found that dietary CLA‑ and 18:3n3‑enriched cheese improved
the n3‑HUFA score in plasma [16]. It is noteworthy that in the study with healthy adults,
the higher plasma n3‑HUFA score was associated with increased PPARα gene expression
in leukocytes [16].

These contrasting results might be explained by the pharmacological treatment that
activates PPARα, possibly inducing mitochondrial β‑oxidation that is stronger than the ac‑
tivation of the enzymatic PUFA pathway and peroxisomal β‑oxidation that favors 22:6n3
biosynthesis [31], which could instead be sustained by aphysiological nutritional treatment.

The increase of 16:1n7 and 18:1n9 by 0.2% FBR treatment suggests a rise in DNL in the
liver [18,36]. Indeed, it has been proposed that enhanced peroxisomal β‑oxidation by 0.2%
FBR induces DNL [18]. To evaluate whether peroxisomal β‑oxidation was induced in our
experimental conditions, we treatedmice chronically fed a dietwith 0.2% FBRwith a single
dose of CD18:2 (CLA), which has been shown to be promptly β‑oxidized in peroxisomes
to CD16:2 [37]. We demonstrated that CD16:2 and the ratio CD16:2/CLA were increased
2‑fold in liver, suggesting a strong induction of peroxisomal β‑oxidation by FBR in the
liver (Scheme 1). Interestingly, in VAT, CLA incorporation was higher in FBR‑treatedmice,
confirming the enhanced lipoprotein lipase activity induced by FBR through activation of
PPARα [38].

Several reports have highlighted the ability of eCB‑like molecules to bind PPARα,
whose activation controls the transcription of enzymes involved in FA metabolism, e.g.,
elongase and SCD1, and in the metabolism of eCB‑like molecules [39,40]; moreover, FBR
has been identified as a cannabinoid receptor ligand (CB2) and negative allosteric mod‑
ulator (CB1) [41]. This led us to investigate whether changes in FA metabolism induced
by the PPARα agonist FBR were able to influence the biosynthesis of eCB‑like lipid me‑
diators [42]. In addition, we previously showed that in rodent brain slices containing the
midbrain, incubated for 1 h either with the synthetic PPARα agonist WY14643 (3 µM) [40]
or CLA (100 µM) [43], there was an increase of PEA and OEA levels, which we speculated
may further sustain PPARα activity. In the present study we confirmed that PPARα acti‑
vation in the liver was able to increase the levels of the N‑acylethanolamines (NAE) PEA
and OEA (Scheme 1). Since it has been shown that the biosynthesis of NAE may correlate
with the tissue levels of their FA precursors [21], we hypothesize that the enhanced PEA
and OEA biosynthesis may derive from a higher availability of their precursors, proba‑
bly produced by enhanced DNL (Scheme 1). Thus, reduced hepatic AEA levels in 0.2%
FBR‑treated mice might be the result of competition in the common biosynthesis pathway
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with PEA and OEA. Such competition does not occur in VAT in which AEA was found to
be increased.

2‑AG is an eCB and the most abundant of the 2‑monoacylglycerols, mirroring the
relatively high amounts of 20:4n6 esterified to the sn‑2 position of phospholipids from
which it derives [44]. Therefore, the dietary FA composition might modulate FA esterified
on phospholipids and thus the tissue concentrations of eCB and eCB‑like molecules [45].
It has been demonstrated in animal models [46–48] and in humans [49] that changes in the
n3/n6 PUFA ratio in tissues modulate eCB biosynthesis. Thus, our findings of increased
2‑AG in liver and AEA in visceral adipose tissue in 0.2% FBR mice may be explained by
the strong reduction of n3‑PUFA and of the hepatic n3‑HUFA score (Scheme 1).

Changes in eCB and NAE have been described in liver and adipose tissue in the pres‑
ence of altered lipid and glucose metabolism and inflammation [50–52]. An increase in
the eCB system tone in peripheral tissues has been shown to inhibit FA oxidation, result‑
ing in a positive energy balance and the development of obesity in mice and humans [53].
Moreover, OEA can decrease hepatic lipid content and serum cholesterol and triglyceride
levels through PPARα activation [54]. Therefore, the reduced AEA level and increased
OEA and PEA levels in FBR mice found in the present study may support the decreased
body weight, reduced hepatic lipids, feed efficiency and inflammation [11,55–57].

2‑AG, similarly to AEA, can be implicated in metabolic disorders as its plasma lev‑
els positively correlate with decreased high‑density lipoprotein cholesterol and increased
triacylglycerol levels and insulin resistance in human studies [58,59]. Moreover, the high
2‑AG levelswe found in liver of 0.2% FBRmice, being in contrastwith changes related to re‑
duced bodyweight, led us to hypothesize an anti‑inflammatory role of thismoleculewhich,
despite contrasting results, has been shown to exert anti‑inflammatory activity following
activation of CB2 in models of acute inflammation [60]. An anti‑inflammatory activity of
2‑AG could also sustain reduced systemic inflammation following PPARα activation by
FBR, as observed in subjects with metabolic syndrome [61].

We conclude that PPARα activation by FBR, by deeply modifying FA metabolism, is
able to modulate the biosynthesis of PEA, OEA and the eCB AEA and 2‑AG. Since it has
been shown that the biosynthesis of these lipid mediators may be modulated by dietary
FA, particularly n3‑PUFA [49], future studies should evaluate whether n3‑HUFA supple‑
mentation can further modulate the biosynthesis of eCB and eCB‑like molecules, restoring
their tissue levels.

2‑arachidonoyl–glycerol (2‑AG), arachidonoylethanolamide (AEA), conjugated linoleic
acid (CD18:2, CLA), de novo lipogenesis (DNL), elongase 6 (ELOVL 6), essential FA (EFA),
fatty acid (FA), fenofibrate (FBR), n3‑highly unsaturated fatty acids (HUFA) score,
oleoylethanolamide (OEA), peroxisome proliferator‑activated receptor (PPAR),
palmitoylethanolamide (PEA).
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Scheme 1. In liver, strong PPARα activation by FBR enhances mitochondrial β‑oxidation, particu‑
larly of 18:3n3 and to a minor extent of 18:2n6, both preferentially β‑oxidized in mitochondria [32];
this leads to a steep reduction of EFA and a decreased n3‑HUFA score, which may explain the in‑
crease of 2‑AG [46,49]. A parallel induction of peroxisomal β‑oxidation, confirmed by the elevated
formation of CD16:2, the partial peroxisomal β‑oxidation product of CD18:2 (CLA) [37], increases
acetyl‑CoA availability for DNL [18,62,63] and thus the synthesis of 16:0, 16:1n7 and 18:1n9 (its de‑
saturation product by ∆9 desaturase) and further elongation by the PPAR α‑induced ELOVL 6 [64].
A rise in hepatic DNL may sustain an increase of hepatic biosynthesis of PEA and OEA, derived
from 16:0 and 18:1n9, respectively, known ligands of PPARα and therefore able to further sustain its
activation. Reduced hepatic AEA levels in 0.2% FBR‑treated mice might be the result of competition
in the common biosynthesis pathway with PEA and OEA.

4. Material and Methods
4.1. Animals and Diets

Male C57BL/6J mice (Harlan, San Pietro al Natisone, Italy) (n = 20; 40 postnatal days)
were used. Before the experiments, the mice were housed under a 12 h light–dark cycle
(7:00 to 19:00 light), in conditions of constant room temperature (22 ◦C) andhumidity (60%),
with food and water ad libitum. After 1 week of acclimation, animals were divided into
two experimental groups according to different dietary regimens: (i) a standard rodent
diet (Ctrl group, n = 10, 2016 Teklad Global 16% Protein Rodent Diet by Envigo); (ii) a 0.2%
w/w fenofibrate diet (0.2% FBR, n = 10, fenofibrate from Sigma‑Aldrich+ 2016 TekladGlobal
16% Protein Rodent Diet) [18,65–68]. The major dietary FA are shown in Table 3.
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Table 3. Main dietary fatty acid (FA) composition (g/100 g diet) of 2016 Teklad Global control diet as
reported by the manufacturer Envigo. Dietary experimental treatments: control diet (Ctrl), control
diet + 0.2% fenofibrate (w/w) (0.2% FBR).

FA g/100 g

16:0 0.5
18:0 0.1
18:1n9 0.7
18:2n6 2.0
18:3n3 0.1
SFA 1 0.6
MUFA 1 0.7
PUFA 1 2.1

1 saturated FA (SFA), monounsaturated FA (MUFA), polyunsaturated FA (PUFA).

After 21 days of dietary treatment [67,69], overnight‑fasted mice were euthanized.
The liver, visceral adipose tissue, frontal cortex and hypothalamus were removed and im‑
mediately frozen and stored at −80 ◦C for further determination if not immediately used.

To evaluate whether FBR enhanced peroxisomal β‑oxidation, a single dose of CLA,
previously demonstrated to be promptly β‑oxidized in peroxisomes [37], 90 µg/10 g of
body weight, was acutely administered by oral gavage to two subgroups of Ctrl and 0.2%
FBRmice, Ctrl‑CLA (n = 5) and 0.2% FBR‑CLA (n = 5), respectively (Scheme 2). CD 16:2, the
peroxisomalβ‑oxidation product of CLA, and the ratio CD16:2/CLAwere used asmarkers
of enhanced peroxisomal β‑oxidation.
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The weight of the animals was monitored every other day in fasted mice during the
experimental period. All study protocols were approved by the Institutional Animal Care
and Use Committee.

4.2. Lipid Analyses
Total lipidswere extracted from tissue samples dissolved in a 2:1 chloroform/methanol

solution according to the method of Folch [70] and quantified at a wavelength of 600 nm
following the Chiang procedure [71]. All standards and reagents (acetonitrile (CH3CN),
methanol (CH3OH), chloroform (CHCl3), n‑hexane (C6H14), ethanol (C2H5OH), and acetic
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acid (CH3COOH)) were HPLC grade and purchased from Sigma‑Aldrich (St. Louis, MO,
USA). Ascorbic acid, KOH, deferoxamine mesylate and HCl were purchased from Sigma‑
Aldrich (St. Louis, MO, USA). Deuterated eCB and relatedmolecules, AEA or anandamide
([2H]8AEA), 2‑AG ([2H]52AG), OEA ([2H]2OEA) and PEA (2H]4PEA)were purchased from
Cayman Chemicals (Ann Arbor, MI, USA).

4.2.1. Measurement of Fatty Acid Composition
Aliquots of chloroform containing the lipid extract were dissolved in ethanol. Defer‑

oxamine mesylate as iron chelator, a water solution of ascorbic acid as antioxidant, and
KOH were then added to mildly saponify at room temperature in order to obtain free
fatty acids for HPLC analysis [72] The separation of UFA was carried out using an Agilent
1100 HPLC system (Agilent, Palo Alto, CA, USA) equipped with a diode array detector
(DAD). A C‑18 Inertsil 5 ODS‑2 Chrompack column (Chrompack International BV, Mid‑
dleburg, The Netherlands) with 5 µm particle size and 150 × 4.6 mm was used with a
mobile phase of CH3CN/H2O/CH3COOH (70/30/0.12, v/v/v) at a flow rate of 1.5 mL/min,
as previously reported [73]. SFA transparent to UV were measured after methylation as
FA methyl esters (FAME) by a gas chromatograph (GC) (Agilent, Model 6890, Palo Alto,
CA, USA) equipped with a flame ionization detector (FID) [48].

4.2.2. Quantification of eCB and eCB‑Like Molecules
For measurement of the eCB and their related molecules by isotope dilution, deuter‑

ated internal standards (AEA ([2H]8AEA), 2‑AG ([2H]52AG), OEA ([2H]2OEA) and PEA
(2H]4PEA)) were previously added to the chloroform/methanol solution [47]. Quantifica‑
tion of AEA, 2‑AG, OEA and PEAwas carried out by liquid chromatography–atmospheric
pressure chemical ionization–mass spectrometry (LC–APCI–MS) using selected ion mon‑
itoring (SIM) at M + 1 values for the compounds and their deuterated homologs, as de‑
scribed in [47]. As demonstrated by [74], linearity for quantitative eCB byMSwith isotope
dilution has been proven over the range of 25 fmol to 250 pmol.

The n3‑HUFA score was obtained by calculating the sum of n3 FA with 20 or more
carbon atoms and three or more double bonds divided by the sum of total FA with 20 or
more carbon atoms and more than two double bonds:

n3‑HUFA score = (20:5n3 + 22:6n3 + 22:5n3)/(20:5n3 + 22:6n3 + 22:5n3 + 20:3n6 + 20:4n6
+ 22:4n6 + 22:5n6 + 20:3n9) × 100 [75].

Feed efficiency was determined as follows: weight gain/food intake. In detail, weight
gain was calculated as percentage of grams of weight gain since time t0, while food intake
was expressed as percentage of grams of dietary intake of each mouse with respect to the
mean of grams of Ctrl diet intake.

Calculation of feed efficiency for each mouse either from control or 0.2% FBR groups:

% WG/(g FI × 100/mean g CTRL_FI)

where: WG = percentage of grams of weight gain since time t0; g FI = grams of food intake
for each mouse; mean g CTRL_FI = mean of grams of Ctrl dietary intake.

4.3. Statistical Analysis
Data are expressed asmean± SEM. Because the FA, eCB,weight, food intake and feed

efficiency data were not normally distributed (Shapiro–Wilk normality test), the statistical
significances were assessed using the nonparametric Mann–Whitney test. Multiple un‑
paired comparison tests were performed by two‑way ANOVA followed by the Bonferroni
post hocmultiple comparison test for food intake andweight time course. Number ofmice
per group was calculated using GPower software (G*Power 3.1.9.2). Data were analyzed
using the GraphPad Prism 6.01 software (La Jolla, CA, USA) with * p ≤ 0.05; ** p ≤ 0.01;
*** p ≤ 0.001 as the cut‑off for statistical significance among groups.
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monounsaturated FA (MUFA), N‑acylethanolamines (NAE), oleic acid (18:1n9, OA), oleoyleth
anolamide (OEA), palmitic acid (16:0, PA), palmitoleic acid (16:1n7, POA), palmitoylethanolamide
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sterol regulatory element‑binding protein 1c (SREBP‑1c), visceral adipose tissue (VAT).
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