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Abstract: In this paper, we show that a simple anisotropic model of supercooled liquid properly
reflects some density scaling properties observed for experimental data, contrary to many previ-
ous results obtained from isotropic models. We employ a well-known Gay–Berne model earlier
parametrized to achieve a supercooling and glass transition at zero pressure to find the point of glass
transition and explore volumetric and dynamic properties in the supercooled liquid state at elevated
pressure. We focus on dynamic scaling properties of the anisotropic model of supercooled liquid to
gain a better insight into the grounds for the density scaling idea that bears hallmarks of universality,
as follows from plenty of experimental data collected near the glass transition for different dynamic
quantities. As a result, the most appropriate values of the scaling exponent γ are established as
invariants for a given anisotropy aspect ratio to successfully scale both the translational and rotational
relaxation times considered as single variable functions of densityγ/temperature. These scaling
exponent values are determined based on the density scaling criterion and differ from those obtained
in other ways, such as the virial–potential energy correlation and the equation of state derived from
the effective short-range intermolecular potential, which is qualitatively in accordance with the results
yielded from experimental data analyses. Our findings strongly suggest that there is a deep need to
employ anisotropic models in the study of glass transition and supercooled liquids instead of the
isotropic ones very commonly exploited in molecular dynamics simulations of supercooled liquids
over the last decades.

Keywords: density scaling; molecular anisotropy; glass transition; supercooled liquids; Gay–Berne
model; molecular dynamics simulations

1. Introduction

A rapid slowdown in molecular dynamics of supercooled liquids approaching the
glass transition has been intensively studied since the 1960s and still attracts a lot of research
interest as a phenomenon strongly related to the glass transition, the commonly accepted
theory of which is continuously sought after. Initially, due to measurement limitations,
the experimental study of molecular dynamics timescale or other dynamic quantities such
as viscosity or diffusivity was conducted mostly as a function of temperature at ambient
pressure. Consequently, the theoretical models that attempted to explain the mystery
of supercooled liquid dynamics did not consider the effect of pressure on the molecular
dynamics near the glass transition. In this context, the original version of the prominent
Adam–Gibbs model [1] should be mentioned.

A development of high-pressure measurement techniques enabled researchers to
investigate molecular dynamics of supercooled liquids and the glass transition at elevated
pressure. A few decades’ worth of high-pressure measurements performed typically
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in isobaric or isothermal conditions has shed new light on the properties of molecular
dynamics near the glass transition [2]. The main outcome of these research efforts was
a strong suggestion that the contemporary models of the glass transition and related
phenomena should not neglect the pressure effect on molecular dynamics [2,3]. To respond
to this challenge, several models have been formulated as functions of temperature T and
pressure p [4–7]. However, it seems that the most promising approach is the density scaling
idea also known as thermodynamic scaling, which has been widely explored since the
beginning of the 21st century [2,3,8–10]. There are two crucial advantages of this idea over
various other models: (i) An expected relation between macroscopic quantities determined
from experimental data with intermolecular interactions that govern molecular dynamics at
least in highly viscous systems, especially including supercooled liquids. (ii) Firm evidence
of density scaling behavior demonstrated by experimental data analyses.

The link between the macroscopic phenomena and their underlying molecular mecha-
nisms has been suggested via the exponent γ, which enables the scaling of various dynamic
quantities measured in different thermodynamic conditions onto a single master curve
according to the power density scaling (PDS) law that can be expressed for structural
relaxation times τ as follows:

τ = f (ργ/T), (1)

where the scaling function argument involves thermodynamic variables, the temperature
T and the density ρ dependent in general on T and p, respectively, as well as the scaling
exponent γ established as a material constant independent of thermodynamic conditions
in a vast majority of known cases tested experimentally [2,3,10]. The PDS law has been
validated by using measurement data collected mainly in the supercooled liquid state
of many materials that belong to van der Waals liquids and ionic liquids, but also for
polymer melts, and even oils [11,12] and some liquid crystal phases [13,14]. Thus, there are
numerous experimental cases confirming the PDS law for different dynamic quantities such
as viscosity, dc conductivity (in ionic liquids), structural relaxation time, segmental and
chain relaxation time (in polymers), and even timescales of some other relaxation processes
usually unrelated to the glass transition. On the other hand, it has been strongly suggested
that the scaling exponent γ is related to an effective short-range intermolecular potential
relevant to molecular dynamics of viscous systems, which is composed of a weak attractive
term and a dominant repulsive term given by an inverse power law (IPL), UIPL ∼ r−3γ,
where r is an intermolecular distance [15–22].

The suggested important role of the scaling exponent γ aroused a lot of research inter-
est aimed at working out methods for determining the scaling exponent value for a given
material and better understanding its relation to the rules that govern molecular dynamics
near the glass transition. Many observations of the scaling behavior of experimental data
have led to the formulation of the density scaling criterion [23]:

log10 T = γ log10 ρ + Cτ at τ = const, (2)

where Cτ is a constant dependent on τ. This criterion considered in the entire experimental
range constitutes a fundamental equation equivalent to the PDS law and provides a very
useful method for finding the scaling exponent values, which enables us to establish the
scaling exponent γ without applying auxiliary models such as the temperature–density
versions of the Avramov and MYEGA models formulated in the density scaling regime.
Consequently, one can investigate the density scaling properties in a way that is not
burdened with specific assumptions going beyond the density scaling idea, which have
been additionally made to construct the mentioned models of the thermodynamic evolution
of dynamic quantities. On the other hand, extensive study of the theoretical grounds for
the density scaling has been attempted by using molecular dynamics (MD) simulations
based mainly on the isotropic models of supercooled liquids, which only involve the
commonly known Lennard–Jones (LJ) potential, such as the Kob–Anderssen binary LJ [24]
and Wanström binary LJ liquids [25]. As a result, the theory of isomorphs has been
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formulated [26], which initially seemed to provide solid theoretical fundamentals for the
density scaling of dynamic quantities determined from experimental data. However, a
further development of the theory of isomorphs, which was accompanied with the extended
simulation investigations still carried out mostly in isotropic models [27,28], has shown that
there are some doubts about the theoretical significance for the experimental data analyses
that are satisfactorily performed in terms of the PDS law. One of the conclusions drawn
from the initial stage of works on the theory of isomorphs is the linear virial–potential
energy (WU) correlation between the instantaneous values of the total system virial <W>
and the total system potential energy <U>, where the brackets < > mean the ensemble
average. The WU correlation was expected at least in isochoric conditions, and invoking the
effective intermolecular potential based on the IPL repulsive term, it was supposed to yield
the scaling exponent value as a slope coefficient of this correlation [18,19,29]. Besides the
theory of isomorphs, there was another theoretical attempt made in a phenomenological
manner to formulate a uniform description of dynamic and thermodynamic properties
near the glass transition based on the density scaling idea. According to the approach, the
scaling exponent value could be evaluated as a fitting parameter of some equation of state
(EoS) based on the assumption of the effective potential of the dominant IPL repulsive term
for supercooled liquids [30–34].

A main motivation of the paper is a considerable discrepancy between the values of
the exponents γ and γEoS commonly obtained from experimental data analyses, which
can satisfy the PDS law given by Equation (1) and can be found by the fitting pressure–
volume–temperature (pVT) data to the EoS given by Equation (3), respectively [2,10]. The
analogous analyses based on the data collected from MD simulations in simple isotropic
models, however, yield an equality of γ and γEoS to a good approximation, which well
corresponds with the WU correlation results [33,34].

In this paper, we investigate the effect of anisotropy reflected in both the molecular
shape and the intermolecular potential on the density scaling properties of the Gay–Berne
(GB) model [35] well known in the computer simulations of liquid crystals, but also val-
idated to study the supercooled liquid state and the glass transition at zero pressure by
Kapko and Angell [36]. We perform MD simulations in this model in a wider thermody-
namic range to explore the supercooled liquid state and the glass transition achieved at both
zero and elevated pressure. Considering several anisotropy conditions well defined in the
GB model, we thoroughly analyze the obtained volumetric data as well as the translational
and rotational molecular dynamics to gain a better insight into the fundamentals for the
density scaling idea.

2. Results and Discussion
2.1. Volumetric Data Analysis

Although our main interest in the pVT data collected from the NPT MD simulations
performed in the GB model, which are described in detail in Section 3, concerns the density
scaling properties, we first analyze the data to identify the glass transition curve. This
is a very important task, because it is not easy to achieve the supercooling state for the
exploited GB model due to its high tendency to crystallize, which has been useful to model
liquid crystal phases. Kapko and Angell [36] established that it was possible to achieve
the supercooling liquid state and the glass transition at zero pressure for an anisotropy
aspect ratio αr near 1.4 by using their parametrization in the GB model. We tested the GB
systems of the aspect ratio between 1.2 and 1.6 in the pressure range between 0 and 20 and
the temperature range between 0.1 and 2.0 in LJ units. Taking into account the occurrence
of the glass transition and the typical behavior of the isobaric dependences of volume on
temperature in the supercooled liquid state, we decided to limit our further simulation
study to the aspect ratios, 1.3 ≤ αr ≤ 1.45, and the thermodynamic range, 0.1 ≤ T ≤ 1.0
and 0 ≤ p ≤ 5.0. In the selected simulation range, neither translational nor rotational liquid
crystal ordering has been detected, which has been confirmed by the obtained values of



Int. J. Mol. Sci. 2022, 23, 4546 4 of 25

the order parameter S2 and the analysis of the radial distribution functions and rotational
radial distribution functions as described in Section 3.

In the aforementioned thermodynamic range, we thoroughly investigated four GB
systems of different anisotropy aspect ratios, αr = 1.30, 1.35, 1.40, and 1.45, carrying out the
NPT MD simulations at pressures, p = 0, 0.5, 1.0, 1.5, 2.5, and 5.0. The pVT data collected
from these simulations are presented in Figure 1, where the volume V denotes an inverse
of the particle number density, that is, the average simulation box volume divided by the
number of particles in the box. Moreover, in Figure 2a, an example of the method for
determining the glass transition curve based of the pVT data for the aspect ratio αr = 1.40
is shown.
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Figure 1. The plots of the isobaric dependences of the particle number volume V on temperature
T in the glassy and supercooled liquids states in the GB model, which are presented in the panels
for the different anisotropy aspect ratios αr: (a) 1.30, (b) 1.35, (c) 1.40, and (d) 1.45, respectively. The
solid curves crossing the isobaric dependences V on T denote the glass transition curves and the solid
curves along the dependences V(T) present the fitting curves to the EoS given by Equation (3) with
the values of its fitting parameters collected in Table 1.
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Table 1. The values of the fitting parameters of Equation (3) established for all examined anisotropy
aspect ratios in the supercooled liquid state in the GB model. The determination errors of the values
of the EoS parameters are estimated as the standard deviation errors found from fitting all pVT
simulation data to Equation (3) for a given anisotropy aspect ratio.

αr γEoS A0 A1 A2 b0 b1

1.30 8.62 ± 0.18 1.2693 ± 0.0005 0.347 ± 0.004 0.297 ± 0.007 67.3 ± 0.9 2.61 ± 0.04
1.35 8.62 ± 0.17 1.3166 ± 0.0006 0.390 ± 0.005 0.317 ± 0.008 62.4 ± 0.8 2.70 ± 0.04
1.40 8.66 ± 0.17 1.3679 ± 0.0006 0.426 ± 0.005 0.358 ± 0.009 58.7 ± 0.8 2.84 ± 0.04
1.45 8.69 ± 0.17 1.4157 ± 0.0007 0.466 ± 0.006 0.388 ± 0.011 56.6 ± 0.9 2.98 ± 0.05
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Figure 2. (a) Presentation of the method for determining the glass transition curve based on the pVT
data for an aspect ratio equal to 1.40. (b) Plot of the dependences of the glass transition temperature
Tg on pressure p for the examined anisotropy aspect ratios αr. The solid curves represent fits to
the Andersson–Andersson equation [37], and their derivatives calculated numerically are shown in
the inset.

For all examined anisotropy aspect ratios, one can reliably identify the glass transition
curves depicted by dashed lines in the panels of Figure 1. Since the glass transition T-
p curve is an important characteristic of glass-forming liquids, the dependences of the
glass transition temperature Tg on pressure p are additionally presented in Figure 2 for
comparison. One can see that the dependences Tg(p) increase with increasing p, which is a
typical behavior known in most glass-forming materials. Moreover, the glass transition
curve shifts to higher temperatures by increasing the anisotropy aspect ratio, which is a
result that is worth considering in the experimental study of glass formers.

Based on the fitting curves of the dependences Tg on p to the Andersson–Andersson
equation [37] commonly exploited to interpolate the experimental dependences Tg(p) for
many decades, it has also been possible to calculate numerically the pressure coefficient
of the glass transition temperature, which is the derivative dTg/dp that constitutes a key
parameter of the Ehrenfest equations [38,39]. As can be seen in the inset to Figure 2b,
the pressure coefficient of the glass transition temperature increases when increasing the
anisotropy aspect ratio, and decreases with increasing pressure for a given anisotropy. The
latter well corresponds to the earlier results obtained from experimental data analyses [40],
while the former is the next issue worthy of consideration in the experimental investigations
of glass formers.
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After the determination of the pressure dependences of the glass transition tempera-
ture, we were able to carry out a volumetric data analysis limited to the supercooled liquid
state to which one can apply the following equation of state, well interpreted in terms of
the density scaling fundamentals [32]:

V(T, p) = V(T, p0)

[
1 +

γEOS
BT(p0)

(p− p0)

]1/γEOS

, (3)

where the exponent γEoS is a fitting parameter. Additionally, in Equation (3), the functions
of temperature parametrization for volume and isothermal bulk modulus at the reference
state (T,p0) are given respectively as follows:

V(T, p0) =

[
l=2

∑
l=0

Al(T − T0)
l

]−1

,

BT(p0) = b0 exp[−b1(T − T0)],

where b0 = BT0(p0), b1 = b1(p0) = −∂ ln BT(T, p0)/∂T|T=T0
, A0 = ρ−1(T0, p0), and

Al = (1/l!)∂lρ−1(T, p0)/∂Tl
∣∣∣
T=T0

for l = 1, 2, are fitting parameters, and (T0, p0) is a

fixed reference state point, which is usually chosen near the glass transition at ambient
pressure. Herein, we have selected (T0, p0) at p0 = 0 and the glass transition temperatures,
T0 = Tg(p0), established at 0.298, 0.307, 0.319, and 0.325 for the examined anisotropy aspect
ratios αr = 1.30, 1.35, 1.40, and 1.45, respectively.

As a result, we obtained (see Figure 1) very good-quality pVT data fits to Equation (3);
the values of its parameters for all examined anisotropy aspect ratios are collected in Table 1.

It should be stressed that the EoS has been derived in accordance with Euler’s theorem
for homogeneous functions on the assumption of the effective short-range effective inter-
molecular potential characterized by the dominant repulsive IPL term and a weak attractive
background [30]. Hence, one might have expected that the repulsive potential term should
have been as follows: UIPL ∼ r−3γEoS . However, all known analyses of volumetric mea-
surement data of supercooled liquids by using the EoS or its isothermal precursor yielded
a value of γEoS for a given material usually two times greater than the value of γ which
scaled dynamic quantities for the material in terms of the PDS law [30,32,34,41–43]. On the
other hand, our earlier tests [33] performed by using the KABLJ simulation model and its
version limited only to the repulsive IPL potential term (KABIPL) with different exponents
clearly show that γEoS ≈ γ. Additionally, the values of γEoS and γ were consistent with the
slope coefficients of the linear WU correlations established for the isotropic models. In the
next section, we discuss this issue based on the data collected from our MD simulations
reported herein for the GB anisotropic model.

2.2. Translational Dynamics

The molecular dynamics relevant to the glass transition is believed to be mainly related
to structural relaxation in the case of prototypical supercooled liquids that belong to van
der Waals liquids. In MD simulations that rely on simple isotropic models involving
the LJ potential, the structural relaxation timescale data are typically sourced from the
analysis of the incoherent self-scattering (ISS) function Fs, which actually reflects only
translational relaxation dynamics due to no rotations in the isotropic systems that consist
of unbound point particles. However, the GB model that consists of unbounded ellipsoidal
particles provides a convenient opportunity to investigate separately both the translational
and rotational dynamics, which is usually difficult to achieve by using experimental
spectroscopic techniques. In this section, we focus on the study of the translational motions
of the centers of mass of the ellipsoidal GB particles of different anisotropy aspect ratios.

Taking into account our MD simulation carried out in cubic simulation boxes on the
assumption of three-dimensional periodic boundary conditions as well as the explored



Int. J. Mol. Sci. 2022, 23, 4546 7 of 25

supercooled liquid state characterized by neither liquid crystal nor crystal ordering, our
simulation systems can be classified as isotropic ones. Hence, to determine the translational
relaxation timescale of the unbounded ellipsoidal GB particles, one may apply a method-
ology that is analogous to that typically employed in finding the molecular dynamics
timescale in the simulation models that consist of the unbounded point particles. Thus, we
determine the translational relaxation time τ from the known formula, Fs(τ) = e−1, where
the ISS function has been evaluated at the value of the wave vector, k, at which the first
maximum of the static structure factor S(k) occurs. In Section 3, additional information
about the computation of the time correlation functions Fs is supplied.

From the aforementioned analysis of the ISS function at each state point (T,p) at
which the NPT MD simulations were performed in the supercooled liquid state of the GB
systems for all examined anisotropy aspect ratios, the translational relaxation times τ were
determined. In this way, we obtained both the T-p and T-V dependences of τ, where the
average values of the particle number volume V were found from the MD simulation in
the NPT ensemble at each state point (T,p). From the NPT MD simulations carried out
along selected isobars at p = 0, 0.5, 1.0, 1.5, 2.5, and 5.0, one can easily plot both the isobaric
dependences τ(T) and τ(V). The former are shown in Figure 3, with a separate panel for
each anisotropy aspect ratio. The corresponding isobaric dependences τ(V) are presented
in Appendix A. It is worth mentioning that the dependences plotted in Figures 3 and A1
well reflect the enormous slowdown in the molecular dynamics, which is characteristic of
supercooled liquids approaching the glass transition.
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As already noted, the data collected from the NPT MD simulations enable us to
analyze the temperature–volume dependences of translational relaxation times established
straightforwardly from the simulations. Thus, we can easily test the quality of the density
scaling of the timescale of translational molecular dynamics in terms of the PDS law given
by Equation (1), where ρ is the particle number density equal to the inverse of the particle
number volume V, i.e., ρ = V−1.

In our first test of the density scaling in the GB model considered in the supercooled
liquid state, we assume that γ ≈ γEoS in Equation (1). Consequently, we observe that the
scaling curves τ(ργ/T) valid at short translational relaxation times considerably diverge
when slowing down translational molecular dynamics as shown in Figure 4 for each
anisotropy aspect ratio. This result differs from those obtained for the simulation data
collected in the isotropic models of supercooled liquids such as the KABLJ and KABIPL
models that consist of point particles and even in the simple three-point particle model of
ortho-terphenyl (OTP), which enabled us to successfully scale dynamic quantities using
the scaling exponent γEoS. However, the experimental data measured for OTP in the
supercooled liquid state have not yet provided such an opportunity [33].
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Figure 4. Plots of the attempts at employing the values of the density scaling γEoS found as the
fitting parameter of the EoS given by Equation (3) in the implementation of the density scaling of
translational relaxation times τ collected in the supercooled liquid state in the GB model for all tested
anisotropy aspect ratios αr, which are presented in the separate panels for different values of αr:
(a) 1.30, (b) 1.35, (c) 1.40, and (d) 1.45, respectively. The values of γEoS are collected in Table 1.

Since the test of the density scaling represented in Figure 4 has failed, one could even
suspect the invalidity of the density scaling of translational relaxation times in the super-
cooled liquid state in the GB model. To verify this issue, we used the fundamental formula
that is the density scaling criterion. To apply Equation (2) to the dependences log10 τ(T),
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we followed a similar procedure that has been well tested in many analyses of experimental
data. We selected several values of the translational relaxation times τ that are represented
in the explored thermodynamic range, and then we established the temperatures Tτ at
the crossing points of the isobaric temperature dependences of the translational relaxation
timescale and the isochrones defined by τ = const. The corresponding densities ρτ(Tτ , pτ)
can be calculated from the EoS, for instance from Equation (3). In addition, to enhance the
reliability of the isochronal dependences log10 Tτ vs. log10 ρτ , the analysis can be supported
by some interpolations of the dependences log10 τ(T) usually determined insufficiently
densely from measurements. Such evaluations not shown herein were also employed in
our analysis of the isochronal temperature–density dependences ρ = V−1.

As shown in Figure 5, we established the isochronal correlations between log10 Tτ and
log10 ρτ , finding their high-quality linear fits characterized by a single value of their slope
coefficient γ for a given anisotropy aspect ratio (see Table 2). It means that the values of γ
determined from the density scaling criterion applied to the translational relaxation times τ
should lead to their density scaling according to a function τ(ργ/T). Indeed, the expected
outcome was successfully achieved, as presented in Figure 6, which constitutes the next
example of the fundamental significance of the density scaling criterion to the PDS law.
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Figure 5. Presentation of the application of the density scaling criterion given by Equation (2) to the
evaluation of the values of the scaling exponent γ based on the isochronal log–log dependences of T
on ρ for each tested anisotropy aspect ratio αr in the GB model, which is shown in the separate panels
for different values of αr: (a) 1.30, (b) 1.35, (c) 1.40, and (d) 1.45, respectively. The isochrones are
determined at the selected constant values of the translational relaxation times τ in the supercooled
liquid state.
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Table 2. The values of the density scaling exponent γ evaluated according to the density scaling
criterion for all examined anisotropy aspect ratios αr as the slope coefficient of the linear isochronal
correlations presented in Figure 5. The determination errors of the slope coefficient values are
estimated as the standard deviation errors found from the linear regression of all the linear isochronal
correlations shown in Figure 5 for a given anisotropy aspect ratio in accordance with the density
scaling criterion expressed by Equation (2).

αr γ

1.30 4.52 ± 0.08
1.35 4.86 ± 0.04
1.40 4.95 ± 0.08
1.45 5.09 ± 0.08
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liquid state in the GB model, which is successfully carried out by using the values of the density
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there are the cases shown for the different anisotropy aspect ratios αr: (a) 1.30, (b) 1.35, (c) 1.40, and
(d) 1.45, respectively.
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In Appendix B, for the completeness of our comparative analysis of the density scaling
ability, depending on the used scaling exponent γEoS or γ, we also consider the values
of γEoS determined by fitting the simulation dependences V

(
T, pcon f

)
to a precursor of

Equation (3), which involves the configurational pressure pconf instead of the pressure p.
Nevertheless, the analysis exploiting the other EoS (Equation (A1)) derived from the inter-
molecular potential dominated by the repulsive IPL term has not changed our conclusions
that the molecular shape and intermolecular potential anisotropies that are characteristic of
the GB model destroy the consistency between the values of γEoS and γ. It gives evidence
that the simple ellipsoidal GB model well reflects this inconsistency commonly observed
from the experimental data analyses contrary to the isotropic simulation models most often
used to study properties of supercooled liquids in the MD simulations.

Previously, we also obtained such a discrepancy between the values of γEoS and γ
in MD simulations in the rhombus-like molecules (RLM) model introduced by us [44].
The RLM model enables one to study a mean effect of the molecular anisotropy on the
examined macroscopic quantities, including the impact exerted by intramolecular forces.
Nevertheless, the force field exploited in the RLM model is mainly based on the LJ and
Coulomb potentials, which are classified as isotropic. Consequently, a quantification of
the molecular anisotropy degree is complicated in the RLM model [44,45]. However, the
GB model employed in the MD simulations performed herein is characterized by a well-
defined measure of both molecular shape and potential anisotropy, because the molecular
shape anisotropy determined via axes of ellipsoidal molecules is straightforwardly reflected
in the parameters of the GB potential. Thus, the results of MD simulations performed
earlier in the RLM model and here in the GB model give firm evidence that the discrepancy
between the values of γEoS and γ depends on the molecular anisotropy. For this reason, it
cannot be reproduced in the manner obtained from measurement data if we exploit MD
simulations in the simple isotropic models based on the LJ intermolecular potentials such
as the KABLJ and three-point-particle OTP models.

Since the density scaling of translational relaxation times has been very satisfactorily
implemented in the supercooled liquid state in the anisotropic GB model, an interesting
question arises as to whether the most effective values of the density scaling γ can also
be deduced from the virial–potential energy correlation postulated in the initial version
of the theory of isomorph [18,19,29]. This question is important, because the theory of
isomorphs has had a lot of interest from researchers involved in the study of density scaling
and has been widely discussed as providing the sought-after theoretical fundamentals for
the density scaling idea.

In the initial works on the isomorph theory, a linear correlation of the instantaneous
values of the average system virial <W> and the average system potential energy <U>
has been suggested for model systems of supercooled liquids as the reason for the density
scaling of their molecular dynamics [17]. Nevertheless, the initial studies conducted within
the framework of the isomorph theory have undoubtedly shown that the slope coefficient
of the linear WU correlation depends on density, indicating an isochoric character of
the linear WU correlation, the slope coefficient γWU of which has been considered as
the density scaling exponent [18,19,29,33]. The further development of the isomorph
theory has suggested that the scaling exponent γ is state-point dependent, and even a few
methods have been worked out for verifying the hypothesis based on the experimental
data [46–50]. Although applications of the methods to analyze measurement data have
indeed given evidence for the hypothesis of the state-point dependent scaling exponent,
no one has achieved the density scaling of the dynamic quantities exploiting the state-
point-dependent values of γ until recently. This problem definitely goes beyond our
investigations reported herein, but it is worthy of mention that its solution most likely
consists in finding a proper form of the scaling function, which would be different from
the PDS law and enable one to utilize the state-point-dependent values of γ to scale the
dynamic quantities. However, in this context, it should be stressed that even if we could
meet this ambitious challenge in the future, the scaling exponent γ considered as a material
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constant independent of thermodynamic conditions would not be neglected in the analyses
based on the density scaling idea. This is because it would still be an effective value of
γ averaged to a very good approximation in the case of many materials, which could
valuably provide information about the main features of molecular dynamics simulations
near the glass transition. Additionally, it is worth mentioning on this point that despite
a phenomenological character of the theory of isomorphs, its origin being based on the
simulation data rather than the experimental one has been promising from a cognitive point
of view. However, the simulations [17–19,22,26–29] underpinning the isomorph theory
were mainly carried out in the isotropic models based on the LJ potential or its generalized
version consisting of the repulsive and attractive parts characterized by various exponents
different from those typically assumed to equal 12 and 6, respectively.

For these reasons, we focus on the analysis of the WU correlation collected in the
anisotropic GB supercooled liquid from the viewpoint of its potential application to de-
termining the effective value of the scaling exponent γ, which would enable one to scale
the dependences of the translational relaxation times τ(T, V) according to the PDS law.
Based on the first argumentations presented within the framework of the isomorph theory,
we decided to study the potential WU correlation in isochoric conditions. To do that, we
performed additional MD simulations in the GB model in the NVT ensemble in which the
WU correlation was earlier typically considered [17–19,29]. This approach ensured that
the isochoric conditions were met at each selected volume for tested anisotropy aspect
ratios. In each case of αr, we fixed three different volumes ranged representatively over
the supercooled liquid state to perform the NVT MD simulations in the GB model. As a
result, at all fixed volumes, we obtained perfect linear WU correlations (depicted in the
insets to Figure 7), the determination errors of slope coefficients of which are less than
0.001. As expected, the obtained values of the slope coefficients γWU for the isochoric linear
WU correlations depend on the particle number density, ρ = V−1, ranging as follows:
<0.7299; 0.7874>, <0.7042; 0.7576>, <0.6803; 0.7299>, and <0.7042; 0.8333> for the examined
anisotropy aspect ratios αr = 1.30, 1.35, 1.40, and 1.45, respectively. Moreover, a decrease is
observed in the values of γWU with increasing ρ resulting from a decrease in the simulation
box volume. In the aforementioned ranges of ρ, the values of γWU change as follows:
<6.164; 6.087>, <6.217; 6.120>, <6.258; 6.110>, and <6.290; 6.065> for αr = 1.30, 1.35, 1.40, and
1.45, respectively. Hence, the sought-after effective values γ

e f f
WU , which would be close to

the values of γ followed from the density scaling criterion, might be some mean values that
should be included in the value ranges of γWU estimated from the WU correlations for the
considered anisotropy aspect ratios. Taking into account the value ranges of γWU compared
with the values of the scaling exponent γ evaluated based on the density scaling criterion,
it follows that such effective values γ

e f f
WU shown in Table 3 have to be larger than the values

of γ. Consequently, the attempt made at scaling the dependences τ(T, V) as functions

τ(ργ
e f f
WU /T) shows a worse quality density scaling (Figure 7) than that achieved by using

the density scaling exponent γ (Figure 6), especially at high translational relaxation times τ.
This is quite reasonable if we consider the aforementioned decreasing dependence, γWU(ρ),
for a given anisotropy aspect ratio αr.

Concerning the search for the effective scaling exponent γ
e f f
WU based on the WU cor-

relations, it should be noted that the special reduced units were suggested within the
framework of the isomorph theory to ensure the density scaling of molecular dynam-
ics. The units indeed enabled the improvement of the density scaling of dynamic and
thermodynamic quantities collected in the isotropic models of supercooled liquid in the
limited thermodynamic range [51]. However, the isomorph theory has been declared
for Newtonian and Brownian dynamics in the canonical and microcanonical ensembles,
i.e., the NVT and NVE ensembles, where E denotes the total system energy. Since the
isomorph theory has not been worked out for the isothermal–isobaric ensemble (NPT), it is
not justified to employ the reduced units of the isomorph theory to test the density scaling
properties in the simulation data collected in the NPT ensemble. The same remark is valid
for the experimental data usually measured in isobaric or isothermal conditions that well
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correspond to the statistical ensemble defined by invariant thermodynamic variables p and
T. Therefore, we neglected the reduced units of the isomorph theory in the density scaling
study of the relaxation times determined herein from the NPT MD simulations.
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of translational relaxation times τ collected in the supercooled liquid state in the GB model. In
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It is worth noting that our previous investigations of the scaling exponent γ
e f f
WU per-

formed [52] in the aforementioned RLM model also showed a discrepancy between the
values of γ

e f f
WU and γ that actually enables one to scale the diffusion coefficient and the

structural relaxation time collected from the MD simulations in the NVT ensemble. Further-
more, we have argued there that the intramolecular interactions break the isochoric linear
WU correlation. Comparing our earlier MD simulation study in the RLM model with our
current one conducted in the GB model, one can claim that the molecular anisotropy makes
the isochoric linear WU correlation useless in the determination of the effective scaling ex-
ponent even if such a correlation is found for a molecular system in a temperature–pressure
range. There are also known model systems for which the WU linear correlation is not
satisfied, for instance, due to intramolecular interactions, but the density scaling of dynamic
quantities has been satisfactorily validated in those models [52–54]. All the facts seriously
undermine the WU correlation applications in the analyses of the density scaling behavior.

2.3. Rotational Dynamics

To investigate the rotational molecular dynamics of the supercooled liquid state in the
GB model, we calculated the standard time-dependent rotational autocorrelation function
C2(t) based on the second order Legendre polynomial P2, which is additionally described
in Section 3. However, to evaluate the timescale τrot of the rotational molecular dynamics
at the same decay level of the relaxation function at which the timescale τ is determined
for the translational molecular dynamics in the GB supercooled liquid, we assumed that a
measure of τrot is the time satisfying the equation, C2(t) = e−1.

The rotational autocorrelation functions C2 were calculated at the same state points
(T,p) at which the ISS functions Fs were computed. The same NPT MD simulation runs were
exploited to evaluate both the rotational and translational time-dependent autocorrelation
functions C2 and Fs at a given (T,p); comparative examples are presented in Section 3.
Materials and Methods. As a result, we obtained the T-p and T-V dependences of τrot,
where the average values of the particle number volume V were obtained from the MD
simulation in the NPT ensemble at each state point (T,p). Since the NPT MD simulations
were carried out along selected isobars, in an analogous way to the translational relaxation
times, one can plot both isobaric dependences, τrot(T) and τrot(V). The former dependences
are shown in Figure 8 by using a separate panel for each anisotropy aspect ratio, while
the corresponding isobaric dependences τrot(V) are presented in Appendix A. Thus, the
thermodynamic evolutions of the timescales of rotational and translational molecular
dynamics were explored in the same thermodynamic range. Taking this opportunity, we
also tested the potential validity of the density scaling for rotational relaxation times τrot.

Since the translational and rotational motions were governed by the same GB potential
in the exploited simulation model, the first attempt at scaling the dependences τrot(T, V)
was made by using the values of the scaling exponent γ, leading to the scaling of the
dependences τ(T, V). As argued in Section 2.2, the best density scaling of the latter has
been achieved by exploiting the values of γ determined from the density scaling criterion,
which are collected in Table 2. Employing these values of the scaling exponent γ in
preparing the plots of the dependences τrot(T, V) as functions of the variable ργ/T, we
yielded a high-quality density scaling for each examined anisotropy aspect ratio, as shown
in Figure 9. This finding constitutes a promising contribution to a better understanding of
interrelations between different kinds of molecular motions, which is worth developing in
the future.
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exponent γ are the same as those yielding the high-quality density scaling of the rotational relaxation
times, which were determined from the density scaling criterion. In the separate panels, there
are the cases shown for the different anisotropy aspect ratios αr: (a) 1.30, (b) 1.35, (c) 1.40, and
(d) 1.45, respectively.

3. Materials and Methods
3.1. Simulations

All MD simulations were performed for 1000 ellipsoidal molecules of the same kind
for a given molecular aspect ratio by using the LAMMPS package [55] within the GB
potential implementation [56] available there, which relies on some earlier investigations
of the GB model, e.g., [57,58]. As already mentioned, we parameterized the GB potential
according to that suggested by Kapko et al. [36] All simulation runs were computed on
the GPU NVIDIA Tesla V100 cards at the double-precision level and three-dimensional
periodic boundary conditions suitable for the cubic simulation box. We considered only
prolate spheroids in the form of the biaxial ellipsoidal molecules, the molecular shape of
which is characterized by a long molecular axis and a short molecular axis perpendicular
to the long one, and the examined anisotropy aspect ratios αr were determined by the
quotients of the lengths of the long and short axes. All quantities used in and resulting
from our MD simulations are expressed in accordance with typical LJ simulation units, and
the volume V and the density ρ mean the particle number volume and the particle number
density, respectively.

Within the LAMMPS package, the commonly known leap-frog algorithm was ex-
ploited at the time step ∆t = 0.001 for all the simulation runs, setting the cutoff radius for
interactions rcut = 3.2. The standard Nosé–Hoover thermostat and barostat were used
to satisfy the thermodynamic conditions in the NPT and NVT ensembles. The barostat
and thermostat relaxation times were set to 1.0 and 0.1, respectively. The periods of equi-
libration and subsequent well-equilibrated simulation runs depended on the state point
and became longer and longer on approaching the glass transition. The equilibration runs
took minimum 106 time steps and the subsequent simulation runs exploited to collect
the data for further analyses ranged from 105 to above 108 time steps. The supercooled
liquid and glassy states were achieved, avoiding any crystalline ordering by cooling the
isotropic liquid system, earlier simulated at a high temperature, T = 2.0. Functions used to
monitor and analyze the molecular dynamics of the simulation systems are described in
the next section.

3.2. Calculations

We coded most functions employed in analyses of the MD simulation results using
Python programming language and its NumPy and CuPy packages based mainly on defini-
tions of the functions presented in [59]. Only thermodynamic quantities were determined
exploiting the LAMMPS package functionalities.

To verify whether a translational ordering occurs in the system, we applied the system
radial distribution function defined as an ensemble average quantity in general as follows:

g(r) =
V
N2

〈
N

∑
j=1

N

∑
l 6=j

δ
(

r− rjl

)〉
, where rjl = rj − rl . (4)

Equation (4) has been implemented in our analyses according to the algorithm de-
scribed in Section 3.2 in reference [59], which provides the dependence g(r). All the
obtained plots of the radial distribution function g on the distance r showed a behavior
typical of disordered systems, as shown for a selected example in Figure 10a.
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Figure 10. Presentation of (a) the radial distribution function plotted vs. the distance r and (b) the
static structure factor plotted vs. the length of the wave vector k, selected as examples for the system
of molecules of the aspect ratio αr = 1.4, simulated in the GB model in the NPT ensemble at the
pressure p = 1.0 and the temperature T = 0.7.

To test whether an orientational ordering exists in the system, we used two functions:
the order parameter S2 and the second-rank pairwise orientational correlation function g2.
The former is defined in the following way:

S2 =

〈
1
N

N

∑
j=1

P2
(
ej·n

)〉
(5)

where the brackets < > denote the ensemble average, the second order Legendre polynomial
is expressed as P2(x) = 1.5x2 − 0.5, ej is a unit vector pointing along the long axis of the
biaxial ellipsoidal i-th molecule, and n is the so-called director [59]. The director n has
been obtained typically as the largest eigenvalue found from the diagonalization of the
second-rank orientational order tensor:

Qαβ =
1
N

N

∑
j=1

(
3
2

ejαejβ −
1
2

δαβ

)
where α, β = x, y, z.

For all the exploited simulation runs, the obtained values of S2 are close to zero and did
not exceed 0.06, which shows that there is no orientational order in the examined systems.
This has also been confirmed by the inspection of the second-rank pairwise orientational
correlation function defined as the following ensemble average quantity:

g2(r) =
〈

P2

(
cos
(

θjl(r)
))〉

(6)

where P2 is the second-order Legendre polynomial and θjl(r) denotes the angle between
the long axes of the particles j and l lying in a narrow shell of center-of-mass separations
rjl ≈ r [60], which revealed very small fluctuations of decreasing amplitude, actually
yielding g2(r) ≈ 0 to a very good approximation.

Thus, using the functions defined by Equations (4)–(6), we undoubtedly validated
the isotropic ordering of all the simulation systems considered by us in the analyses
presented herein.

As already stressed, in the study of translational motions, we focused on the move-
ments of the centers of mass of the ellipsoidal GB particles of different anisotropy aspect
ratios. For this reason, after confirming that there was no translational and orientational
ordering in the investigated thermodynamic range of our bulk systems simulated in the
standard cubic box, it was reasonable to evaluate the translational relaxation times τ based
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on the commonly used assumption, Fs(τ) = e−1, where the time-dependent incoherent
self-scattering (ISS) function can be given by the following formula [61]:

Fs(t) =

〈
1
N

N

∑
j=1

exp
[
ik ·

(
rj(t)− rj(0)

)]〉
(7)

where the brackets < > denote the ensemble average, j represents an j-th particle among
N particles of the system, r indicates of the center of mass of a particle, and k is the wave
vector taken at the location of the first maximum of the static structure factor:

S(k) = N−1
N

∑
j=1

N

∑
l=1

〈
exp

[
ik ·

(
rj − rl

)]〉
, (8)

where the wave vector k = ( 2π/L)
(
nx, ny, nz

)
is determined using the simulation box

length L and the integer numbers nx, ny, nz. It is worth noting that the static structure
factor is also a good measure of the degree of translational order in the centers of mass
(p. 207, [59]). All the obtained dependences of the static structure factor S on the length of
the wave vector, k = |k|, have revealed a behavior typical of disordered systems, as shown
for a selected example in Figure 10b.

The rotational relaxation times τ were estimated by using the time-dependent rota-
tional autocorrelation function C2:

C2 =

〈
1
N

N

∑
j=1

P2
(
ej(0) · ej(t)

)〉
=

〈
1
N

N

∑
j=1

(
3
(
ej(0) · ej(t)

)2 − 1
2

)〉
(9)

on the assumption that C2(τrot) = e−1 to consider the same decay level of both the rotational
and translational relaxation functions. We verified that the rotational relaxation times
determined in this manner well corresponded with those calculated by integration of the
time-dependent autocorrelation function.

Examples of the series of the translational and rotational correlation functions Fs and
C2 obtained at a constant pressure (p = 1.0) are shown in Figures 11a and 11b, respectively.
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Figure 11. Examples of the translational (a) and rotational (b) time-dependent autocorrelation
functions C2 and Fs obtained respectively via Equations (7) and (9) from the NPT MD simulation data
collected in the supercooled liquid state at the pressure p = 1.0 in the GB model of the molecules of
the aspect ratio αr = 1.4.

4. Summary and Conclusions

For the first time, the single-component ellipsoidal Gay–Berne model has been success-
fully used in a simulation study of the supercooled liquid state and the glass transition at
elevated pressure. Contrary to the single-component Lennard–Jones liquid model, the GB
supercooled liquid is characterized by the sufficient glass formation ability in the thermo-
dynamic range, giving the possibility of quite convenient investigations of the translational
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and rotational molecular dynamics near the glass transition. It seems that this advantage of
the GB model over the LJ one originates from the molecular anisotropy inherent in both
the ellipsoidal shapes of interacting species and the anisotropic intermolecular potential of
the GB model compared to the point interacting species and the isotropic intermolecular
potential of the LJ model. However, the glass-forming ability of the single-component GB
model is limited to small anisotropy aspect ratios αr ranging from 1.3 to 1.5, and even the
range of αr has narrowed to 1.3–1.45 to avoid entirely a liquid crystal phase ordering in
the explored temperature–pressure range, 0.1 ≤ T ≤ 1.0 and 0 ≤ p ≤ 5.0, in the LJ units.
In case of higher values of αr, the GB model is well suited to its typical applications, that
is, to model different liquid crystal phases. One could suspect that the thermodynamic
range of supercooling in the GB model might be extended by studying binary mixtures of
ellipsoidal species of different αr, which is worth testing in the future.

The pVT data investigations have led us to identify the glassy and supercooled liquid
states in the T-p domain for the assumed parametrization of the anisotropic GB model. The
glass transition curves Tg(p) detected from the volumetric data analysis for αr = 1.30, 1.35,
1.40, and 1.45 have shown a typical increasing behavior with increasing p, and an increase
in the glass transition temperature Tg with increasing αr. The latter constitutes a hypothesis
that is worthy of further verification by using experimental data for glass-forming materials.

We thoroughly explored the density scaling properties in the supercooled liquid
state in the anisotropic GB model. We confirmed the validity of the density scaling of
translational and rotational relaxation times expressed by some functions τ(ργ/T) and
τrot(ργ/T) in the GB supercooled liquids of four different anisotropy aspect ratios αr,
finding that the density scaling exponent γ is the same for τ and τrot at a given αr and
increases with increasing αr. We have shown that the best way to evaluate the proper value
of γ consists in the use of the density scaling criterion. It should therefore be treated as a
macroscopic parameter related to the effective short-range intermolecular potential Ueff
commonly suggested to comprise a dominant repulsive inverse power law term and a
weak attractive background.

In accordance with the density scaling analyses of measurement data, but in contrast
to the MD simulations in simple isotropic models of supercooled liquids, the proper value
of γ is about two times smaller than the value of parameter γEoS found from fitting pVT
data to a class of equations of state based on the effective intermolecular potential Ueff. It
can be related to a difference in the sensitivity of different quantities to the mean field effect.
Such an interpretation was earlier suggested for the macroscopic quantities analyzed using
experimental data [62] and subsequently proposed based on the MD simulations in the
RLM model [44,45]. The latter explicitly reflects the anisotropy effect on the molecular
dynamics in the rhombus-like molecular shape, which implies an anisotropy of the effective
intermolecular potential that, however, results mainly from a superposition of the isotropic
interactions such as the LJ and Coulomb forces. In the GB model, both the molecular shape
and intermolecular potential are explicitly anisotropic. Thus, the suggested interpretation
of the discrepancy between γ and γEoS gains a firm confirmation in our study.

The possible support from the isomorph theory in the evaluation of the proper value
of the scaling exponent γ has not been validated in the tested GB supercooled liquids. The
values of the effective value of the scaling exponent γ

e f f
WU based on the virial–potential

energy correlations have led to worse quality density scaling of translational relaxation
times than those obtained using the density scaling criterion. In addition, any application
of the reduced units of the isomorph theory has not been permitted to improve the density
scaling, because the isomorph theory did not work for the NPT ensemble, but only for
the NVT and NVE ones. In this context, it is worth noting that the isothermal-isobaric
ensemble reflects the experimental thermodynamic conditions in the best way, because the
vast majority of measurements are carried out at constant pressure or constant temperature.
Thus, a theory that is unable to consider the NPT ensemble may be insufficient to describe
comprehensively the phenomena experimentally observed.
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Our investigations of the supercooled liquid state and the glass transition in the
anisotropic GB model clearly show that the anisotropic models constitute a promising
alternative to the isotropic ones towards a better understanding and proper reflection of
the physicochemical properties of the glass-forming materials.
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Appendix A

In Figures 3 and 8, there are plots of the temperature dependences of the logarithms
of the translational and rotational relaxation times, respectively. Herein, we present plots
for dependences of the same timescales on the particle number volume V in Figures A1
and A2, respectively. The volumes were determined as the mean values directly from
the simulation runs in the NPT ensemble. These volumes are also used in Figure 1 and
employed in preparing all the scaling plots presented above in Figures 4, 6, 7 and 9.
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Figure A1. Plots of the isobaric dependences of translational relaxation times τ on the particle number
volume V for different anisotropy aspect ratios αr in the supercooled liquid state in the GB model. In
the separate panels, there are the cases shown for the different anisotropy aspect ratios αr: (a) 1.30,
(b) 1.35, (c) 1.40, and (d) 1.45, respectively.
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Appendix B

In our analyses based on the equation of state, Equation (3) was exploited, because
it was previously employed in many investigations of the measurement data collected
for supercooled liquids. However, to complete the discussion of the scaling exponent
obtained from fitting the pVT data as a parameter γEoS of the equation of state, we need
to consider also the equation of state, which is analogous to Equation (3), but involves
the configurational pressure, pcon f = 〈W〉/〈Vbox〉, instead of the total system pressure p,
where 〈Vbox〉 is the average volume of the simulation box. This is because an isothermal
precursor of Equation (3) has been derived from the total system average virial 〈W〉 on
the assumption of the homogeneous potential functions that meet Euler’s theorem, which
can be well interpreted in the density scaling regime, and represented by the following
formula [30,31]:

V(T, pcon f ) = V(T, pcon f
0 )

[
1 +

γEOS

Bcon f
T (pcon f

0 )

(
p− pcon f

0

)]1/γEOS

(A1)

which can be parametrized similarly to Equation (3) with regard to temperature [32]:

V(T, pcon f
0 ) =

[
l=2

∑
l=0

Acon f
l (T − T0)

l

]−1

,

Bcon f
T (pcon f

0 ) = bcon f
0 exp

[
−bcon f

1 (T − T0)
]
,

where bcon f
0 = Bcon f

T0
(pcon f

0 ), bcon f
1 = bcon f

1 (pcon f
0 ) = −∂ ln Bcon f

T (T, pcon f
0 )/∂T

∣∣∣
T=T0

, Acon f
0 =

ρ−1(T0, pcon f
0 ), and Acon f

l = (1/l!)∂lρ−1(T, pcon f
0 )/∂Tl

∣∣∣
T=T0

for l = 1, 2, are fitting param-

eters, and (T0, pcon f
0 ) is a fixed reference state point, which is usually chosen near the
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glass transition at ambient pressure. Herein, we have selected (T0, pcon f
0 ) at p0 = 0 and the

glass transition temperatures, T0 = Tg(p0), established at 0.298, 0.307, 0.319, and 0.325
for the examined anisotropy aspect ratios αr = 1.30, 1.35, 1.40, and 1.45, respectively. The
corresponding values of the configurational pressure at the reference state were calculated
according to the formula, pcon f

0 = p0 − kBT0ρ(T0, p0), which is valid for MD simulations in
the GB model quantified in the LJ units taking the Boltzmann constant kB = 1. The configu-
rational pressure is not constant along an isobar determined at a constant pressure, as can
be easily seen from the equation, pcon f = p0 − kBTρ, which interprets the configurational
pressure as the difference between the total system pressure and the kinetic contribution to
the total system pressure. Thus, the dependences of the particle number volume V on T
and pconf, where pcon f = 〈W〉/〈Vbox〉, obtained from the simulation data collected in the
GB model in the NPT ensemble, were fitted to Equation (A1) as a two-variable function.
As a result, limiting the fitting procedure to the supercooled liquid state, we found very
satisfactory fits represented by the fitting surfaces in Figure A3 with the values of the fitting
parameters of Equation (A1) collected in Table A1. The values of γEoS obtained from fitting
the pconf VT simulation data to Equation (A1) are slightly larger than those established from
fitting the pVT simulation date to Equation (3) and considerably larger than those evaluated
from the WU correlation. This explains why the density scaling not shown herein with the
scaling exponent values γEoS listed in Table A1 is unsatisfying, similar to that shown in
Figure 4, where we used the scaling exponent values γEoS listed in Table 1.

Table A1. The values of the fitting parameters of Equation (A1) established for all examined
anisotropy aspect ratios in the supercooled liquid state in the GB model. The determination er-
rors of the values of the EoS parameters are estimated as the standard deviation errors found from
fitting all pVT simulation data to Equation (A1) for a given anisotropy aspect ratio.

αr γEoS A0
conf A1

conf A2
conf b0

conf b1
conf

1.30 8.92 ± 0.07 1.2693 ± 0.0002 0.349 ± 0.003 0.077 ± 0.012 62.1 ± 0.3 2.02 ±0.01
1.35 8.94 ± 0.06 1.3155 ± 0.0002 0.393 ± 0.002 0.070 ± 0.012 57.7 ± 0.2 2.07 ± 0.01
1.40 8.96 ± 0.04 1.3553 ± 0.002 0.399 ± 0.005 0.061 ± 0.010 57.2 ± 0.6 1.86 ± 0.05
1.45 9.02 ± 0.06 1.4158 ± 0.0002 0.486 ± 0.004 0.036 ± 0.017 50.9 ± 0.3 2.27 ± 0.01
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represent the fits to the EoS given by Equation (A1) with the value of its parameters collected in
Table A1. In the separate panels, there are the cases shown for the different anisotropy aspect ratios
αr: (a) 1.30, (b) 1.35, (c) 1.40, and (d) 1.45, respectively.
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