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Abstract: How does the in vitro maturation (IVM) medium and the vitrification procedure affect the
survival of germinal vesicle (GV) oocytes obtained from stimulated cycles and their development
to the blastocyst stage? In total, 1085 GV human oocytes were obtained after women underwent
a cycle of controlled ovarian stimulation, and these oocytes were subjected to IVM before or after
their vitrification. IVM was carried out in two commercial culture media not specifically designed for
maturation. MII oocytes were then activated and embryo development until day 6 was evaluated.
According to the results, a higher percentage of oocytes reach the MII stage if they are vitrified before
they undergo IVM. Nevertheless, the medium used and the sample size determine whether these
differences become significant or not. Similar survival rates and development to blastocysts were
observed in all the conditions studied.

Keywords: germinal vesicle oocyte; in vitro maturation; cryopreservation; embryo development;
vitrification; survival

1. Introduction

The proper combination of two assisted reproductive techniques (ARTs), specifically
oocyte vitrification (OV) and in vitro maturation (IVM), represents an interesting strategy
and improvements to these approaches may enhance their output.

In recent years, many children have been born from vitrified [1–4], IVM [5–10], or
IVM and vitrified oocytes [11,12]. While OV is considered to be a consolidated technique
that produces good results in ART laboratories, IVM still presents deficient and poorly
reproducible results, a procedure that remains in an experimental phase.

OV is associated with high survival rates (SRs), both when oocytes are vitrified at the
germinal vesicle (GV) or metaphase II (MII) stage [13–16]. Nevertheless, the maturation,
fertilization, and development rates of GV after OV remains controversial [17–19]. In theory,
the DNA of GV should be more resistant to cryodamage as it is highly compact at this
meiotic state and protected by the nuclear membrane.

The clinical implementation of IVM has progressed slowly due to technical problems
associated with this procedure and one of the main stumbling blocks has been the choice of
an adequate culture medium (CM) for maturation. Different media for oocyte maturation
have been studied over the years, such as human tubal fluid (HTF [20]), cell culture medium
(199, IVF [21,22]), medium for the culture to blastocyst [6,22–24], or specific commercial
media for IVM [9]. Maturation rates have improved over time and although some of these
culture media have achieved good maturation rates, the results have not been sufficiently
reproducible to establish them as the reference medium of choice for IVM.

Recent studies in this field have focused on improving maturation rates and on
defining the best meiotic stage for OV. The quality of the mature oocytes obtained after the
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combination of these ARTs was evaluated by analyzing them by electron microscopy [25,26],
confocal microscopy [27–29], epigenetics [30–33], or through their subsequent embryonic
development [6,23].

Therefore, it is clearly important to develop and optimize a protocol that achieves
the best vitrification/maturation of GV, which will greatly improve the success of in vitro
fertilization (IVF) cycles. As such, in this study, oocyte survival and embryonic development
was evaluated as a means to assess the efficiency of IVM before or after vitrification of
human immature oocytes in two different culture media: (1) gamete and early-stage embryo
culture medium; and (2) embryo to blastocyst culture medium. The goal was to establish
a protocol in which both these events were optimized so as to enhance the efficiency of
IVF procedures.

Our results showed comparable vitrification survival and blastocyst development
rates regardless of the medium used or the maturation stage of the oocytes. However, this
study exhibited higher maturation rates whether oocytes were cryopreserved before IVM
and/or when they were cultivated in the commercial supplemented maturation medium
(human menopausal gonadotropin (hMG) + synthetic serum substitute (SSS)) designed to
reach the blastocyst stage.

2. Results
2.1. Survival Rate (SR)

The previous maturation state of the oocytes did neither significantly influence the SR
of the oocytes after warming (GV-Vit 84.3% (419/497), MII-Vit 85.7% (234/273)), nor was
the SR influenced by the specific medium used for maturation [CM1 86.7% (98/113), CM2
85.0% (136/160)].

The comparison of the effect of the IVM medium on SR was only assessed for MII-Vit
oocytes, as these were the only ones that may have seen their SR affected by the distinct
maturation media used after vitrification.

2.2. Maturation Rate (MR)

The MR was used to assess whether prior vitrification of the oocytes affected this
IVM process and we found that a significantly higher proportion of the warmed oocytes
resumed meiosis (GVBD) than the fresh oocytes (GV vitrified 83.7% (349/417), GV fresh
73.0% (374/512); p < 0.0001). This was also witnessed when the MR was evaluated after
24 h (GV vitrified 59.2% (247/417), GV fresh 49.6% (254/512); p = 0.006) and 48 h in culture
(GV vitrified 74.3% (310/417), GV fresh 62.7% (321/512); p < 0.0001: Table 1).

Table 1. Maturation rates (MR) evaluated relative to the maturation stage prior to vitrification in the
groups studied (GV vitrified and GV fresh). MR in relation to germinal vesicle breakdown (GVBD)
after 24 h (24 h) and 48 h (48 h) in culture. Average percentage by group and p-value.

GV Stage
MR

GVBD 24 h 48 h

Vitrified 83.7% (349/417) 59.2% (247/417) 74.3% (310/417)
Fresh 73.0% (374/512) 49.6% (234/512) 62.7% (321/512)

p-value <0.0001 <0.0001 <0.0001

The IVM medium appeared to influence the MR, with higher values always evident
in vitrified oocytes, although significant differences were only evident in the GVBD (GV
vitrified 89.6% (240/268), GV fresh 78.2% (229/293); p < 0.0001), and the IVM 48 h (GV
vitrified 82.5% (221/268); GV fresh 74.1% (217/293), p = 0.016) when the oocytes were
cultured in CM2 medium (Table 2).
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Table 2. Maturation rates (MRs) evaluated in relation to the maturation medium used for each of
the groups studied: GV vitrified and GV fresh. The MRs in relation to germinal vesicle breakdown
(GVBD) after 24 h (24 h) and 48 h (48 h) in culture. CM1, IVF medium; CM2, CCM supplemented
medium. Average percentages relative to the groups and p-value.

IVM Medium GV Stage
MR

GVBD 24 h 48 h

CM1
Vitrified 73.2% (109/149) 42.3% (63/149) 59.7% (89/149)

Fresh 70.2% (207/295) 39.7% (117/295) 53.9% (159/295)
p-value 0.579 0.610 0.266

CM2
Vitrified 89.6% (240/268) 68.7% (184/268) 82.5% (221/268)

Fresh 78.2% (229/293) 64.2% (188/293) 74.1% (217/293)
p-value <0.0001 0.239 0.016

Overall, the percentage of oocytes that matured during the first 24 h was 54.93%
(552/1005), which increased by 13.33% (134/1005) after 48 h to give a final proportion of
68.26% (686/1005) of oocytes that matured.

2.3. Activation Rate (AR)

The AR neither presented significant differences between the different groups studied
(GV-Vit 46.9% (113/241), MII-Vit 53.7% (95/177), and Not-Vit 36.0% (9/25)), nor by the
maturation medium used (CM1 53.6% (74/138) vs. CM2 46.9% (143/305)). However,
the point of vitrification did appear to significantly affect the AR when the oocytes were
matured in CM2 medium (MII-Vit 56.7% (59/104), GV-Vit 42.6% (75/176), Not-Vit 36.0%
(9/25), p = 0.0026 and 0.0037), indicating that vitrification at the MII stage favors subsequent
activation in this medium (Tables 3 and 4).

Table 3. Activation rate (AR), cleavage rate (CR), and blastocyst rate (BR) evaluated relative to the
maturation stage prior to vitrification in the groups studied (GV and MII), both in CM1 medium.
Average proportions by group and p-value.

CM1

Vitrification Stage
RATES

AR CR BR

GV 58.5% (38/65) 60.5% (23/38) 7.9% (3/38)
MII 49.3% (36/73) 88.9% (32/36) 2.8% (1/36)

p-value 0.309 0.007 0.615

Table 4. Activation rate (AR), cleavage rate (CR), and blastocyst rate (BR) evaluated relative to the
maturation stage prior to vitrification in the groups studied (GV-Vit, MII-Vit, and Not-Vit), both in
CM2 (CCM supplemented medium). Average proportions by group and p-value. SDa (MII-Vit vs.
Not-Vit, p-value= 0.037) and SDb (GV-Vit vs. MII-Vit, p-value= 0.026).

CM2

Study Group
RATES

AR CR BR

GV-Vit 42.6% (75/176) 78.7% (59/75) 6.7% (5/75)
MII-Vit 56.7% (59/104) 72.9% (43/59) 5.1% (3/59)
Not-Vit 36% (9/25) 77.8% (7/9) 11.1% (1/9)
p-value SDab NoSD NoSD

2.4. Development Rate

The CRs were not significantly different between the three experimental groups,
regardless of the culture medium used (GV-Vit 72.6% (82/113), MII-Vit 78.9% (75/95), and
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Not-Vit 77.8% (7/9)). Moreover, no significant differences were seen when we evaluated
the average CN of the embryo on day 3 (Not-Vit 5.11 ± 2.892, GV-Vit 4.30 ± 2.741, and
MII-Vit 4.89 ± 2.930). Taking into account the culture medium used and the group studied,
we found that the CR after 48 h in culture in CM1 was significantly lower in oocytes
that were vitrified at GV (60.5% (23/38)), as opposed to MII (88.9% (32/36), p = 0.007)
(Table 3). However, no significant differences were observed between the groups when we
evaluated the average CN in the embryos three days after activation (GV-Vit 3.97 ± 3.080,
MII-Vit 4.47 ± 2.559). By contrast, in CM2, neither the CR (GV-Vit 78.7% (59/75), MII-Vit
72.9% (43/59), Not-Vit 77.8% (7/9)) (Table 4) nor the average CN of the embryo three days
after activation (GV-Vit 4.30 ± 2.741, MII-Vit 4.89 ± 2.930, and Not-Vit 5.11 ± 2.892) were
significantly different between the three groups.

Finally, there were no differences in the BR between the groups studied (GV-Vit 7.1%
(8/113), MII-Vit 4.2% (4/95), and Not-Vit 77.8% (7/9)), and no significant differences were
found in relation to the maturation media used (Tables 3 and 4): CM1 (GV-Vit 7.9% (3/38)
vs. MII-Vit 2.8% (1/36)); CM2 (GV-Vit 6.7% (5/75), MII-Vit 5.1% (3/59), Not-Vit 11.1%
(1/9)).

3. Discussion

In this study, we focused on the effects of the timing of vitrification and of a specific
IVM culture medium on the health and development of oocytes to be used in IVF pro-
cedures. Significantly higher MRs are obtained after 24 h and 48 h from vitrified GVs,
as opposed to fresh oocytes, with significantly improved nuclear envelope breakdown
again in vitrified oocytes. Conversely, and in terms of the stage of maturation at which
the oocytes were vitrified (GV or MII), similar SRs and BRs were obtained, indicating that
vitrification of GVs and their subsequent maturation seems a valid strategy to maximize
the success of IVF/ICSI cycles.

Our SRs are similar to the those obtained elsewhere [14,34] and as with both groups of
vitrified oocytes from IVF/ICSI cycles, the maturation stage (GV/MII) did not significantly
influence the survival of vitrified oocytes. Likewise, our SRs are similar to those obtained
in studies on GVs from unstimulated cycles [34–36]. Together, these SRs suggest that
vitrification is a technique that can be applied to both immature and in vitro matured
oocytes; moreover, they suggest that GVs recovered after stimulation or in a natural cycle
have a comparable SR.

Culture conditions can alter the number of some oocyte structures during vitrification.
Specifically, a decrease in the number of aquaporins has been described in oocytes matured
in vitro, as opposed to in vivo, which may decrease the permeability of the membrane and
augment their sensitivity to cryopreservation [37]. Nevertheless, the SR of MII oocytes
obtained after IVM did not differ here from that of fresh oocytes, irrespective of the IVM
medium used or the time in culture. Hence, neither the culture conditions nor the IVM times
used here seem to affect the resistance to cryopreservation of the MII oocytes obtained.

In terms of IVM, the higher MR of vitrified GV relative to fresh oocytes has not been
universally reported, although a higher MR after freezing GVs has been seen previously [38].
Elsewhere, similar MRs were reported between vitrified and fresh oocytes [29,39–41] or
they were higher in non-vitrified oocytes [40,42]. Nevertheless, a recent meta-analysis
questions the negative effects in vitrified GVs [15]. In fact, Ca2+ currents are necessary for
rupture of the nuclear envelope and for the resumption of meiosis during cytoplasmic
maturation [43]; in addition, an increase in intracellular Ca2+ was seen to be caused by
the reagents used for vitrification, which aided the maturation of oocytes that had been
previously vitrified [44–47]. The limited exposure to dimethylsulfoxide (DMSO) in the
vitrification medium at room temperature may also improve the MR, without inducing
spontaneous parthenogenesis [48]. Furthermore, vitrification of these oocytes in mammals
appears to reduce in the intra-oocyte cAMP, favoring the resumption of meiosis and, hence,
oocyte maturation [40]. These findings may explain the enhanced MR of GV-Vit oocytes
detected here. Nevertheless, it must be noted that when the IVF medium was used, there
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were no significant differences in the MR of GVs, irrespective of whether they were vitrified
prior to their IVM. Together, these data suggest that the vitrification and IVM conditions
may influence the MR of oocytes, despite the ongoing controversy regarding the possible
reasons underlying such an effect.

The use of an embryo culture medium designed to reach the blastocyst stage as a basal
medium for IVM has previously been proposed, such as “Blastocyst culture medium” (BMI,
Suwon, South Korea), “Blastocyst medium” (COOK Medical, Bloomington, Indiana), and
CCMTM (Vitrolife®, Gothenburg, Sweden [22–24]). Here, we obtained higher MRs with
GVBD and 48 h oocytes using CCMTM supplemented with hMG and SSS than when an
early-stage gamete/embryo culture medium was used. With this medium, our 48 h MR
was similar to those previously obtained with human oocytes from stimulated patients or
from unstimulated cycles [23,24]. Embryo culture media designed for blastocysts simulate
the micro-environment found in the uterus endometrium, and they provide the embryo
with important energetic metabolites from the glycolytic pathway such as pyruvate and
adenosyltriphospate (ATP). Such media has been supplemented with hMG, SSS, pyru-
vate, streptomycin, and penicillin [22], or only with hMG [24]. The presence of serum
in the medium was seen to significantly improve the competence of immature oocytes
to reach the MII stage, reducing the cytoplasmic damage induced by both vitrification
and the removal of the granulosa cells [42]. This was sustained in other studies where
the absence of granulosa cells and exposure to gonadotropins accelerates in vitro meiotic
maturation [49–51]. Nevertheless, this acceleration may disrupt the synchronization be-
tween nuclear and cytoplasmic maturation, resulting in less competent oocytes and, thus,
embryos with diminished developmental potential [40]. Our results confirm that the use of
commercial media to blastocyst for IVM is reasonable, as long as they are properly supple-
mented. Furthermore, it seems that using immature oocytes obtained from natural [22,24]
or stimulated [52,53] cycles does not influence the MR, even if the latter are no longer
associated with the granulosa cells.

Only when culture medium to blastocyst supplemented with hMG and SSS was used,
was a significantly higher AR evident when oocytes were vitrified after their maturation
(MII-Vit). Our AR was lower than expected [54,55], which could be due to the modifications
to the different protocols introduced. For example, we maintained the oocytes at 37 ◦C
during the two activation steps instead of decreasing this to room temperature during
ionomycin exposure [54]. Alternatively, the concentration of ionomycin was reduced by 50%
in another protocol as electrical activation was performed prior to chemical activation [55].
Our data suggest that at least in the supplemented medium, the stage at which oocytes are
cryopreserved may influence their AR. Activation depends on the ability of the oocyte to
release Ca2+ in the presence of an adequate stimulus, as develops during maturation. For
this, it is necessary to capacitate the oocytes during maturation through their sensitivity to
inositol triphosphate (IP3), leading to a reorganization of the Ca2+ stores, an increase in their
IP3 receptors, and a reorganization of the endoplasmic reticulum (ER). Cryopreservation
studies on mouse oocytes concluded that warmed GVs can release Ca2+ in response to IP3,
indicating that their membranes had not been damaged [41]. However, it seems that this
sensitivity to IP3 does not exist in human oocytes [56]. This data can be explained by the
functionality of the ER, an essential component of the Ca2+ release system that also acts as
a store for this cation. This cytoplasmic structure remains intact after vitrified GV warming;
yet, during their IVM, the expected reorganization does not occur and consequently, there
is a decrease in the number of saccules and cortical aggregates [26,41,56].

Regarding the subsequent embryonic development, the excision rates that we obtained
ranged from 60.5% to 88.9%, and day 3 embryos had between 4 and 5 cells on average,
consistent with data from previous studies in which slower rates of division were seen in
embryos that underwent IVM [6,57]. This slower development was attributed to defects in
oocyte cytoplasmic maturation due to the loss of cytoplasmic proteins; and/or a decrease in
the synchrony between nuclear and cytoplasmic maturation, as reflected by the microtubule
dynamics and chromatin phosphorylation in IVM oocytes [58,59]. However, the same
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development potential to blastocyst was reported for oocytes matured both in vitro and
in vivo, although only if they had not been preserved [60]. Nevertheless, if oocytes were
vitrified, the main problem for their development was the embryonic transition at day 3,
which many failed to overcome [17,60]. We mainly observed this noxious effect in oocytes
vitrified at the MII stage that were matured in the medium with worst results (IVF), reaching
a significantly higher rate of division (88.9%), but with less blastocyst formation (2.8%).

In this study, the development to blastocyst of activated MII oocytes matured in vitro
did not differ significantly, with rates comparable to those reported in the literature [54,55,57].
Nevertheless, when these oocytes are fecundated by ICSI, the published BRs are generally
higher, reaching 32.7% [6,22,36], indicating that the method of activation may affect embryo
development. Moreover, inadequate or incomplete maturation may be the main problem,
not only for initiating the mechanisms driven by fecundation, but also to overcome the
activation of the embryonic genome that occurs after the division from six to eight cells in
humans [61]. In this sense, it has been reported that the different composition of aquaporins
in the plasma membrane affects morula cavitation and, hence, blastocele formation, as seen
when comparing in vitro and in vivo matured MII oocytes [37,62].

To conclude, the survival and developmental rates of oocytes are independent of the
specific IVM medium used and the maturation stage of the oocytes prior to vitrification
(GV or MII). MRs may be affected by the stage of vitrification, the maturation medium,
and the time of culture. This may explain the controversies in the literature and for this
reason, optimized procedures are required for IVM technique to improve. Since the data
from animal models cannot always be extrapolated to human populations, well-designed
human clinical trials may represent the final push required to improve the options of IVM.
Thus, it is recommended that more experience in IVM is acquired in all the IVF laboratories.

4. Materials and Methods

This was a prospective, randomized cohort study that was approved by the Institu-
tional Review Board at the Hospital Universitario y Politécnico La Fe (Valencia, Spain) and
on which 481 patients treated for IVF or fertility preservation were enrolled, aged between
18 and 40 years old. All the women included in the study were fully informed of the study’s
goals and they gave their signed consent to donate the GVs collected from their intracyto-
plasmatic sperm microinjection (ICSI) cycles carried out in the human reproductive unit of
the aforementioned hospital.

4.1. Experimental Desing

To evaluate the effects of oocyte cryopreservation, and of IVM on activation and early
embryonic development, two experimental phases were established in which different
IVM culture mediums were tested: Phase 1, in which the CM1 medium was used for the
preparation and handling of gametes, IVF, and embryo culture up to 2–8 cells (Universal
IVF Medium, Origio®: Màlov, Denmark); and Phase 2, CM2 medium for culture from
day 3 to the blastocyst stage and subsequent transfer (CCMTM: Vitrolife®, Gothenburg,
Sweden), supplemented with human menopausal gonadotropin (hMG, Menopur® 75 UI,
Ferring®: Madrid, Spain) and synthetic serum substitute (SSS IrvineScientific®: Santa Ana,
CA, USA). The different experimental groups established were: GV-Vit, GVs vitrified and
then, matured in vitro; MII-Vit, MII oocytes vitrified after being matured in vitro; and
Not-Vit, GVs matured in vitro, but not vitrified (Figure 1).

4.2. Oocyte Collection

All the participants underwent controlled ovarian stimulation following a short antago-
nist protocol. Pituitary suppression was achieved by administering rec-FSH (150–300 IU/day
Gonal F 1050: Merck and Co, Madrid, Spain) and GnRH (Orgalutran®: MSD and Co., Hod-
desdon, UK). When at least three follicles had grown to >16 mm, ovulation was induced
by administering 250 µg of rec-hCG (Ovitrelle: Merck, London, UK). Oocyte retrieval was
performed 36 h after hCG administration by ultrasound-guided transvaginal puncture–
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aspiration. Cumulus-corona-oocyte (CCO) complexes were denuded using hyaluronidase
(SynVitro® Hyadase, Origio® Solution: Màlov, Denmark) for no more than 30 s with a
denudation pipette (Denudation pipette Flexipet®: Cook® Medical, Bloomington, IN, USA).
Removal of the cumulus-corona cells is necessary to evaluate oocyte nuclear maturation.
Despite coming from stimulated cycles, a total of 1113 GVs had an intracytoplasmic nucleus
known as a germinal vesicle, characteristic of the prophase of the first meiotic division. In
this study, we included all the oocytes that were relatively circular, between 120–140 µm in
size, and with a homogeneous or slightly heterogeneous cytoplasm with no granularity
due to inclusions or refractile bodies. We excluded 28 oocytes (2.5%) from the study as they
were too large, presented dimorphisms in their zona pellucida, or had large vacuoles or
signs of atresia/degeneration in their ooplasm.
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4.3. In Vitro Maturation

GVs were cultured individually at 37 ◦C and 5% CO2 in micro-drops of culture
medium (25 µL, CM1, or CM2) covered by mineral oil OVOILTM (Vitrolife® Göteborg,
Sweden). Oocytes were observed under an inverted microscope (Olympus, IX70, Tokyo,
Japan) 20, 24, 44, and 48 h after the IVM commenced. Mature oocytes were considered to
be those in which GV rupture was observed and the first polar body (PB) was seen in the
perivitelline space within the first 48 h of culture.

4.4. Oocyte Vitrification and Warming

Vitrification was achieved in a vitrification/warming medium with the Cryotop®

open system device (Kitazato®: BioPharma Co., Shizuoka, Japan) and following a modified
version of the protocol developed by Wang and Kuwayama [63,64]. The modification
consisted of reducing the volumes indicated by the commercial company of each of the
solutions used to tenth, maintaining the same exposure times to cryoprotectants. This
protocol was employed with all the oocytes involved in this study, regardless of their
maturation stage (GV or MII). The SR was evaluated microscopically with a Hoffman
contrast 2 h after heating and it was based on observations of the previously described
morphology, paying special attention to the integrity of the oocyte membrane.
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4.5. Parthenogenetic Activation and Embryonic Development

Parthenogenetic activation (PA) of the oocytes was performed following the protocol
developed by Paffoni, with minor modifications [57]. Oocytes were exposed to ionomycin
calcium (10 µM: Sigma-Aldrich SRl, Milan, Italy) in an IVF medium for 5 min at 37 ◦C
and 6% CO2 in the dark, and they were then exposed for 3 h to 6-Dimethylaminopurine
(6-DMAP, 2 mM: Sigma-Aldrich SRl, Milan, Italy) in an IVF medium under the same
conditions. The oocytes were subsequently cultured in micro-drops of G1TMPlus (25 µL:
Vitrolife®, Frölunda, Sweden) supplemented with 10% SSS and overlayed with mineral
oil. After 18–20 h, the oocytes that did not extrude the second PB and that had only one
big pronucleus (PN) were considered activated. Parthenogenetic zygotes were subjected
to sequential culture in G1TMPlus supplemented with SSS until day 3 post-activation and
then, in CCMTM supplemented with SSS until day 6 post-activation. Their developmental
stage was evaluated every 24 h by observation under an inverted microscope for the 6 days
in culture (Figure 2).
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Figure 2. Bright field micrographs of embryos after activation. micrographs are labeled with a letter
and a number. The letter refers to the stage of embryonic development and the number to the oocyte
PI of the study. (A) 2-cell embryo. (B) 3-cell embryo. (C) 4-cell embryo. (D) 5-cell embryo. (E) 6-cell
embryo. (F) 7-cell embryo. (G) 9-cell embryo. (H) Early compaction. (I) Morula. (J) Formation of the
blastocyst cavity. (K) Fully expanded blastocyst. (L) Hatching blastocyst. (M) Hatched blastocyst. All
micrographs were taken 20×, except the first image “M940” with a 10× objective.

4.6. Statistical Analysis

The sample size required to detect a minimum of 35% difference in the oocytes be-
tween the control group (expected rate 15%) and any of the other experimental groups
was calculated, obtaining a 95% confidence level (α = 5%) and a statistical power of 80%
(β = 20%). The homogeneity of the groups was evaluated with the Kolmogorov–Smirnov
test, and the differences between the quantitative variables were verified using a T-test
or a Mann–Whitney U test. For the qualitative variables, the X2 test or Fisher’s test
was used if both variables were dichotomous or some cells contained an expected fre-
quency less than 5%. The different parameters were compared using contingency tables
and X2 tests, with a level of α equal to 0.05: the maturation rates [MR = (MII oocytes
(24–48 h)/GV oocytes) × 100], survival rate [SR = (viable devitrified oocytes/vitrified
oocytes) × 100], activation rates [AR = (oocytes with 1PB/oocytes exposed to ICa2++ 6-
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DMAP) × 100], cleavage rate [CR = (embryos dividing post-activation/zygotes 1PB) ×
100]; blastocyst rate [BR = (cavitated embryos/zygotes 1PB) × 100], and embryo cell num-
ber at day 3 (CN = embryo cells number/zygotes). Differences were considered significant
when p < 0.05.
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Abbrevations

6-DMAP 6-Dimethylaminopurine
AR Activation rate
ART Assisted reproductive technique
ATP Adenosyltriphospate
BR Blastocyst rate
CM Culture medium
CN Embryo cell number at day 3
CCO Cumulus-corona-oocyte
CR Cleavage rate
ER Endoplasmic reticulum
FSH Follicle stimulating hormone
GnRH Gonadotropin releasing hormone
GV Germinal vesicle
GVBD Germinal vesicle breakdown
h Hours
hMG Human menopausal gonadotropin
HTF Human tubal fluid
hCG Human chorionic gonadotropin
ICSI Intracytoplasmic sperm microinjection
IP3 Inositol triphosphate
IVF In vitro fertilization
IVM In vitro maturation
MII Metaphase II
MR Maturation rate
OV Oocyte vitrification
PA Parthenogenetic activation
PB Polar body
PN Pronucleus
SR Survival rate
SSS Synthetic serum substitute
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