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Abstract: Quinoa (Chenopodium quinoa Willd.) is a dicotyledonous annual herb of Family Amaran-
thaceae and Subfamily Chenopodiaceae. It has high nutritional and economic value. Phosphorus
(P) is an essential plant macronutrient, a component of many biomolecules, and vital to growth,
development, and metabolism. We analyzed the transcriptomes and metabolomes of Dianli–1299
and Dianli–71 quinoa seedlings, compared their phenotypes, and elucidated the mechanisms of their
responses to the phosphorus treatments. Phenotypes significantly varied with phosphorus level.
The plants responded to changes in available phosphorus by modulating metabolites and genes
implicated in glycerophospholipid, glycerolipid and glycolysis, and glyconeogenesis metabolism.
We detected 1057 metabolites, of which 149 were differentially expressed (DEMs) and common to the
control (CK) vs. the low-phosphorus (LP) treatment samples, while two DEMs were common to CK
vs. the high-phosphorus (HP) treatment samples. The Kyoto Encyclopedia of genes and genomes
(KEGG) annotated 29,232 genes, of which 231 were differentially expressed (DEGs) and common to
CK vs. LP, while one was common to CK vs. HP. A total of 15 DEMs and 11 DEGs might account
for the observed differences in the responses of the quinoa seedlings to the various phosphorus
levels. The foregoing results may provide a theoretical basis for improving the phosphorus utilization
efficiency in quinoa.

Keywords: metabolome; phosphorus level; quinoa; transcriptome

1. Introduction

Quinoa (Chenopodium quinoa Willd.) is an annual self-pollinated dicotyledonous herba-
ceous crop in Subfamily Chenopodiaceae of Family Amaranthaceae [1,2]. It is also known
as Indian wheat, gray rice, and golden cereal. It is native to the Andes Mountains in South
America, where it grows at 2800–5000 m a.s.l. Cold, drought, nutrient deficiency, and
salinity tolerance are characteristics of high-quality quinoa varieties [3]. Quinoa seeds are
abundant in proteins, amino acids, polyphenols, vitamins, flavonoids, unsaturated fatty
acids, and other components and meet the basic nutritional requirements of humans [4–6].
Quinoa has antioxidant, anti-aging, hypolipidemic, hypoglycemic, and hypotensive effects
prevents cardiovascular and cerebrovascular diseases and may reduce the risk of certain
chronic disorders [2,7,8]. Therefore, quinoa has been recognized by the Food and Agri-
culture Organization of the United Nations (FAO) as the only monocrop that meets all
nutritional needs of the human body [9]. It was also designated one of the food security
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crops of the century [10]. International nutritionists call it a “supergrain” and recommend
it as the perfect “whole food” [11].

Phosphorus (P) is an essential element for plant growth and development. It is a major
constituent of several vital biomolecules and plays important roles in plant metabolism [12].
Proper phosphorus fertilizer application improves crop yield and quality [13]. In ~46%
of the global cropland, phosphorus use efficiency is inadequate [14]. Moreover, most
phosphorus is converted to other forms that plants can neither absorb nor assimilate.
Hence, the phosphorus is eventually lost to the environment [15]. Phosphate fertilizer
consumption is steadily increasing and is expected to continue rising in the future. However,
bioavailable phosphorus is limited in the soil and may be insufficient to meet plant growth
and developmental requirements. Hence, phosphorus shortages and price increases are
anticipated and could impede progress in global agriculture [16]. Plant species differ
in terms of their phosphorus needs. Therefore, it is imperative to explore the effects of
phosphorus content on plant growth and development.

Under low-phosphorus conditions, soluble phosphorus is released by changing or
replacing the biofilm structure and composition and maintaining basic plant growth and
development [17–19]. When there is too much phosphorus, it can enhance the respiration
of plants, consume a large amount of carbon hydration platforms, have thick and dense
leaves, cause premature development of reproductive organs, inhibition of stem and leaf
growth, cessation of vegetative growth and excessive prematurely, resulting in reduced
yield. Various lipids constitute the cell membrane. Plant growth, development, and physio-
logical and biochemical functions affect membrane lipid structure and composition [20].
The cell membrane is mainly composed of lipids (mainly phospholipids), proteins, and
sugars. The cell membrane is semipermeable and comprises mainly phospholipids. Sphin-
golipids, sterols, and glycerolipids are principal components of plant cell membranes [21].
In higher plants, the phospholipids include phosphatidylcholine (PC), phosphatidylserine
(PS), phosphatidylethanolamine (PE), phosphatidylinositol (PI), phosphatidylic acid (PA),
and phosphatidylglycerol (PG) [19–21]. Monogalactosyldiacylglycerol (MGDG), sulfo-
quinovosyldiacylglycerol (SQDG), and digalactosyldiacylglycerol (DGDG) constitute the
glycolipids [19]. Under abiotic stress, plants could secrete several metabolites and regulate
some genes to stabilize their intracellular environment. Cheng et al. [22] conducted a
genome-wide association study (GWAS) on two natural plant populations and detected
259 candidate genes that respond to low-phosphorus stress. Xu et al. [23] found that in
response to phosphorus deficiency, LaABCG36s and LaABCG37s mediate phytohormone
activity, which, in turn, promotes clumping root formation and improves low-phosphorus
tolerance in white lupin. Wang et al. [24] reported that oats presented with significantly
elevated root citric and malic acid levels and upregulation of 48 related genes after ~1 mo
of low-phosphorus stress. Ting et al. [25] stated that variations in the phosphorus levels
influenced the phenotypic characteristics and flavonoid and anthocyanin content in apple
roots and leaves. Zangani E et al. [26] reported that proper application of phosphorus
fertilizer could affect leaf stomatal conductance, photosynthetic response, and seed yield
of rapeseed.

Numerous recent studies have reported on the effects of nitrogen and potassium
fertilizer on quinoa growth and development. By contrast, few reports have been published
on the impact of phosphorus fertilizer on quinoa seedling growth and development. Here,
we used ultra-high performance liquid chromatography and tandem mass spectrometry
(UPLC-MS/MS) to evaluate the effects of different phosphorus levels on quinoa seedling
metabolites. We also used transcriptomics to screen DEGs in quinoa seedlings subjected to
various phosphorus levels. We used the foregoing information and morphological indices
to elucidate the response mechanisms of quinoa seedlings to different phosphorus levels.
The results of this study may provide a theoretical basis for molecular breeding, rational
and scientific fertilization, and standardized production of high-yield, high-quality quinoa.
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2. Results
2.1. Agronomic Characteristics of Quinoa Seedlings under Different Phosphorus Levels

Quinoa seedling morphology significantly differed after 30 d under the various phos-
phorus concentrations (Figure 1a). The order of plant height was HP > CK > LP, and
the differences were significant (Figure 1b). For red quinoa, the order of leaf area was
HP ∼= CK > LP, while for white quinoa, it was HP > CK > LP (Figure 1c), and the differ-
ences showed that the plant heights and leaf areas of quinoa seedlings increased with the
increase of phosphorus content.
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ple-quadrupole mass spectrometry (QQQ-MS) in the multiple reaction monitoring mode 
(MRM) (Figure S1) with high accuracy and good repeatability. Overlapping the display 
of the total ion flow (TIC) plots for MS detection and analysis of various QC samples 
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Figure 1. (a) Relative plant growth (from left to right) for red and white quinoa CK, HP, and LP.
(b) CK, LP, and HP seedling heights. (c) CK, LP, and HP leaf areas. ‘R’ represents red quinoa, ‘W’
represents white quinoa; ** indicates that the seedling heights and leaf areas of each variety under
various phosphorus concentrations were significantly different from those of the control condition at
p < 0.01 (Student’s t-test).

2.2. Qualitative and Quantitative Analyses of Metabolites in Quinoa Seedling under Different
Phosphorus Levels

For the metabolomics study, 18 samples were selected and divided into 6 groups.
There were three biological replicates per group. The metabolites were quantified by
triple-quadrupole mass spectrometry (QQQ-MS) in the multiple reaction monitoring mode
(MRM) (Figure S1) with high accuracy and good repeatability. Overlapping the display of
the total ion flow (TIC) plots for MS detection and analysis of various QC samples showed a
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high curve overlap of the total ion flow detected by the metabolites. The retention times and
peak intensities were consistent. Hence, the MS signal was stable when the same samples
were detected at different times (Figure 2), indicating good instrument stability and data
reliability. The correlation diagrams (Figure 3a) and the overall cluster analysis heat maps of
the samples (Figure 3b) demonstrated good biological repeatability within sample groups
and significant differences between groups in terms of their related metabolites.

Int. J. Mol. Sci. 2022, 23, x FOR PEER REVIEW 4 of 20 
 

 

analysis heat maps of the samples (Figure 3b) demonstrated good biological repeatability 
within sample groups and significant differences between groups in terms of their related 
metabolites. 

 
Figure 2. Total ion flow (TIC) showing positive and negative ion modes (from (top) to (bottom)). Figure 2. Total ion flow (TIC) showing positive and negative ion modes (from (top) to (bottom)).



Int. J. Mol. Sci. 2022, 23, 4704 5 of 20Int. J. Mol. Sci. 2022, 23, x FOR PEER REVIEW 5 of 20 
 

 

  
(a) (b) 

Figure 3. (a) Correlations among samples. (b) Overall cluster analysis heat map of samples. 

Principal component analysis (PCA) can preliminarily understand the overall meta-
bolic difference between each group and the degree of variability between samples. PCA 
score chart (Figure 4a) and grouping principal component analysis chart (Figure S2), and 
an orthogonal partial least squares discriminant analysis (OPLS-DA) score chart (Figure 
S3) were performed on all samples and disclosed significant differences among LP, HP, 
and CK at different phosphorus levels. In order to effectively deal with the variables with 
small correlation, the OPLS-DA model was run on the data in 200 randomized permuta-
tion experiments (Figure S4). All Q2 were >0.9 except for R2 vs. R5 (Q2 = 0.815) and W2 vs. 
W5 (Q2 = 0.746). For all models, p was < 0.05. Therefore, the OPLS-DA model had reliable 
predictability. Based on the OPLS-DA results, metabolites with a fold change of ≥2 or ≤0.5 
were selected for the differential analysis. There were 149 common DEMs in CK vs. LP 
(Figure 4b; Table S1) and two common DEMs in CK vs. HP (Figure 4c; Table S2). 

The relative contents of the DEMs were standardized and centralized, and then a K-
means clustering analysis was carried out. The DEMs were divided into 12 classes by K-
means clustering analysis (Figure 4d; Table S3). The clusters of LP were significantly lower 
than the first, second, and third clusters but significantly higher than the fifth, sixth, 
eighth, and eleventh clusters of CK. The clusters of HP were significantly higher than the 
first, second, and seventh clusters of CK. Among them, the metabolites in clusters 4, 5, 6, 
8, 9, and 11 were significantly higher in CK vs. HP than CK vs. LP. Hence, the sequencing 
data quality was high. Based on the KEGG compound database, the MetWare database 
(MWDB), and MRM, 1057 metabolites were detected, including 98 amino acids and their 
derivatives, 166 phenolic acids, 69 nucleotides and their derivatives, 172 flavonoids, 11 
quinones, 24 lignins and coumarins, 9 tannins, 78 alkaloids, 39 terpenoids, 94 organic ac-
ids, 177 lipids, and 120 compounds in other chemical classes (Table S4). 

Figure 3. (a) Correlations among samples. (b) Overall cluster analysis heat map of samples.

Principal component analysis (PCA) can preliminarily understand the overall metabolic
difference between each group and the degree of variability between samples. PCA score
chart (Figure 4a) and grouping principal component analysis chart (Figure S2), and an
orthogonal partial least squares discriminant analysis (OPLS-DA) score chart (Figure S3)
were performed on all samples and disclosed significant differences among LP, HP, and
CK at different phosphorus levels. In order to effectively deal with the variables with
small correlation, the OPLS-DA model was run on the data in 200 randomized permutation
experiments (Figure S4). All Q2 were >0.9 except for R2 vs. R5 (Q2 = 0.815) and W2 vs.
W5 (Q2 = 0.746). For all models, p was < 0.05. Therefore, the OPLS-DA model had reliable
predictability. Based on the OPLS-DA results, metabolites with a fold change of ≥2 or ≤0.5
were selected for the differential analysis. There were 149 common DEMs in CK vs. LP
(Figure 4b; Table S1) and two common DEMs in CK vs. HP (Figure 4c; Table S2).

The relative contents of the DEMs were standardized and centralized, and then a
K-means clustering analysis was carried out. The DEMs were divided into 12 classes by
K-means clustering analysis (Figure 4d; Table S3). The clusters of LP were significantly
lower than the first, second, and third clusters but significantly higher than the fifth, sixth,
eighth, and eleventh clusters of CK. The clusters of HP were significantly higher than the
first, second, and seventh clusters of CK. Among them, the metabolites in clusters 4, 5, 6, 8,
9, and 11 were significantly higher in CK vs. HP than CK vs. LP. Hence, the sequencing data
quality was high. Based on the KEGG compound database, the MetWare database (MWDB),
and MRM, 1057 metabolites were detected, including 98 amino acids and their deriva-
tives, 166 phenolic acids, 69 nucleotides and their derivatives, 172 flavonoids, 11 quinones,
24 lignins and coumarins, 9 tannins, 78 alkaloids, 39 terpenoids, 94 organic acids, 177 lipids,
and 120 compounds in other chemical classes (Table S4).
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diagram of DEMs. The X-coordinate represents the sample. The Y-coordinate represents the relative
standardized metabolite content.

2.3. Differentially Expressed Metabolite Analysis and Enrichment

For the various phosphorus levels, 1057 DEMs were screened by combining variable
importance projections (VIP) (Figure S5) and fold changes. Different metabolites interact in
organisms to form different pathways. According to the KEGG pathway database, the en-
richment analysis of the KEGG pathway was conducted, and pathways with p ≤ 0.05 were
selected. The significantly enriched pathways were Carbon fixation in photosynthetic or-
ganisms, Starch and sucrose metabolism, Purine metabolism, Glycolysis/Gluconeogenesis,
Glycerolipid metabolism, and Glycerophospholipid metabolism. For CK vs. LP, the
common metabolites under Glycerolipid metabolism were dihydroxyacetone phosphate,
3-phospho-D-glyceric acid, glucose-1-phosphate *, and uridine 5′-diphospho-D-glucose,
and all of them were downregulated. The major DEMs under Glycerolipid metabolism in
quinoa seedlings subjected to the various phosphorus levels were nucleotides and their
derivatives (Table S5). There were five DEMs in the Glycolysis/Gluconeogenesis path-
way of CK vs. LP, namely, phosphoenolpyruvate (PEP), dihydroxyacetone phosphate,
3-phospho-D-glyceric acid, glucose-1-phosphate *, and salicin. The last was upregulated,
while the first four were downregulated in CK vs. LP. PEP, 3-phospho-D-glyceric acid,
and glucose-1-phosphate * were upregulated in red quinoa with R2 vs. R4. Salidroside
downregulation under R2 and R4 indicated that saccharides, alcohols, and phenolic acids
were the principal DEMs in the Glycolysis/Gluconeogenesis pathway of quinoa seedlings
subjected to different phosphorus levels (Table S6).
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2.4. Transcriptome Analysis of Quinoa Seedlings Subjected to Different Phosphorus Levels

Transcriptome sequencing was performed using aboveground parts of the two quinoa
strains, with three biological replicates each. After filtering the original data, determining
the sequencing error rate, and establishing the GC content distribution, 139.76 Gb of clean
data was obtained. For each sample, there were 6 Gb clean data and a Q30 score of at
least 91% (Table S7). The proportion of sequenced reads successfully compared against the
genome was >70%, and the comparison efficiency was >80%. Thus, the sequencing was
highly accurate, indicating that the transcriptome data met the requirements for subsequent
analysis. The FPKM (fragments per kilobase of transcript per million fragments mapped)
box line plot of the sample distribution is shown in Figure 5a. The dispersion of gene
expression level distribution per sample was small, and the overall gene expression was
high. The expression density of the distribution plot reveals that the gene abundance
was relatively more concentrated where changes in gene expression level occurred at the
different phosphorus concentrations. The gene expression FPKM concentration range
was 10−2.5–102.5 (Figure 5b). The correlation heat map (Figure 5c) demonstrates a high
degree of biological reproducibility among samples. Here, R2 > 0.8 between biological
replicates subjected to the different phosphorus levels. Extracting the FPKM expression
after centralization and normalization of differential genes, doing hierarchical cluster
analysis, and plotting the cluster heat map for each differential grouping showed that
there were significant differences in gene expression at different phosphorus levels in this
experiment (Figure 5d). In conclusion, it is ready for further searching for differentially
expressed genes.
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2.5. Functional Annotation and Enrichment Analysis of Differentially Expressed Genes

KEGG, GO, NR, Swiss-Prot, KOG, Pfam, and TrEMBL were functionally annotated to
29,232, 41,046, 53,275, 34,131, 48,791, 42,701, and 51,060 genes, respectively.

The differentially expressed genes (DEGs) were analyzed with DESeq2, and the total,
upregulated, and downregulated DEGs per group were enumerated (Table 1). A volcano
map shows the overall distribution of the DEGs in both sample groups (Figure 6a). The
FPKM of DEGs was centralized and normalized, and a K-means clustering analysis was
performed. The objectives were to clarify the regulatory patterns of the genes in the quinoa
seedlings subjected to different phosphorus levels and identify similar change trends
within the same functional gene classes under different experimental treatments. Clusters
3, 4, and 7 exhibited the same expression trends under low phosphorus levels. Hence,
they could serve as markers distinguishing gene expression in phosphorus deficiency
(Figure S6), extract the expression of FPKM after centralization and standardization of
differential genes, perform hierarchical clustering analysis, and draw the clustering heat
map of each differential group (Figure S7). Hierarchical clustering revealed that DEGs
differed due to the phosphorus level. Venn analysis revealed 231 and 1 common DEGs
for CK vs. LP and CK vs. HP, respectively (Figure 6b). The KEGG enrichment analysis
output was plotted as a scatter diagram (Figure 6c), in which the enrichment degree of
KEGG was determined based on the rich factor, Q-value, and the number of genes in a
given pathway. The DEGs were mainly enriched in Metabolic pathways, Biosynthesis of
secondary metabolites, Starch and sucrose metabolism, Glycerophospholipid metabolism,
Glycerolipid metabolism, Glycolysis/Glyconeogenesis, and Amino sugar and nucleotide
sugar metabolism. For each comparison, the 20 most significantly enriched pathway entries
are shown (Figure 6c) or all of them if less than 20 pathway entries were enriched.
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Table 1. DEGs in the different treatment groups.

Sample Comparisons
Total No. of Significantly
Differentially Expressed

Genes (DEGs)

Total No. of Significantly
Upregulated DEGs

Total No. of Significantly
Downregulated DEGs

R2 vs. R4 2073 1651 422
R2 vs. R5 384 179 205
R4 vs. R5 4019 1524 2495
W2 vs. R2 630 272 358
W2 vs. R4 843 453 390
W2 vs. R5 49 43 6
W4 vs. R4 3191 1976 1215
W4 vs. W5 1489 679 810
W5 vs. R4 177 117 60
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Figure 6. (a) Volcano map of DEGs; R2 vs. R4, R2 vs. R5, W2 vs. W4, and W2 vs. W5 (from left
to right). Abscissa represents multiples of changes in gene expression. Ordinate represents DEGs
significance levels. Red and green dots represent upregulated and downregulated DEGs, respectively.
Blue dots represent non-DEGs. (b) Venn diagram of DEGs; CK vs. LP and CK vs. HP. (c) Enrichment
scatter diagram; R2 vs. R4, R2 vs. R5, W2 vs. W4, and W2 vs. W5 (from left to right). The ordinate
and abscissa represent the KEGG pathway and rich factor, respectively. The degree of enrichment
increases with rich factor. The dot size is proportional to the number of enriched DEGs in the pathway.
Red color intensity increases with enrichment significance.
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2.6. Combined Transcriptome and Metabolomics Analyses of the Response Mechanisms of Quinoa
Seedlings to Different Phosphorus Levels

The metabolome and transcriptome data were integrated to elucidate the mechanisms
by which quinoa seedlings respond to different phosphorus levels. Based on the DEM
and DEG enrichment analyses, a histogram was plotted to show the extent of pathway
enrichment associated with the DEMs and DEGs. The Glycerophospholipid metabolism,
Glycerolipid metabolism, and Glycolysis/Glyconeogenesis pathways were significantly
enriched for CK vs. LP (Figure S8). The genes and metabolites in each group with Pearson’s
correlation coefficients >0.8 are shown in a nine-quadrant diagram and categorized as:
(1) neither genes nor metabolites differentially expressed; (2) genes and metabolites differen-
tially expressed in the same pattern; and (3) genes and metabolites differentially expressed
in opposite patterns (Figure S9). Figure 7 shows the annotated DEMs and DEGs for the Glyc-
erophospholipid metabolism, Glycerolipid metabolism, and Glycolysis/Glyconeogenesis
pathways in the quinoa seedlings subjected to the different phosphorus levels.
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Figure 7. Response mechanisms of the Glycerophospholipid metabolism, Glycerolipid metabolism,
and Glycolysis/Glyconeogenesis pathways in quinoa seedlings subjected to various phosphorus
levels. The FPKM values indicate the gene expression levels. The log2fc values between com-
parisons indicate the metabolite expression levels. DEGs and DEMs are represented by boxes in
pathways. Red and blue represent gene expression levels and metabolite upregulation and down-
regulation, respectively. SQD1, UDP-sulfoquinovose synthase; SQD2, sulfoquinovosyltransferase;
GPMI, 2,3-bisphosphoglycerate-independent phosphoglycerate mutase; P1C, phospholipase C; GDE1,
glycerophosphodiester phosphodiesterase; NMT, phosphoethanolamine N-methyltransferase.

In the Glycolysis/Glyconeogenesis pathway, glycerone phosphate, 3-phospho-D-
glycerate, and PEP were significantly downregulated in CK vs. LP but significantly upreg-
ulated in CK vs. HP. In the Glycerolipid metabolism pathway, glycerone phosphate, UDP-
glucose, and D-glucose 1-phosphate were significantly downregulated in CK vs. LP and
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significantly upregulated in CK vs. HP. In the Glycerophospholipid metabolism pathway,
glycerone phosphate, sn-glycero-3-phosphocholine, choline phosphate, and ethanolamine
phosphate were significantly downregulated in CK vs. LP and significantly upregulated in
CK vs. HP.

In CK vs. LP, 2,3-bisphosphoglycerate-independent phosphoglycerate mutase [EC:5.4.2.12]
(gene-LOC110731993, GPMI), UDP-sulfoquinovose synthase [EC:3.13.1.1] (gene-LOC110705433,
SQD1), sulfoquinovosyltransferase [EC:2.4.1.-] (gene-LOC110710130, gene-LOC110724176,
SQD2), glycerophosphodiester phosphodiesterase [EC:3.1.4.46] (gene-LOC110724999, gene-
LOC110694671, gene-LOC110700716, GDE1), phospholipase C [EC:3.1.4.3] (gene-LOC110702180,
P1C), and phosphoethanolamine N-methyltransferase [E2.1.1.103] (gene-LOC110683223,
gene-LOC110730138, NMT) were significantly upregulated. However, phosphoethanolamine
N-methyltransferase [EC:2.1.1.103] (gene-LOC110710093, NMT) and glycerophosphodiester
phosphodiesterase [EC:3.1.4.46] (gene-LOC110724999, GDE1) were significantly downregu-
lated in response to HP stress. Choline phosphate accumulation was affected by phospho-
ethanolamine N-methyltransferase [E2.1.1.103] (gene-LOC110683223, gene-LOC110730138,
gene-LOC110710093, NMT). Choline accumulation was affected by glycerophosphodiester
phosphodiesterase [EC:3.1.4.46] (gene-LOC110724999, GDE1). 2-Phospho-D-glycerate was
affected by 2,3-bisphosphoglycerate-independent phosphoglycerate mutase [EC:5.4.2.12]
(gene-LOC110731993, GPMI). UDP-glucose affected SQDG accumulation via UDP-sulfoquinovose
synthase [EC:3.13.1.1] (gene-LOC110705433, SQD1) and sulfoquinovosyltransferase [EC:2.4.1.-]
(gene-LOC110710130, gene-LOC110724176, SQD2) (Figure 7). In general, these
15 DEMs and 11 DEGs may be the key factors for quinoa seedlings to cope with different
phosphorus levels.

RNA-Seq analysis and reverse-transcription PCR were performed on randomly se-
lected DEGs to determine the authenticity and reliability of the transcriptome data and
differential expression of the candidate genes. The RT-qPCR and RNA-Seq results were
consistent for nine of the ten validated genes (gene-LOC110694671, gene-LOC110705433,
gene-LOC110708023, gene-LOC110724999, gene-LOC110725562, gene-LOC110702180, gene-
LOC110736814, gene-LOC110682517, and gene-LOC110685928). Hence, the transcriptome
sequencing was reliable (Figure S10).

3. Discussion

Quinoa is rich in various amino acids, proteins, vitamins, and lipids vital to human
health [27]. Phosphorus is an essential plant macronutrient and is integrated into nucleic
acids, nucleotides, coenzymes, phospholipids, phytic acid, and so on. Phosphorus plays a
key role in ATP-mediated reactions and carbohydrate, protein, and lipid metabolism. Plant
morphological performance may vary with phosphorus level. At low phosphorus concen-
trations, plant height, shoot and root dry weight, and total root length, were significantly
reduced relative to the control [28]. Similar findings were recorded in the present study
as well.

Here, the LP quinoa seedlings stopped growing while the CK and HP quinoa seedlings
continued to grow. However, the growth rate of HP was higher than that of CK. The LP
plants were the shortest and had the smallest leaf areas. By contrast, the HP seedlings
were the tallest and had the largest leaf areas. Hence, quinoa growth substantially varied
with the phosphorus content. Excessively high phosphorus levels can be phytotoxic, alter
root-to-shoot ratios, and lower both crop yield and quality [29]. In the present study,
the HP quinoa seedlings grew best and had the optimal phenotypic state. Therefore, the
maximum phosphorus dosage used here was evidently not high enough to cause phyto-
toxicity in the quinoa seedlings. For this reason, even higher phosphorus concentrations
could be tested in future experiments; perhaps subsequent experiments could quantitate
the impact of varying phosphate fertilization on quinoa grain yield and quality as well.
Under phosphorus-deficient conditions, certain crops mobilize endogenous phosphorus
from phospholipids rather than metabolizing glycolipids. At low phosphorus levels, plant
biofilm structure and composition change to a certain extent and may solubilize and release
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phosphorus required for plant growth, development, and metabolism [17–19]. SQDG is an
acidic lipid. It widely exists in plant chloroplasts and participates in the function and evolu-
tion of photosynthetic membranes. It is of great significance for plant photosynthesis [30].
The MGDG content significantly changes in rice seedlings subjected to low-phosphorus
conditions [31]. UDP-glucose is a nucleotide sugar that donates glucose residues in various
glycosylation reactions [32]. It is required for cytoplasmic sucrose formation and the syn-
thesis of substances such as cellulose in the plastid extracellular body. It is also indirectly
involved in hemicellulose and pectin formation in cell walls [32–38]. It donates glucose for
the synthesis of the carbohydrate moieties of sulfonyl lipids, glycoproteins, and glycolipids
and is essential in different glycosylation metabolic processes [39]. The sulfolipid sulfo-
quinosyldialdiallycerol is a natural sulfonic acid and a component of plant photosynthetic
membranes [32]. In sulfolipid biosynthesis, sulfoquinovose (6-deoxy-6-sulfoglucose) is
transferred from UDP-sulfoquinovose to diacylglycerol. UDP-glucose plus a sulfur donor
form UDP-sulfoquinovose. UDP-glucose and a sulfur donor form UDP-sulfoquinovose
catalyzed by bacterial SQDB protein or homologous plant SQD1 protein [19,32]. In quinoa,
UDP-sulfoquinovose production is catalyzed by SQD1. Here, low-phosphorus stress sig-
nificantly reduced the D-glucose-1-phosphate and UDP-glucose content in the quinoa
seedlings. Consequently, photosynthesis was attenuated, the plants were short, and the
leaves were small. In contrast, the HP seedlings presented with significantly higher levels
of D-glucose-1-phosphate and UDP-glucose. Essigmann [40] and Sandaet [32] reported
similar findings. Nucleic acids, nucleoproteins, and phospholipids have absolute phospho-
rus requirements and are vital for plant growth and development. In plants, phosphorus
an plays important role in cell division and growth, carbohydrate and lipid metabolism,
and amino acid, protein, and carbohydrate synthesis and transport. We found that when
the quinoa seedlings were subjected to low phosphorus levels, their glycerone phosphate
content was significantly reduced and was followed by corresponding reductions in 3-
phospho-D-glycerate, sn-glycero-3-phosphocholine, and ethanolamine phosphate, lowered
cell viability, and slow or no growth. Phosphoethanolamine N-methyltransferase (NMT)
catalyzes the rate-limiting step in tertiary phosphoethanolamine methylation to choline
phosphocholine (P-Cho). When P-Cho synthesis was inhibited in the Arabidopsis peamt
mutant xipotl, the plants displayed short primary roots, reduced numbers of root hairs, and
abnormal or dead root epidermal cells [41]. Nevertheless, mutant plants supplemented
with P-Cho medium reverted to the wild-type phenotype and resumed normal growth,
development, and metabolism [41]. Nuccio et al. found that relative to the control, spinach
under salt stress exhibited tenfold higher NMT mRNA levels. Thus, NMT plays an indis-
pensable role in plant root system development, phospholipid metabolism, and ectodermal
cell integrity [42].

Here, we observed that the upregulation of phosphoethanolamine N-methyltransferase
[E2.1.1.103] (gene-LOC110683223, gene-LOC110730138, NMT) affected choline phosphate
accumulation. Therefore, phosphoethanolamine methyltransferase plays a key role in
the growth and development of quinoa seedlings under low-phosphorus stress. UDP-
sulfoquinovose synthase [EC:3.13.1.1] (gene-LOC110705433, SQD1) and sulfoquinovosyl-
transferase [EC:2.4.1.-] (gene-LOC110710130, gene-LOC110724176, SQD2) were signifi-
cantly upregulated in quinoa seedlings under low-phosphorus stress. In contrast, the
SQDG content did not significantly differ among quinoa seedlings subjected to differ-
ent phosphorus levels. Hence, SQDG might not play a major role in photosynthesis,
growth, or development in higher plants, in general agreement with the study by Yu
B. [43]. Glycerophosphodiester phosphodiesterase (GDE1) catalyzes the conversion of
glycerophosphodiester to glycerol-3-phosphate (G-3-P) and corresponding small molecules.
GDE1 is an important constituent in the phospholipid metabolic pathway. In the present
study, glycerophosphodiester phosphodiesterase [EC:3.1.4.46] (gene-LOC110724999, gene-
LOC110694671, GDE1) was significantly upregulated in the quinoa seedlings subjected to
low phosphorus levels and significantly downregulated in those exposed to high phospho-
rus concentrations. Thus, GDE1 is involved in the adaptation of quinoa to low-phosphorus
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stress and plant growth and development under this condition. The genes mentioned
above need further functional verification.

4. Materials and Methods
4.1. Materials and Sample Preparation

Red quinoa (Dianli-1299) and white quinoa (Dianli-71) were independently selected
by Yunnan Agricultural University and planted in Xundian County, Kunming, China
(102◦41′ E, 25◦20′ N). Homogeneous seeds were uniformly sown in pots
(117 × 39 × 65 cm) containing substrates with one of three different P2O5 concentrations
(0 kg/hm2, 112.5 kg/hm2, or 337.5 kg/hm2). To each substrate, 112.5 kg/hm2 CH4N2O
and K2O were also applied. Each pot contained ~500 seedlings that were managed
in the early stages according to conventional cultivation techniques, namely, average
temperature = 25.6 ◦C, sunshine duration ~10 h, sowing depth = 2–3 cm, and substrate
CH4N2O, P2O5, and K2O content = 2.75, 1.66, and 1.18 g/kg, respectively. The fertilization
was initiated at the two-leaf stage. After 30 d fertilization, the quinoa seedlings grew
normally at P2O5 = 112.5 kg/hm2, vigorously at P2O5 = 37.5 kg/hm2, and not at all at
P2O5 = 0 kg/hm2. The phenotypic differences were greatest among treatments at this
stage. Hence, 30 d after fertilization onset was considered the optimal sampling time,
and the metabolome and transcriptome analyses were performed on the aboveground
parts of quinoa seedlings at that point (Wuhan MetWare Biotechnology Co. Ltd, Wuhan,
China. https://www.metware.cn, accessed on 18 April 2021). Eighteen samples were
collected at the same time point on the same day. On the sampling day, rainfall = 0.0 and
average temperature = 25.5 ◦C. Three biological and technical replicates were used. Here,
‘R’ represents red quinoa, ‘W’ represents white quinoa, ‘2’ indicates P2O5 = 112.5 kg/hm2

(CK), ‘4’ indicates P2O5 = 0 kg/hm2 (LP), and ‘5’ indicates P2O5 = 337.5 kg/hm2 (HP). CK
includes W2 and R2, LP includes W4 and R4, and HP includes W5 and R5.

4.2. Morphological Data Acquisition

After 30 d fertilization, the shoots of the quinoa seedlings were sampled in triplicate,
and the plant heights and leaf areas were measured. The plant heights were measured with
a vernier caliper from the base to the tip of the uppermost spreading leaf. The leaf areas were
measured with a TPYX-A crop leaf morphometer (Zhejiang, China, https://www.tpyn.net,
accessed on 18 April 2021).

4.3. Metabolite Extraction Detection and Qualitative and Quantitative Analyses

All samples were vacuum freeze-dried (Scientz-100F; Ningbo Scientz Biotechnology
Co. Ltd., Zhejiang, China) and pulverized with a grinder (MM400; Retsch GmbH, Haan,
Germany). The samples were then extracted in methanol and centrifuged (12,000 rpm,
10 min, 4 ◦C) to obtain supernatants for the UP-LCMS/MS analysis. The data acquisition
system comprised ultra-performance liquid chromatography (SHIMADZU Nexera X2;
https://www.shimadzu.com.cn/, accessed on 15 June 2021) and tandem mass spectrometry
(Applied Biosystems 4500 QTRAP; http://www.appliedbiosystems.com.cn/, accessed on
15 June 2021) [44]. The substances in the extracts were characterized according to the
MetWare database (MWDB; http://en.metware.cn/list/27.html, accessed on 15 June 2021)
and by secondary mass spectrometry. The metabolites were quantified by QQQ-MSin MRM.
The peak areas were then integrated, and integral corrections were performed [45]. Quality
control (QC) samples were prepared by mixing sample extracts. During instrumental
analysis, one QC sample was inserted every ten test samples to monitor the repeatability
of the analytical process. Total ion flow diagrams (TIC) of the various QC samples were
overlapped and analyzed to assess metabolite extraction and detection repeatability. A
multivariate statistical analysis was conducted to retain the original data to the fullest
extent. A digital model was established after data simplification and dimensionality
reduction. The built-in statistical prcomp function in R (www.r-project.org/, accessed on
22 September 2021) was used to plot the analyses between groups and the differences

https://www.metware.cn
https://www.tpyn.net
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http://www.appliedbiosystems.com.cn/
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www.r-project.org/
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between sample groups [46,47]. A heat map was plotted using the pheatmap package in R.
Metabolite accumulation among the various samples was subjected to hierarchical cluster
analysis. An orthogonal projection to latent structures discriminant analysis (OPLS-DA)
was used to extract the components of the independent variable X and the dependent
variable Y and screen for differential variables [48,49]. An OPLS-DA model was obtained
based on the results of the OPLS-DA and variable importance in projection (VIP) of the
multivariable analysis. The p-values and fold changes were combined to screen DEMs [48].
The significantly differentially expressed metabolites between groups were screened for
further analysis according to the criteria VIP ≥ 1 and fold change ≥2 or ≤0.5. The DEMs
were screened and annotated in the KEGG compound database (http://www.kegg.jp/
kegg/compound/, accessed on 22 September 2021). The annotated metabolites were
mapped with the KEGG pathway database (http://www.kegg.jp/kegg/pathway.html,
accessed on 22 September 2021) [50].

4.4. Transcriptome Sequencing and Data Analysis

RNA extraction and detection, library construction, sequencing, and bioinformatics
analysis were performed at Beijing Novogene Bioinformatics Technology Co. Ltd., Beijing,
China. The total starting RNA was ≥1 µg, and an Illumina NEBNext® UltraTM RNA
Library Prep Kit (Illumina, San Diego, CA, USA) was used. After library construction,
a Qubit 2.0 fluorometer (Thermo Fisher Scientific, Waltham, MA, USA) was used for
preliminary quantification. The library was diluted to 1.5 ng/µL, and an Agilent 2100
Bioanalyzer (Agilent Technologies, Santa Clara, CA, USA) was used to measure the library
insert size. If the latter was adequate, qRT-PCR was then performed to quantify the effective
concentration (>2 nM) and validate the library quality. Various libraries were pooled
according to requirements and used in Illumina sequencing. Fastp v. 0.19.3 (https://github.
com/OpenGene/fastp, accessed on 4 July 2021) was used to filter the offline data and
remove reads with adapters to obtain clean reads. The latter were then compared against
the reference genome (https://www.ncbi.nlm.nih.gov/genome/?Term=Chenopodium+
quinoa+Willd, accessed on 3 November 2021) to obtain location data for the latter or the
genes as well as unique sample sequence feature information to obtain mapped data. The
gene expression levels were quantified and compared with featurecounts v. 1.6.2 in R,
and the FPKM (fragments per kilobase of transcript per million fragments mapped) was
calculated for each gene based on its length. Differential expression analyses between
group pairs were conducted in DESeq2 v. 1.22.1 (https://bioconductor.org/packages/
release/bioc/html/DESeq2.html, accessed on 3 November 2021). The total, upregulated,
and downregulated DEGs were enumerated for each group. The corrected p-values and
|log2foldchange| were used as thresholds for significant differential gene expression. The
DEGs were functionally annotated with the KEGG (Kyoto Encyclopedia of Genes and
Genomes), GO (Gene Ontology), KOG (Karyotic Orthologous Groups), PfAM, Swiss-Prot,
TrEMBL, and NR databases.

4.5. Combined Transcriptome and Metabolome Analyses

Based on the results of DEM and DEG analyses, those corresponding to the same
treatments were simultaneously mapped to the KEGG pathway to clarify the relationships
between the genes and the metabolites. According to the results of the DEM and DEG
enrichment analyses, histograms were plotted to highlight relative differences in metabolite
and gene pathway enrichment. Correlation analyses were performed on the genes and
metabolites detected in each differential subgroup. Pearson’s correlation coefficients for the
genes and metabolites were calculated with the cor program in R. Nine-quadrant plots were
used to show the differential multiplicity of the gene metabolites with Pearson’s correlation
coefficients >0.8 in each differential subgroup. All DEMs and DEGs were selected to build
an O2PLS (two-way orthogonal projection to latent structures) model. Variables in the
different datasets with higher correlations and weights were initially determined by loading
plots to filter out the important variables affecting the other omics [51].

http://www.kegg.jp/kegg/compound/
http://www.kegg.jp/kegg/compound/
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https://github.com/OpenGene/fastp
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https://www.ncbi.nlm.nih.gov/genome/?Term=Chenopodium+quinoa+Willd
https://www.ncbi.nlm.nih.gov/genome/?Term=Chenopodium+quinoa+Willd
https://bioconductor.org/packages/release/bioc/html/DESeq2.html
https://bioconductor.org/packages/release/bioc/html/DESeq2.html
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4.6. RT-qPCR

RNA extracted from the shoots of Dianli-1299 and Dianli-71 were used in RT-qPCR,
and the latter was performed in triplicate. The PCR primers were designed with BeaconDe-
sign v. 7.9 (https://beacon-designer.software.informer.com/7.9/, accessed on 19 January
2022) (Table S8). The internal reference gene was TUB-6. The reagent was PerfectStartTM
SYBR qPCR Supermix (TransGen Biotech, Beijing, China). The PCR instrument was ABI
Prism7500 (Applied Biosystems, Foster City, CA, USA). The 2−∆∆Ct method was used to
analyze the normalized expression of each sample [52].

4.7. Statistical Analysis

Microsoft Office 2016 (Microsoft, Washington DC, USA) was used for seedling heights
and leaf areas analyses and data plotting. Unsupervised PCA (principal component analy-
sis) was performed by statistics function prcomp within R (www.r-project.org, accessed on
25 January 2022). The data was unit variance scaled before unsupervised PCA. Both HCA
and PCC were carried out by R package pheatmap. For HCA, normalized signal intensities
of metabolites (unit variance scaling) are visualized as a color spectrum. Significantly
regulated metabolites between groups were determined by VIP ≥1 and absolute log2FC
(fold change) ≥1. The VIP values were extracted from the OPLS-DA result, which also con-
tains score plots and permutation plots were generated using R package MetaboAnalystR.
We used fastp v 0.19.3 to filter the original data, download the reference genome, and its
annotation files from the designated website, and we used HISAT v2.1.0 to construct the
index and compare clean reads to the reference genome. We used featureCounts v1.6.2
to calculate the gene alignment and then calculate the FPKM of each gene based on the
gene length. DESeq2 v1.22.1 was used to analyze the differential expression between the
two groups, and the p-value was corrected using the Benjamini and Hochberg method.
The corrected p-value and |log2foldchange| were used as the threshold for significant
difference expression. The enrichment analysis is performed based on the hypergeometric
test. For KEGG, the hypergeometric distribution test is performed with the unit of the
pathway. We used gsea-3.0.jar for the gene setenrichment analysis.

5. Conclusions

We analyzed the morphology, metabolomes, and transcriptomes of quinoa seedlings
subjected to different phosphorus levels. The latter significantly influenced the phenotypic
traits of the quinoa seedlings. The plants under the low-phosphorus treatment were
shorter and had smaller leaves than the control, whereas those exposed to moderately high
phosphorus levels grew more vigorously, were taller, and had larger leaves than the control.
We found that there was no high phosphorus poisoning in high-phosphorus treatment, and
we will continue to increase the phosphorus level in the follow-up test. We detected a total
of 1057 metabolites, of which those related to glycerophospholipid metabolism, glycerolipid
metabolism, and glycolysis and glyconeogenesis were differentially expressed in response
to variations in the phosphorus level. We also annotated 29,232 via KEGG transcriptomics.
The present study revealed 15 DEMs and 11 DEGs that putatively enable quinoa seedlings
to contend with low exogenous phosphorus bioavailability. The findings of this study
will help breeders develop quinoa cultivars that tolerate phosphorus deficiency, produce
high grain yield and quality, reduce phosphate fertilizer application and costs, and help
maintain global food security.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/ijms23094704/s1.
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