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Abstract: Identifying new disease indications for existing drugs can help facilitate drug development
and reduce development cost. The previous drug–disease association prediction methods focused on
data about drugs and diseases from multiple sources. However, they did not deeply integrate the
neighbor topological information of drug and disease nodes from various meta-path perspectives.
We propose a prediction method called NAPred to encode and integrate meta-path-level neighbor
topologies, multiple kinds of drug attributes, and drug-related and disease-related similarities and
associations. The multiple kinds of similarities between drugs reflect the degrees of similarity between
two drugs from different perspectives. Therefore, we constructed three drug–disease heterogeneous
networks according to these drug similarities, respectively. A learning framework based on fully
connected neural networks and a convolutional neural network with an attention mechanism is
proposed to learn information of the neighbor nodes of a pair of drug and disease nodes. The multiple
neighbor sets composed of different kinds of nodes were formed respectively based on meta-paths
with different semantics and different scales. We established the attention mechanisms at the neighbor-
scale level and at the neighbor topology level to learn enhanced neighbor feature representations
and enhanced neighbor topological representations. A convolutional-autoencoder-based module
is proposed to encode the attributes of the drug–disease pair in three heterogeneous networks.
Extensive experimental results indicated that NAPred outperformed several state-of-the-art methods
for drug–disease association prediction, and the improved recall rates demonstrated that NAPred
was able to retrieve more actual drug–disease associations from the top-ranked candidates. Case
studies on five drugs further demonstrated the ability of NAPred to identify potential drug-related
disease candidates.

Keywords: drug–disease association prediction; neighbor topology learning based on meta-paths;
pairwise node attribute encoding; multiple drug–disease heterogeneous networks; fully connected
neural networks and autoencoder based on CNN

1. Introduction

The process of producing a new medicine is typically lengthy, expensive, and fraught
with failure; it may require more than 10 y and cost between USD 0.8 billion and USD
1.5 billion on average [1–5]. Therefore, a method to reduce the time and funding costs for
the development of new medicines must be identified. That approved drugs are subject
to clinical trials endows them with a favorable safety profile. In contrast to developing
a medicine from scratch, using indications for current drugs (drug repositioning) [6] can
effectively reduce research and development costs and accelerate drug development [7–9].

Drug candidates can be further screened for wet laboratory validation using computa-
tional predictions of the relationship between licensed drugs and diseases [10,11]. Several
approaches for predicting drug-related diseases that have been reported can be classified
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into two categories. The first category of methods predicts the disease indications for drugs
based on the integration of multiple kinds of information about the drugs and diseases. A
couple of methods integrate the known drug–disease associations, the drug similarities,
and the disease similarities [12,13]. They estimate the association possibilities between
drugs and diseases by utilizing a logistic regression classifier and matrix decomposition
with a similarity constraint. Wang et al. employed kernel functions to incorporate drug
and disease similarities and applied the support vector machine approach to forecast
drug–disease correlations [14]. Liang et al. applied sparse subspace learning and graph
Laplacian regularization to combine multiple types of drug characteristics to predict drug
indications [15]. To infer drug–disease associations, relevant data from drugs and diseases
are utilized or combined in these strategies. However, the above-mentioned approaches
cannot consider topological information in a network to demonstrate the potential use of a
specific drug.

The second method primarily considers prediction based on the topology of the
network. For example, heterogeneous network models based on diseases, drugs, and
targets are used to infer drug candidates using iterative algorithms [16]. In several methods,
random walk algorithms are employed to predict possible drug–disease associations; in
fact, they have been employed in networks such as drug similarity, disease similarity,
and integrated drug–disease heterogeneity networks [17–21]. However, because these
methods do not consider the attribute information of drug and disease network nodes, they
cannot learn the deep feature representation of nodes. Furthermore, these shallow-model-
based approaches cannot extract potentially complicated relationships between drug and
disease nodes.

Deep learning technologies have been widely utilized for the prediction of miRNA–
disease associations [22] and disease-related lncRNAs [23,24]. Owing to the development
of deep learning, the indications of drug candidates are identified more accurately in recent
approaches by integrating multiple sources of drug- and disease-relevant information.
For the prediction of drug-related diseases, models employing graph convolutional and
fully connected autoencoders with attention mechanisms are used [25]. Xuan et al. [26]
proposed a prediction model comprising a convolutional neural network (CNN) and a
bi-directional long short-term memory (BiLSTM) network. Jiang et al. devised a module
for forecasting drug–disease correlations by employing Gaussian interaction profile kernels
and autoencoders [27]. Deep relationships between drugs and diseases can be extracted
more easily using deep learning models. At the node pair level, however, the present deep
learning approaches cannot combine and incorporate the drug–disease neighbor topology
and attribute information. In addition, when capturing the neighbor topology information
in three heterogeneous networks, the multi-scale meta-paths to obtain the set of neighbor
nodes is important auxiliary information.

Herein, we propose and develop NAPred, a predictive model for capturing, encoding,
and learning the neighbor topology and attribute representation of node pairs from diverse
heterogeneous networks. The primary contributions of our proposed model are as follows:

• Three drug–disease heterogeneous networks were constructed, each with different
aspects of drug similarities, to facilitate the acquisition of topological information
regarding drug and disease nodes from different perspectives. To construct sets of
different types of neighbors of the nodes, multi-scale meta-path sets of drug or disease
nodes were established;

• We present an approach based on fully connected and convolutional neural net-
works with attention mechanisms for learning topological information regarding the
same type of neighbors for drug and disease nodes. Multiple-neighbor feature rep-
resentations extracted from drug and disease nodes were adaptively combined via a
neighbor-scale-level attention mechanism;

• We developed a neighbor-topology-level attention mechanism to distinguish the
contributions and then obtain the neighbor topological representations of the nodes;
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this is because different types of neighbor topological features contribute differently
to drug–disease association prediction;

• The attribute information of the node pairs was extracted from the three heteroge-
neous networks using the proposed embedding mechanism and encoded using a
convolutional autoencoder (CAE). The premise of this embedding mechanism is that
drug–disease pairs are more likely to be associated with each other if they exhibit
similarities or associations with more typical drugs or diseases.

2. Experimental Results and Discussion
2.1. Evaluation Metrics

The performances of all prediction models were analyzed and compared using five-
fold cross-validation. Positive and negative samples were those with known and unknown
drug–disease associations, respectively. We used 4/5 of the positive samples, as well as
4/5 of the random negative samples formed in the training set in each fold of the cross-
validation. The remaining 1/5 positive samples, as well as all negative samples were tested.
The prediction correlation scores of the test samples were generated and ranked; the higher
the rank of the positive sample use cases, the better was their prediction performance.

Several evaluation metrics were used in this study, i.e., the true positive rate (TPR),
false positive rate (FPR), receiver operating characteristic (ROC) curve, area under the
ROC curve (AUC) [28], precision–recall (PR) curve, area under the PR (AUPR) curve [29],
and recall at various top-k. The performances of all models in the cross-validation were
compared based on the average AUC and AUPR.

The AUC is an accepted appraisal metric for comparing algorithms and probabilistic
estimates [30]. The TPR and FPR at various thresholds yield the ROC curve. The sample
was regarded as positive if the predicted association score of a drug–disease pair exceeds a
threshold θ; otherwise, it was considered negative. The fraction of correctly (incorrectly)
detected positive (negative) samples among all the positive (negative) samples is denoted
as the TPR (FPR).

TPR =
TP

TP + FN
, FPR =

FP
TN + FP

, (1)

where TP (FN) represents the number of positive samples correctly (incorrectly) classified
as positive (negative) and TN (FP) indicates the number of negative samples correctly
(incorrectly) categorized as negative (positive) [31,32].

This was due to the uneven distribution of drug–disease candidates. The AUPR curve
provides more information regarding the AUC for assessing the predictive performance [29].
precision and recall were determined as follows:

precision =
TP

TP + FP
, recall =

TP
TP + FN

(2)

where precision indicates the rate of TP samples among those anticipated to be positive and
recall expresses the rate of positive samples accurately recognized among the total positive
samples. The AUC and AUPR curve were calculated using the mean cross-validation [33].
Each fold’s mean AUC and AUPR curve must be calculated, and the final score is the
average of the five results.

Considering that biologists typically choose the top-ranked candidates and confirm
their predictions based on wet laboratory trials, determining the actual drug–disease
connections is critical. Therefore, for the projected outcomes, the recall rates of the top-
k candidate drug–disease pairs were evaluated. The more trustworthy the prediction
performance, the higher is the recall of the top-k.

2.2. Comparison with Other Methods

NAPred is more effective compared with six cutting-edge drug–disease association
forecasting models: GFPred [25], CBPred [26], SCMFDD [13], LRSSL [15], MBiRW [18], and
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HGBI [16]. In the cross-validation, the other six methods were trained or tested using the
same or similar datasets as the NAPred model. The best performance was achieved by
each method when the optimal parameters were used. In particular, lr = 0.001 for GFPred;
lr = 0.001 and λ = 0.12 for CBPred; µ = λ = 0.01, γ = 2, and k = 10 for LRSSL; α = 0.3,
c = −11, d = log(9999), and l = r = 2 for MBiRW; k = 45%, = 1, and λ = 4 for SCMFDD;
α = 0.4 for HGBI.

For each of the 763 drugs, we calculated the AUC and AUPR curve at each fold be-
fore calculating their five-fold mean. The final results were averaged across all AUCs (or
AUPR curves) for the 763 drugs. As shown in Figure 1A, in the comparison of the 763
drugs, NAPred achieved the best mean AUC value among all the methods investigated
(AUC = 0.978), outperforming GFPred by 3.3%, CBPred by 5.2%, SCMFDD by 25.5%, LRSSL
by 14.7%, MBiRW by 15%, and HGBI by 27.6%. The second-best model GFPred successfully
learned multiple attribute representations of nodes and fully extracted topological informa-
tion from multiple heterogeneous networks. This suggests that constructing heterogeneous
networks on the basis of multiple drug similarities and capturing topological information
improved the prediction accuracy. CBPred, LRSSL, and MBiRW extract topology informa-
tion from heterogeneous networks for drug repositioning, where CBPred considers the path
information between pairs of diseases, whereas MBiRW disregards the properties of the
nodes. Hence, CBPred performed better, whereas MBiRW performed worse than LRSSL.
SCMFDD is a matrix-decomposition-based model. The dimensionality reduction process
may cause the lossof low-frequency valid information. Therefore, SCMFDD performed
worse, but better than HGBI; additionally, it did not exploit the multiple similarities of
the drugs. In conclusion, our NAPred achieved the best results owing to the comprehen-
sive learning of the neighborhood topology, as well as the property information of the
drug–disease pairs.
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Figure 1. ROC and PR curves of all the methods of drug–disease association.

As shown in Figure 1B, our method NAPred performed better than GFPred, CBPred,
LRSSL, MBiRW, SCMFDD, and HGBI by 14.8%, 22.8%, 28.4%, 34.6%, 37.8%, and 37.9%,
respectively, based on the AUPR curves of 763 drugs.

In addition, to validate the robustness of our model under multiple datasets, we used
the CC dataset [34] to replace drug-related data and implement another instance of our
method, NAPredDD. We utilized the A (chemistry) data, B (targets) data, and C (networks)
data of CC dataset to replace the original chemical substructure, protein structural domain,
and gene ontology data of the drugs. In Figure 1, the AUC and AUPR of NAPredDD are
still higher than those of the compared methods. The experimental results demonstrated
the good robustness of our model.

To evaluate the impact of cross-validation folds on NAPred performance, we also
performed an additional ten-fold cross-validation. The number of training samples in the
ten-fold cross-validation was larger than that in the five-fold cross-validation. As shown in
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Supplementary Table S1, the AUC and AUPR for the ten-fold cross validation were 0.8%
and 1.3% higher than the five-fold cross validation. NAPred achieved better performance
when the training data were increased.

The Wilcoxon test was used to evaluate the ability of the 763 drugs to predict the
outcomes. NAPred performed much better than the other approaches in terms of the AUCs
and AUPR curves when a 0.05 p-value threshold was used (Table 1).

Table 1. The statistical results of the paired Wilcoxon test on the AUCs over all the 763 drugs by
comparing NAPred and all other five methods.

GFPred CBPred SCMFDD LRSSL MBiRW HGBI

p-value of AUC 5.27051 × 10−25 1.83480 × 10−33 5.49787 × 10−65 5.31080 × 10−47 2.89205 × 10−62 1.74747 × 10−81

p-value of
AUCPR 3.42304 × 10−31 4.72506 × 10−47 1.81013 × 10−71 8.63715 × 10−65 4.68094 × 10−59 4.85712 × 10−89

Figure 2 shows the recall rates of drug candidates for various top-k values. More real
drug–disease associations can be successfully identified using a higher recall rate. The
average recall rate for the 763 drugs was 86.14%, 89.19%, 93.24%, 95.54%, and 97.33% for
the top-30, -60, -90, -120, and -150, respectively. Among the top-30, -90, -150, and -210,
GFPred indicated the second-highest recall rate, with 81.03%, 90.20%, 94.64%, and 97.12%,
respectively. CBPred obtained recall rates of 68.63%, 82.41%, 90.69%, and 94.17% in the
top-30, -90, -150, and -210, respectively, with a slightly lower performance than GFPred.
LRSSL demonstrated a higher recall than MBiRW for the top-30, -60, and -90. The former
model achieved 66.12%, 70.73%, and 74.90% recall rates, whereas the latter obtained recall
rates of 57.65%, 65.30%, and 73.71%, respectively. The recall of SCMFDD was 32.97%,
51.18%, 59.75%, and 66.13% when k was 30, 90, 150, and 210, respectively. HGBI had a
slightly lower recall rate than SCMFDD, i.e., 30.62%, 46.10%, 56.34%, and 63.98% for the
top-30, -90, -150, and -210, respectively.

Top30 Top60 Top90 Top120 Top150 Top180 Top210 Top240
0.0

0.2

0.4

0.6

0.8

1.0

R
ec

al
l

NAPred GFPred CBPred SCMFDD LRSSL MBiRW HGBI

Figure 2. The average recalls of all the drugs under different top-k.

2.3. Case Studies of Five Drugs

Case studies of ampicillin, ceftriaxone, doxorubicin, erythromycin, and itraconazole
were conducted to further illustrate the efficacy of NAPred in drug–disease association
prediction. The association prediction scores for each drug candidate in the descending
order, as well as the top-ten candidates for each of the five drugs are listed in Table 2.

The Comparative Toxicogenomics Database (CTD), which was painstakingly acquired
and validated based on the literature, contains information regarding drugs and their
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effects on human health [35]. DrugBank is a database containing drug-related targets,
mechanisms of action, interactions, and integrated molecular information [36]. A total of
16 candidate diseases are covered by CTD, and 23 candidates are recorded in DrugBank.
This indicates that the disease candidate was receiving effective treatment.

ClinicalTrials.gov, which is the world’s largest searchable clinical trial database, con-
tains data pertaining to clinical studies conducted worldwide; the National Library of
Medicine in the United States contributes to its resources. As supporting material, we only
used experimental records with a “completed” status. PubChem is a public database spon-
sored by the National Institutes of Health that includes information regarding chemicals
and their biological activity, safety, and toxicity [37]. There were 23 candidate diseases
supported by ClinicalTrials.gov, whereas PubChem approved 33 of the candidates. These
records indicate that clinical trials established an association between the candidate disease
and the relevant drug.

Besides manually validated drug–disease correlations, CTD additionally includes
those derived from the literature with temporarily unverified associations. The inferred
section of the CTD contains two candidates, which suggests a more plausible correlation
between the diseases and their corresponding drugs. Among all 50 drug candidates, two
candidates were labeled as “unconfirmed”.

In addition, we conducted case studies on an additional five drugs (betamethasone,
acetaminophen, etoposide, flurbiprofen, and verapamil) and list their top-ten candidate dis-
eases in Supplementary Table S2. There were 42 candidate diseases recorded by CTD. There
were 29 and 42 candidates covered by DrugBank and PubChem. ClinicalTrials contained
20 candidate diseases. This indicates that these candidates are more likely to be associated
with the corresponding drugs. Only one candidate was labeled as “unconfirmed”. All
the above analysis indicated that NAPred had the ability to discover potential candidate
drug–disease associations.



Int. J. Mol. Sci. 2022, 23, 3870 7 of 18

Table 2. The top-10 candidate diseases of 5 drugs.

Drug Name Rank Disease Name Description Rank Disease Name Description

1 Staphylococcal Infections CTD, PubChem 6 Staphylococcal Skin PubChem
Infections

2 Pneumonia, Bacterial ClinicalTrials 7 Streptococcal Infections CTD, ClinicalTrials

Ampicillin 3 Urinary Tract Infections CTD, DrugBank, 8 Osteomyelitis PubChem,
PubChem ClinicalTrials

4 Wound Infection PubChem, ClinicalTrials 9 Postoperative Complications PubChem
5 Proteus Infections Inferred Candidate 10 Bacterial Infections CTD, DrugBank,

by 2 Literature Works ClinicalTrials

1 Escherichia coli Infections CTD, PubChem, ClinicalTrials 6 Salmonella Infections DrugBank, PubChem, ClinicalTrials
2 Urinary Tract Infections DrugBank, PubChem, 7 Enterobacteriaceae Infections PubChem, ClinicalTrials

ClinicalTrials

Ceftriaxone 3 Haemophilus Infections PubChem 8 Septicemia DrugBank, PubChem,
ClinicalTrials

4 Gonorrhea DrugBank, PubChem, 9 Endocarditis, Bacterial DrugBank, ClinicalTrials
ClinicalTrials

5 Gram-Negative Bacterial Inferred Candidate 10 Pseudomonas Infections PubChem
Infections by 1 Literature Work

1 Urinary Tract Infections CTD, PubChem 6 Leukemia, Lymphoid CTD, DrugBank,
ClinicalTrials

2 Leukemia, Myeloid, CTD, DrugBank, 7 Bronchitis CTD
Acute ClinicalTrials

Doxorubicin 3 Escherichia coli Infections CTD 8 Sarcoma CTD, DrugBank,
ClinicalTrials

4 Neoplasms ClinicalTrials, PubChem 9 Gonorrhea Unconfirmed
5 Staphylococcal Infections CTD, PubChem 10 Precursor Cell Lymphoblastic CTD

Leukemia-Lymphoma

1 Gonorrhea DrugBank, PubChem 6 Gram-Positive Bacterial Infections PubChem
2 Gram-Negative Bacterial PubChem 7 Staphylococcal Infections CTD, DrugBank,

Erythromycin Infections PubChem
3 Chancroid DrugBank, PubChem 8 Pneumonia, Mycoplasma Unconfirmed
4 Bacterial Infections DrugBank, PubChem 9 Neurosyphilis PubChem
5 Neisseriaceae Infections DrugBank 10 Chlamydiaceae Infections DrugBank, ClinicalTrials

1 Candidiasis, Cutaneous DrugBank, PubChem, 6 Tinea Capitis DrugBank, PubChem
ClinicalTrials

2 Tinea Versicolor DrugBank, PubChem, 7 Fungemia DrugBank, PubChem,
ClinicalTrials ClinicalTrialsItraconazole 3 Tinea Pedis DrugBank, PubChem 8 Skin Diseases, Infectious PubChem, ClinicalTrials

4 Leishmaniasis CTD, PubChem, 9 AIDS-Related Opportunistic ClinicalTrials
ClinicalTrials Infections

5 Chromoblastomycosis DrugBank, PubChem 10 Candidiasis CTD, DrugBank, PubChem
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2.4. Prediction of Novel Drug-Related Diseases

Finally, we applied the trained NAPred to 763 drugs to predict candidate diseases. The
top-30 drug-related candidate diseases selected by our model are listed in Supplementary
Table S3. They can be used by biologists to facilitate further wet experiments for validation.

3. Materials and Methods

Figure 3 shows our proposed predictive model for drug-related disease candidates;
the model comprises two branches. Three drug–disease heterogeneity networks were first
established to correlate the similarities between drugs and diseases from different perspec-
tives. For the first branch, we obtained the sets of neighbor nodes for drugs and diseases
based on meta-paths of different scales. Neighbor-scale-level and neighbor-topology-level
attention mechanisms are proposed for capturing drug and disease neighbor information,
followed by encoding pairwise neighbor topology representations using convolutional
neural networks. In the second branch, CAE was utilized to learn a pair of drug–disease
attribute representations from the three drug–disease heterogeneous networks. The scores
predicted from the two branches were weighted and summed to obtain the scores for the
corresponding associations. A higher score signifies the higher possibility of an association.
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Figure 3. Framework of the proposed NAPred model. (a) Construct multi-scale meta-path sets and
the sets composed of the same-type neighbor nodes. (b) Encode the attribute vectors of neighbor
nodes of a drug. (c) Encode the attribute vectors of neighbor nodes of a disease. (d) Learn the
neighbor topology of a drug–disease node pair. (e) Learn the attributes of the node pair. (f) Integrate
multiple representations.

3.1. Dataset

Based on previous studies, we obtained drug–disease association data [15], chemical
substructure data of drugs, protein structural domain data of target proteins, and gene
ontology information of target proteins. Initially, data pertaining to drug–disease associa-
tions were obtained in the UMLS [38], which contains information regarding 763 drugs,
681 diseases, and 3051 known drug–disease associations. We extracted drug chemical
substructure data from the PubChem database [39] and drug target protein structural
domain data from the InterPro database [40]. The UniProt database was used to obtain
gene ontology information regarding the target protein of the drug [41]. The numbers
of drug chemical substructures, drug target protein structural domains, and drug target
protein gene ontologies in our dataset were 623, 1426, and 4447, respectively.
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3.2. Establishing Drug–Disease Heterogeneous Networks
3.2.1. Matrix of Drug Properties

Let the matrix Tc denote the case in which each drug contains a chemical substructure,
and Tc ∈ RNr×Nc . Nr and Nc indicate the number of drugs and all relevant chemical
substructures, respectively. A Tc

ij value of 1 implies that drug ri contains the chemical sub-
structure cj, whereas a value of 0 implies otherwise. The vector of the chemical substructure
attributes of ri, which is obtained from the i-th row vector of Tc, is represented as Tc

i .
Let the matrix Tp ∈ RNr×Np denote the cases of protein structural domains discovered

in the respective associated target proteins of Nr drugs; subsequently, Np is the number of
protein structural domains of all drug target proteins. Tp

ij is 1 for the target protein related
to drug ri containing the j-th protein structural, and 0 otherwise. The protein structural
domain attribute vector of ri is obtained from the i-th row of data in Tp.

The matrix Tg ∈ RNr×Ng is used to indicate whether Ng gene ontology information
is included in Nr drugs and their associated target proteins. A Tg

ij value of 1 implies that
the target protein associated with drug ri contains gene ontology gj, whereas a value of 0
implies otherwise. The target protein gene ontology property vector of ri is represented by
the i-th row vector Tg

i .

3.2.2. Establishment of the Drug Network

For two drugs ri and rj, a higher number of identical chemical substructures between
them signifies a higher level of similarity between them. The cosine similarity of their
chemical substructures can be calculated using the strategy previously described by Liang
et al. [15]; in fact, we used it as the first cosine similarity between ri and rj.

Similarly, based on the protein domains or protein-associated gene ontologies in the
two drug-related target proteins, cosine similarity calculations can be applied to determine
the second and third similarities of a drug.

We treated two drug nodes as having connected edges when the calculated drug
similarity exceeded 0. The weights on the edges are expressed as the similarity between the
two drugs (Figure 4). We used the matrices Rc =

[
Rc

ij
]
∈ RNr×Nr , Rp =

[
Rp

ij
]
∈ RNr×Nr ,

and Rg =
[
Rg

ij
]
∈ RNr×Nr to denote the drug networks obtained based on the similarity

of the three drugs. For instance, based on the chemical substructure, Rc
ij represents the

similarity between ri and rj.
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Figure 4. Construction of three heterogeneous networks based on multiple kinds of drug similarities,
drug–disease associations, and disease similarities.

3.2.3. Establishment of the Disease Network

The similarity of diseases was calculated to establish disease networks. Wang et al. [42]
computed the similarity between diseases using their directed acyclic graph (DAG). A
DAG that includes all semantic terms associated with a disease can be used to illustrate the
disease. A higher number of disease terms in the DAGs of two diseases implies a higher
semantic similarity between them. The corresponding edges between any two diseases
can be added if their similarity exceeds 0. The weights on these edges reflect the similarity
between the two diseases. The matrix D = [Dij] ∈ RNd×Nd represents the disease network,
with Dij denoting the semantic similarity of diseases di and dj. The attribute vector of di is
denoted as Di.

3.2.4. Drug–Disease Heterogeneous Network

Connecting edges were added to link the nodes among the three drug networks and a
disease network using existing drug–disease association data (Figure 4). Let the association
matrix A ∈ RNr×Nd denote the association between drugs and diseases, and let Aij = 1 if
edges connected between ri and dj exist and Aij = 0 if no connection exists.

The matrix U1 =

[
Rc A
AT D

]
∈ R(Nr+Nd)×(Nr+Nd), which is derived from the first drug

similarity, drug–disease association, and disease semantic similarity, represents the first
drug–disease heterogeneous network.

Similarly, regarding the second and third drug similarities, the second and third
drug–disease heterogeneous network can be generated. These two heterogeneous net-

works can be represented by U2 =

[
Rp A
AT D

]
∈ R(Nr+Nd)×(Nr+Nd) and U3 =

[
Rg A
AT D

]
∈

R(Nr+Nd)×(Nr+Nd).
We denote these three drug–disease heterogeneous networks by Um, where m ∈

{1, 2, 3}.
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3.3. Neighborhood Topology Encoding
3.3.1. Multi-Scale Meta-Path Sets

The meta-path [43] can be expressed as a path shaped as G1
R1 G2

R2 · · · Rt Gt
(abbreviated as G1G2 · · ·Gt). The complex relationship of node types G1 and Gt is described
by R = R1 ◦ R2 ◦ · · · ◦ Rt. Two nodes can be connected to each other via different meta-
paths in a heterogeneous drug–disease network. Figure 1 shows the manner by which
drugs r1 and r4 can be connected by meta-paths r − r − r and r − d − r, with different
meta-paths showing different semantics. For example, in r1 − r2 − r4(rrr), drugs r1 and r4
may be similar if both have functions similar to r2. In r1 − d5 − r4(rdr), an association is
indicated between both drugs and d5, suggesting that r1 may be similar to r4.

Based on the structural information from Um, we can obtain the first-order meta-paths
of drug nodes with r− r and r− d to form the set P(1)

r = {rr, rd} of the first-order meta-
paths of the drug nodes. Similarly, the second-order meta-paths of the drug nodes include
r− r− r, r− d− r, r− r− d, and r− d− d, which form set P(2)

r = {rrr, rdr, rrd, rdd} of the
second-order meta-paths of the drug node. Finally, we obtain set P(k)

r (P(k)
d ), k = 1, 2, . . . , K

of the multi-scale meta-paths of the drug (disease) nodes.

3.3.2. Neighbor Sets Based on Meta-Paths at Different Scales

For node ri(dj) and the set of meta-paths P(k)
r (P(k)

d ), we can capture the drug nodes or
disease nodes connected to ri(dj) based on meta-paths of different scales. This results in a

set of drug neighbor nodes NR
(k)
ri (NR

(k)
dj

) and the disease neighbor node set ND
(k)
ri (ND

(k)
dj

)

at different scales of ri(dj), where the first-order neighbors of the node include itself.
For the drug (disease)-type neighbors of ri(dj), we calculated the top-Nk neighbors that

were the most similar to ri(dj) based on their similarity to all other drugs (diseases). For the
disease (drug)-type neighbors of ri(dj), the disease (drug) nodes associated with ri(dj) were
ranked based on their occurrence frequency, and the top-Nk nodes of the ranking were
retained as neighbors of ri(dj).

As shown in Figure 3, for r1 and the set of meta-paths P(1)
r and P(2)

r , assuming Nk = 3,
we can obtain the first-order drug neighbor nodes of r1 based on P(1)

r via meta-paths r− r,
retain the three top-ranked neighbors of r1, and obtain the set NR

(1)
r1 = {r1, r2, r4}. Similarly,

r1 captures and retains the top-Nk disease neighbors via meta-paths r− r− d and r− d− d
in P(2)

r , thereby forming its second-order disease neighbor set ND
(2)
r1 = {d2, d5, d6}.

3.3.3. Aggregation of Multi-Scale Neighbor Features

We propose a fully connected neural network with mean aggregation [44] to effectively
combine the network topology in Um with the characteristics of same-type nodes to learn
the low-dimensional features of same-type neighbors at different scales. Because the
learning frameworks of both drug and disease nodes are similar, we describe ri and its
drug (disease)-type neighbors as an example.

For the kth-order drug neighbor set NR
(k)
ri of ri, the attribute vector frn of its neighbor

node rn ∈ NR
(k)
ri can be obtained from the drug attribute matrix (Tc, Tp, Tg) corresponding

to Um. Because frn is high-dimensional and sparse, we first performed the mean aggregation
of the attribute vectors of the kth-order drug neighbors of ri, and the aggregated vector
hR

(k)
ri is expressed as:

hR
(k)
ri = mean

({
fri , . . . , f rn

, . . .
})

, rn ∈ NR
(k)
ri (3)

Subsequently, we project hR
(k)
ri into the low-dimensional feature space through a fully

connected network and obtain the low-dimensional kth-order drug neighbor feature vector
uR

(k)
ri as follows:
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uR
(k)
ri = σ

(
W(k)

R hR
(k)
ri + b(k)R

)
(4)

where σ denotes the activation function ReLU [45], W(k)
R the weight matrix when the

neighbor type is a drug, and b(k)R the bias vector. K denotes the total number of orders, and
K = 2 in our model.

3.3.4. Same-Type Neighbor Topology Encoding Based on Neighbor-Scale-Level Attention

Because the drug (disease)-type neighbor node information at different scales of ri
contributes differently to the learning of the drug (disease) neighbor topological represen-
tation of ri, we established a neighbor-scale-level attention to learn the attention weights
of order 1-k neighbor feature vectors of the same type. For the kth-order drug neighbor
feature uR

(k)
ri of ri, with attention score sScale

k ,

sScale
k = h

Scale
tanh

(
WScaleuR

(k)
ri + bScale

)
, (5)

where hScale is the weight vector at the neighbor scale level; WScale and bScale are the weight
matrix and bias vector, respectively. The normalized attention coefficient is αScale

k , which
can be obtained using the so f tmax function, as follows:

αScale
k =

exp
(

sScale
k

)
∑n∈K exp

(
sScale

n
) (6)

The drug neighbor topology representation uRri
of ri obtained using the attention mecha-

nism is:

uRri
= ∑

k
αScale

k uR
(k)
ri (7)

3.3.5. Neighbor Topology Encoding Based on Attention Enhancement at the Neighbor
Topology Level

ri contains two types of neighbor nodes, drug and disease, whose neighbor topologies
are represented as uRri

and uDri
, respectively. However, the importance of different types

of neighbor nodes for association prediction varies, and neighbor-topology-level attention
is proposed to enhance the neighbor topology representation of ri. The attention score for
the same-type neighbor topology representation of ri is:

sTopo
t = h

Topo
tanh

(
WTopoutri + bTopo

)
, (8)

where t ∈ {R, D}, WTopo and hTopo are the neighbor-topology-level weight matrix and
weight vector, respectively, and bTopo is a bias vector. The normalized attention weights
α

Topo
t are expressed as follows:

α
Topo
t =

exp
(

sTopo
t

)
∑n∈2 exp

(
sTopo

n

) (9)

Finally, the augmented representation of the ri neighbor topology obtained using the
attention mechanism is uri , expressed as follows:

uri = ∑
t

α
Topo
t utri (10)

Here, u(m)
ri denotes the neighboring topological representation obtained by ri in Um, where

m ∈ {1, 2, 3}.
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Similarly, the neighbor topology representation u(m)
dj

of dj in Um can be obtained. These
neighboring topological representations are used to form the feature matrices S of ri–dj
node pairs, as follows:

S =

u(1)
ri u(2)

ri u(3)
ri

u(1)
dj

u(2)
dj

u(3)
dj

 ∈ R2×(N f +N f +N f ), (11)

where N f denotes the dimension number of the neighbor topology representation.

3.3.6. CNN-Based Pairwise Neighbor Topology Encoding

The feature matrix of the first branch S is passed into the CNN, which learns the ri–dj
neighbor topology representations. We filled the periphery of S with zeros to learn the
edge features of S and then obtained the new matrix Ŝ.

We established a CNN module using convolutional and pooling layers. The filter
length and breadth relative to the convolution layer are denoted by wl and wh, respectively;
a total of nconv filters were used. After applying the convolution filter Wconv ∈ Rwl×wh×nconv

to Ŝ, a feature map Z ∈ Rnconv×(4−wl+1)×(2+N f +N f +N f−wh+1) was generated. Ŝk,i,j repre-
sents the sliding of the k-th filter to position (i, j) of Ŝ, and it is defined as:

Ŝk,i,j = Ŝ(i : i + wl , j : j + wh), Ŝk,i,j ∈ Rwl×wh , (12)

where i ∈ [1, 4− wl + 1], j ∈
[
1, 2 +

(
N f + N f + N f

)
− wh + 1

]
, and k ∈ [1, nconv]. The

element value Zk(i, j) of the filter Wk,i,j sliding on Ŝk,i,j to Zk is:

Zk(i, j) = σ
(

Wk,i,j ∗ Ŝk,i,j + b(k)
)

, (13)

where σ is the ReLU function and b the bias vector. The position (i, j) in the feature map Zk
is represented by Zk(i, j).

The more significant features of Zk were extracted using the max-pooling layer. The
filter length of the max-pooling layer is we, and the width is wb. The k-th feature map of all
feature maps P output by the pooling layer is Pk, and Pk(i, j) can be calculated as:

Pk(i, j) = Max(Zk(i : i + we, j : j + wb)), (14)

where i ∈ [1, 5− wl − we + 1], j ∈ [1,
(

N f + N f + N f

)
+ 3 − wh − wb + 1], and k ∈

[1, nconv].
In the CNN module, we set the number of filters in the convolutional layer to 16, the

kernel size to 2 × 2, and the stride size to 1. In the pooling layer, the kernel size was set to 2
× 2, and the step size and zero-padding were set to 1 and 0, respectively. After performing
processing in the convolution and max-pooling layers, the output vector zNT was obtained.
Subsequently, zNT was input to the fully connected and so f tmax layer [46], which yielded
the association probability distributed for the first branch, as follows:

ScoreNT = so f tmax(Wso f t1zNT + bso f t1), (15)

where Wso f t1 is the first branch of the fully connected layer’s weight matrix and bso f t1 is the
corresponding bias vector. ScoreNT indicates the association probability distribution for
the C(C = 2) classification, including the likelihood of a drug and disease being associated
and otherwise.

3.4. Encoding Pairwise Node Attributes
3.4.1. Attribute Embedding Matrix for Drug–Disease Pairs

We introduced an embedding strategy to extract the nodal attributes of drug–disease
pairs (Figure 5). If ri(dj) is similar (related) to a more typical drug or related (similar) to a
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disease, then ri–dj is likely to be related. Therefore, information regarding the properties of
drugs and diseases must be learned from the pairwise node level.
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Figure 5. Illustration of constructing an attribute embedding matrix for a pair of drug and dis-
ease nodes.

For a heterogeneous drug–disease network Um, Um
i contains the m-th similarity of ri

with all drugs and the association with all diseases, and Um
Nr+j contains the association of dj

with all drugs and the similarity with all diseases. Therefore, we used the attribute vectors
Um

i and Um
Nr+j(m = 1, 2, 3) to perform splicing such that the attribute embedding matrix P

of ri and dj can be obtained. P is expressed as follows:

P =

[
U1

i U2
i U3

i
U1

Nr+j U2
Nr+j U3

Nr+j

]
∈ R2×((Nr+Nd)×3), (16)

where P has a dimension of 2× ((Nr + Nd)× 3).

3.4.2. CAE-Based Pairwise Node Attribute Encoding

Because the node attribute matrix P obtained from the three heterogeneous networks
is high-dimensional and sparse, meaningless and non-representative information may be
present. Therefore, we performed encoding and decoding based on a CAE to comprehen-
sively learn the attribute information of drug–disease pairs in the original data distribution,
as shown in Figure 3.

Encoder: Two hidden layers, each comprising a convolutional layer and a max-pooling
layer, constitute the encoder. The edge features of P should be preserved and learned via
zero-padding. The first hidden layer uses the zero-padded P as input and yields the feature
map Z(1)

Encoder encoded as:

Z(1)
Encoder = max

(
σ
(

W(1)
Encoder ∗ P + b(1)Encoder

))
(17)

Subsequently, the feature map of the t-th layer Z(t)
Encoder is generated as follows:

Z(t)
Encoder = max

(
σ
(

W(t)
Encoder ∗ Z(t−1)

Encoder + b(t)Encoder

))
(18)
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where σ is the ReLU function. W(t)
Encoder denotes the encoder’s t-th hidden layer’s weight

matrix, and b(t)Encoder is the corresponding bias vector. t = 2, . . . , LEn. LEn indicates the
encoder’s total number of layers, and the convolution computation is indicated by “∗”;
max denotes the max-pooling processing for capturing the most critical features within
every feature map by downsampling the potential representations acquired from the
convolution layer.

Decoder: Using the decoder, we projected the Z(LEn)
Encoder code such that it returns to its

initial space and reassembled it to obtain the decoding matrix. The variance between the
decoding matrix and the initial matrix P was evaluated, and an optimal coded feature map
was obtained. Three hidden layers, each with a transposed convolutional layer, constitute
the decoder. For Z(LEn)

Encoder as the input of the first hidden layer of the decoder, the feature

map Z(1)
Decoder is obtained as follows:

Z(1)
Decoder = σ

(
W(1)

Decoder?Z(LEn)
Encoder + b(1)Decoder

)
(19)

Z(l)
Decoder = σ

(
W(l)

Decoder ? Z(l−1)
Decoder + b(l)Decoder

)
(20)

where W(l)
Decoder is the weight matrix of the decoder and b(l)Decoder is the decoder’s bias vector.

l = 2, . . . , LDe. A total of LDe decoder layers are involved. The operator “?” indicates the
transposed convolution computation. The reconstructed matrix P̂ is the output Z(LDe)

Decoder of
the last layer of the decoder.

Optimization: Our optimization objective was to render P̂ as consistent as possible
with the input P. The loss function is expressed as:

lossauto =
1

Ttrain

Ttrain

∑
n=1

(
Pn − P̂n

)2, (21)

where P is the input of the encoder, P̂ the output at the decoder, Ttrain the number of
training samples, and Pn the embedding matrix of the nth drug–disease pair in the cor-
responding training sample. Adam’s algorithm [47] was used to optimize lossauto. The
back propagation [48] approach was used to train the CAE and update lossauto. Using the
iterative algorithm, the pairwise property encoding was regarded as the output Z(LEn)

Encoder of
the last encoder layer, denoted by FPA.

To acquire the association probability of the second branch of node pair ri–dj ScorePA,
FPA was processed in the fully connected and so f tmax layer. ScorePA is expressed as:

ScorePA = so f tmax(Wso f t2FPA + bso f t2), (22)

where Wso f t2 and bso f t2 are the weight matrix and bias vector of the fully connected second
branch, respectively. ScorePA is the association probability distribution for the C(C = 2)
classification.

3.5. Final Integration and Optimization

The loss function in the first branch can be expressed as the cross-entropy between the
true label yNT and the drug–disease association prediction result ScoreNT , as follows:

lossNT = −
Ntrain

∑
i=1

C

∑
j=1

yNT j log
(

ScoreNT j

)
, (23)

where Ntrain is the set of training samples and yNT j represents the probability of a drug–
disease association. If an ri–dj pair has an association, then yNT j is 1; otherwise, it is 0. In
the second branch, the cross-entropy loss function lossPA is defined as:
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lossPA = −
Ntrain

∑
i=1

C

∑
j=1

yPA j log (ScorePA j) (24)

We trained the loss functions lossNT and lossPA separately until their minimum values were
attained. The final correlation prediction score is calculated as follows:

Score = λ× ScoreNT + (1− λ)× ScorePA, (25)

where λ denotes a hyperparameter that ranges from 0 to 1 and was used to measure the
contribution of neighboring topologies and pairwise node attributes to the association
prediction score.

4. Conclusions

We proposed the NAPred method to determine the association between drug can-
didates and diseases. The three proposed heterogeneous networks facilitated neighbor
topology extraction and pairwise node attribute embedding using multiscale meta-paths.
A framework comprising a convolutional neural network with attention mechanisms and
CAE was constructed to encode and integrate neighbor topological representations and
pairwise attribute representations. Two attention mechanisms were proposed to assign
greater weights to multi-scale features and topologies. NAPred’s ability to discover poten-
tially relevant diseases for drugs was validated through case studies and a cross-validation
of five drugs. Numerous experimental results showed that NAPred’s predictions outper-
formed existing methods. Our predictive model serves as a tool for screening to recognize
potential drug–disease associations, thereby allowing biologists to conduct wet laboratory
research for determining real drug–disease associations.
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