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Abstract: Targeted drug delivery in the brain is instrumental in the treatment of lethal brain diseases,
such as glioblastoma multiforme, the most aggressive primary central nervous system tumour in
adults. Infusion-based drug delivery techniques, which directly administer to the tissue for local
treatment, as in convection-enhanced delivery (CED), provide an important opportunity; however,
poor understanding of the pressure-driven drug transport mechanisms in the brain has hindered
its ultimate success in clinical applications. In this review, we focus on the biomechanical and
biochemical aspects of infusion-based targeted drug delivery in the brain and look into the underlying
molecular level mechanisms. We discuss recent advances and challenges in the complementary field
of medical robotics and its use in targeted drug delivery in the brain. A critical overview of current
research in these areas and their clinical implications is provided. This review delivers new ideas and
perspectives for further studies of targeted drug delivery in the brain.

Keywords: convection-enhanced delivery; brain; infusion; fluid flow; mass transport; tissue deformation;
molecular interactions

1. Introduction

Tumours in the central nervous system (CNS) are some of the most prevalent, lethal
and yet poorly treated diseases within the brain. Glioblastoma multiforme (GBM), a grade
IV glioma, is the fastest-growing and most aggressive malignant primary CNS tumour in
adults. It primarily occurs in older patients, with an average age of 64 years at diagnosis.
Survival rates are poor, with approximately 40% survival in the first year post diagnosis and
17% in the second year. GBMs lead to about 250,000 deaths per year worldwide, and their
treatment cost in Europe in 2010 was about 5.2 billion euros [1–3]. Conventional techniques
such as chemotherapy and radiation are not effective in treating GBM. They either suffer
from limitations in passing drugs through the blood–brain barrier (BBB) or unwanted drug
distribution throughout the tissue due to passive diffusion and poor delivery to the target,
or they are not viable because of severe side effects, e.g., localised tissue damage [4–6]. The
drug effects within the CNS are driven by the concentration–time profile at the target site,
and therefore, drugs need to reach the target for as long as needed and in an appropriate
concentration, neither of which is easily achievable with conventional diffusion-based
delivery methods. To overcome these challenges, an emerging approach is infusion-based
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targeted drug delivery, such as convection-enhanced delivery (CED), performed with
robotic steerable needles [7,8].

Recent advancements in medical robotics through technical innovations has led to signifi-
cant improvements in CED-like technologies [9,10]; however, ultimate success in the clinical
applications of these systems remains a goal to be accomplished [7]. Current embodiments
suffer from a lack of precise information and reliable experimental data on the flow behaviour in
the brain, which limits the development of precise numerical models and their implementation
in automated surgical systems. In fact, to progress towards a reliable and automated system
for infusion-based targeted drug delivery to the brain, advancements on four fronts are to be
made: (1) characterisation and understanding of drug flow behaviour in complex brain tissue,
(2) developing realistic models based on experimental data that can predict drug infusion at
the pre-operative stage, (3) technical innovation in drug delivery tools, and (4) their clinical
deployment in Randomised Controlled Trials (RCTs). Please note this paper focus on GBM as a
relevant example, but the strategies can also be used for treating other pathologies in the brain
including Parkinson’s disease and Alzheimer’s disease [7,11].

This review aims to summarise the concepts, recent advances and limitations in brain
tissue characterisation for applications in CED-like technologies, modelling the infusion-
based drug flow in complex anisotropic brain tissue and the use of specific drugs for the
treatment of lethal brain tumours. Furthermore, we discuss the current state of the art of
robotic steerable needles for drug delivery in the brain and their clinical implications.

2. Brain Tissue: A Complex System for Diffusion-Based Drug Delivery

The brain is a biological system mainly composed of neurons and neuroglia and
possesses extreme complexity arising from the interaction of about 86 billion neurons
and 100 trillion connections [12]. A prominent obstacle to the drug transport inside the
brain is the BBB, which separates blood from the brain. The BBB, primarily formed by
brain capillary endothelial cells connected by tight junctions that constitute the walls of
the brain capillaries, is a selective barrier that tightly regulates the movement of ions,
molecules and cells between the blood and the CNS. Properties of drug such as molecular
weight and affinity for a lipid environment affect their ability to pass BBB. The BBB allows
small molecules to pass through but not macromolecules [13,14]. In addition, transport
of even small drug molecules across the BBB is affected by helper molecules that move
drugs from the blood to the brain. The drug may bind to targeted binding sites and to
other tissue components that should be non-binding sites, affecting the final concentration–
time profile of the drug at target site, which determines the pharmacodynamic effect
over time [15]. Inside the brain, several factors can influence drug distribution, e.g., bulk
flow of extracellular fluid (ECF), cerebrospinal fluid (CSF) and extra-cellular exchange.
Furthermore, once having crossed the BBB, drug distribution within the ECF is also affected
by the tortuosity of the tissue, leading to a relatively smaller effective diffusion [16,17].

Specially, the CNS tissue as an anisotropic composite material is a complex system for
drug flow and distribution. Biomechanically, it can be broadly characterised by the stiff
directional axons wrapped in insulating lipid-rich layers (myelin) that are supported by a
soft matrix composed of glial cells and a network of biopolymers, the extracellular matrix
(ECM). The directional axons can be a mechanical obstacle to drug diffusion and spatial
distribution in the CNS tissue [18,19]. The presence of elongated axons can compel the
drug particles to diffuse around fibre-like obstructions, hence the increased tortuosity and
reduced effective diffusion. Furthermore, inside the tissue, it is the ECM that regulates the
local transport of molecules. It provides selective filtering for nanoparticles (NPs) through
its interactions. The filtering properties of the ECM can be deleterious for diffusion-based
drug delivery and could perturb their flow behaviour and spatial distribution [20–22]. For
example, it has been shown that presence of surface charge on particles can significantly
suppress their diffusion in the ECM [23]. The role of ECM in drug flow is further discussed
in detail in Section 3.2.
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In brief, drug transport by diffusion often suffers from the loss of macromolecules
across the BBB, binding to the receptors and uptake into cells. This issue complicates brain
disease treatment by diffusion-based drug delivery therapies; therefore, no promising
results have been achieved.

3. Infusion-Based Drug Delivery in CNS Tissue

Infusion-based transport provides an opportunity to overcome most of the challenges
faced by drug delivery via diffusion in the CNS tissue. In contrast to the diffusion-based
approach, which relies on concentration gradients, a positive pressure gradient drives the
flow to the targeted area, also known as convective transport. There is a growing interest in
understanding the pressure-driven drug delivery and underlying mechanisms for applica-
tions in CED-like technologies; however, challenges still exist. The main challenges include
the unexpected relationship between drug distribution patterns and infusion parameters
(such as the infusion rate, infusion volume and catheter angle), as well as backflow develop-
ment, tissue edema and disruption of active tissue/BBB [7]. These, together with additional
complexities due to brain tissue characteristics such as anisotropy and heterogeneity, lead
to unexpected drug distribution patterns [24]. Progress mostly suffers from the lack of
precise information and experimental data on how drug flow in CNS tissue is affected by
its components (Figure 1), which could provide a fundamental mechanism to develop pre-
dictive models for drug flow and distribution. This problem is two-fold: (1) biomechanical
aspects of infusion-based transport, i.e., understanding of flow field in CNS tissue and
its corresponding mechanical response and (2) the molecular process involved between
the drug and tissue components that influence drug flow and distribution. In this section,
we will look into experimental studies focused on these aspects of infusion and discuss
how a detailed knowledge of these processes, once developed, would eventually lead to
predicting the drug flow and distribution in CNS tissue.

Figure 1. The CNS components that offer major resistance to drug flow and distribution.

3.1. Biomechanical Aspects of Infusion-Based Drug Flow

Brain tissue is a soft porous composite material. When characterising its mechanical
behaviour, earlier studies treated the tissue as a single-phase viscoelastic material [25–30]
and ignored the influence due to possible relative motion of fluid through the tissue’s
solid constituents. However, the explorative work of Franceschini et al. [31] showed that
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brain tissue exhibits consolidation-type behaviour in quasi-static deformation, i.e., pore
flow deforms the solid matrix and fluid drainages from interstitial space. This, together
with other advances in revealing the importance of fluid phase in physiological activities
and evidence in the mechanical response of the tissue [32], has dictated the growing
consensus of treating this soft tissue as a biphasic continuum, where a porous solid matrix
is saturated with interstitial fluid [8,33–35]. It has been shown that infusion pressure can
deform the CNS tissue and perturb the fluid flow behaviour [18]. Therefore, the localised
mechanical properties of CNS have a key role in determining the pressure-driven flow
behaviour and knowledge of both porous and viscous characteristics, such as hydraulic
permeability, and the stiffness and compressibility of solid matrix is essential, e.g., for
developing computational models that predict drug transport and interstitial flow in CNS.
The existing experimental findings of such parameters at relevant length scales are rare,
and results from computational models are often dependent on a number of assumptions
which are difficult to verify, e.g., the constitutive parameters used in theoretical models of
hydraulic permeability vary by up to three orders of magnitude [35–40].

Traditionally, the mechanics of brain tissue have been investigated using a range of
different experimental techniques that measure the relevant properties at different length and
time scales as well as different boundary and drainage conditions [31,41–47]. This results in
discrepancies in experimentally observed parameters. For instance, the hydraulic permeability
of biological specimens can be determined by compression [48,49], perfusion, i.e., drug deliv-
ery from a source with cross sectional surface comparable to the tissue dimensions [50–52] and
infusion, i.e., localised drug delivery to a tissue from a point source (catheter’s tip) [52–54].
Initial experimental studies employed perfusion [37] and compression [31] approaches
to determine brain hydraulic permeability; however, they did not consider the localised
tissue heterogeneities due to the large size of the samples employed in their investigation.
Moreover, the adopted perfusion set up in [37] is not compatible with infusion-based drug
delivery methods. Therefore, the measured values cannot be used in developing models for
localised drug delivery. Similarly, Greiner et al. [47] investigated the hydraulic permeability
of human brain tissue using a compression approach; however, at the scales captured using
large size samples, they also ignored the anisotropy of white matter, which is acceptable
when studying the homogenised response of the tissue to deformation in the range of a
few millimeters. This is not the case when localised processed are invoked, which are
dominated by the tissue architecture in the sub-millimeter range. It is worth noting here
that the anisotropy of the CNS tissue due to the directionality of the axons’ bundles [55,56]
is an important factor to consider not only in drug infusion but also in its distribution after
infusion and is critical in determining the efficacy of CED [57]. In contrast to compression
and perfusion approaches, the infusion-based approach employed in our previous study
to determine localised hydraulic permeability provided accurate quantitative information
including the effect of directionality of axons on fluid flow. The hydraulic permeability
was ∼65% lower when the flow was perpendicular to the axons than when the flow was
parallel to the axons. The dependence of tissue hydraulic permeability on microstructural
anisotropy has also been appreciated in previous computational findings [57].

Furthermore, microstructural heterogeneities among different regions of CNS tissue
can affect the flow behaviour and distribution, though little is known about the detailed
microstructure of CNS tissue. Only a recent study on fixed tissue of sheep brain has re-
vealed localised microstructural differences such as axon volume fractions and geometry in
specific regions, i.e., the corpus callosum, corona radiata and fornix of CNS [58]. Appreci-
ating this fact, Vidotto et al. [19] used a computational approach and found a significant
difference between hydraulic permeability in the corpus callosum and fornix. Using 3D
reconstructed microstructure from electron microscopy images, they computed the corre-
sponding permeability considering the tissue structure is mainly composed of directional
axons. This is a significant finding; however, it is yet to be complemented by experimental
findings. Additionally, experimental studies, which have looked in the different regions of
CNS tissue and investigated the localised infusion mechanisms, are lacking.
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During the infusion, CNS tissue is locally subjected to hydraulic pressure. This can lead
to microstructural deformation that can affect the hydraulic permeability. For example, our
recent study has revealed that the CNS tissue’s hydraulic permeability nonlinearly changes
with infusion pressure [18]. Several factors can influence CNS deformation including
infusate volume, tissue characteristics such as anisotropy or pre-existing conditions, e.g.,
edema due to hydrocephalus. The edema can also form due to infusion when the interstitial
fluid (IF) volume increases and the low hydraulic permeability does not allow rapid
distribution of the fluid. Edema refers to the condition where IF volume expansion or
increased water content above the normal level (e.g., in hydrocephalus) produces swelling.
This disturbance of solid and fluid volume balance affect drug flow and distribution, and
the extent depends on the compliance of the CNS components [59,60]. It is important to
note that due to anisotropy, the preferred deformations in CNS would be axon bundles
being spread apart and not elongating [18]. Such microscopic expansion in CNS can also
contribute to macroscopic deformation and cause the additional issue of backflow, i.e., the
drug flowing back at the tissue–catheter interface.

Localised deformations can affect flow behaviour; however, detailed knowledge is
yet to be developed to address existing limitations. Traditionally, Darcy’s law has been
used to characterise the resistance to flow in a porous medium. The same is widely applied
to quantify the hydraulic permeability of tissues, including CNS [18]. However, in the
case of deformation in CNS tissue, the microstructure changes and therefore Darcy’s law
needs to be modified to account for changing microstructure. It is not clear how the CNS
microstructure changes because of infusion pressure and what is the relation between
infusion pressure and deformation at the CNS components scale. For example, considering
axons and ECM, the factors include whether axons are compressed, deformed or dislocated
in ECM with respect to other accessory cells.

Another important biomechanical aspect of infusion-based flow is the tissue response
to applied pressure. It is crucial to understand the mechanical behaviour of CNS tissue to
understand, e.g., localised deformation at the tissue components scale. The mechanical char-
acteristics of CNS tissue have been widely investigated using both macro and microscale
experimental approaches [33]. Most of such characterisation is focused on the viscoelastic
solid phase [61]; however, experimental investigations at the relevant length scale were able
to capture the poroelastic effect as well [31,47,62]. Such experimental results are explained
by treating brain tissue as a biphasic material. The basic biphasic theory assumes that
under compressive loading, the relative motion between elastic solid phase and inviscid
fluid phase develops a dissipation that governs the overall viscoelastic behaviour of the
soft, porous tissue.

The basic biphasic model of soft tissues initially introduced by Mow et al. [63] for
cartilage has been extended to integrate the non-linear elasticity of the solid phase under
finite deformation and strain-dependent hydraulic permeability [64,65]. The experimental
findings of flow-independent viscoelastic characteristics in cartilage led to the further
addition of intrinsic viscoelasticity of the solid phase to the biphasic model [66,67], the
so-called poro-viscoelastic (PVE) model. Such biphasic models have been applied to
experimental results of mechanical testing on brain tissues in order to understand the
mechanical characteristics [62,68]. Further details on the modelling of brain tissue can be
found in Section 4.

Traditionally, the biphasic analysis of PVE behaviour of biological tissue considers a me-
chanically homogeneous porous solid phase and an interstitial fluid [69]. Cheng et al. [70] dis-
cussed the PVE behaviour of WM from macroscale stress relaxation experiments in unconfined
compression without considering the consequences of localised mechanical heterogeneities
of solid phase. Theoretical models such as those of Mehrabian et al. [71,72], which were
developed to understand the PVE behaviour of macroscale experimental hydrocephalus
data of brain tissue, also do not consider micromechanical details. However, solid-phase
CNS tissue possesses micromechanical heterogeneities due to the presence of distinct tissue
components, e.g., axons and ECM. Previous studies on isolated axons and ECM have
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reported several orders difference in their stiffness (Young’s modulus E of an isolated axon
is ∼9.5 kPa [73] and only a few hundred Pascal of ECM [74]). Additionally, our recent
study has revealed this difference when these components are in their natural environment.
The stiffness of ECM is lower than that of axons, and the E of ECM when compared to
axons is ∼47%, ∼42% and ∼25.6% lower in corpus callosum, corona radiata and fornix,
respectively [61]. Furthermore, the existing trend in the literature can also be attributed to
the absence of evidence that heterogeneities in the micromechanical environment affect
flow behaviour. However, this has been recently provided by our experimental [18] and
computational studies [19]. The emerging evidence of the microstructurally driven hetero-
geneous response of brain white matter to infusion pressure due to the deformability of
axons and ECM strengthens the idea of modifying the traditional Darcy’s law and adopting
a multiscale approach [75].

This progress in the biomechanical characterisation of CNS tissue for drug deliv-
ery applications is encouraging; however, this also clearly highlights the remaining un-
solved problems. In particular, more experiments at a relevant length scale are needed
to characterise CNS tissue and generate precise data to address questions such as the
experimental determination of the permeability of different regions of CNS tissue, the
pressure-dependence of hydraulic permeability, the localised deformation and edema for-
mation with infusion pressure, and the mechanical behaviour of CNS components as well
as the way they respond to pressure.

3.2. Chemical Aspects of Infusion-Based Drug Flow: Molecular-Level Mechanisms

The current research is focused on the biomechanical aspects of infusion-based drug
delivery; however, the chemical processes involved among the drug molecules and targeted
tissue components as well as their surroundings have a crucial role and must not be ignored.
In particular, the ECM in CNS is composed of hundreds of different biomolecules, mostly
proteins and glycans (carbohydrate-based polymers made by all living organisms)—see
Figure 2—that are covalently bonded in different configurations [76]. The ECM compo-
nents, i.e., collagens, fibronectin, integrins, elastin and microfibrillar proteins, have explicit
physiochemical properties and fulfil specific biological functions through various chemical
interactions. These interactions act in highly complex and organised ways and drive pro-
cesses including regulating interstitial fluid transport by selective filtering [21,22,77]. The
presence of these molecules, chemically speaking a source of various interactions, also in-
fluences and perturbs the transport and distribution of external molecules or drug particles
that try to traverse and reach, e.g., cancer cells. It has been observed that in the presence of
cancer cells in CNS, the ECM relative volume and component density in comparison to
other cells of the tissue matrix significantly increases. In gliomas, the relative volume of
ECM increases from about 20% [78] (normal brain) to 48% [79]. The increased density of
ECM components and larger relative volume in cancer tissue consequently increase the
probability that drug particles will come across an increased number of biomolecules and
their chemical interactions. This in turn can block the penetration of particles and affect the
uniform delivery of drug particles to the targeted area in sufficient quantity [20,21].



Int. J. Mol. Sci. 2022, 23, 3139 7 of 29

Figure 2. Extracellular matrix (ECM) components are arranged into basement membranes that lie
outside cerebral vessels, condensed as perineuronal nets around the cell bodies and dendrites of
neurons or diffusely distributed as the neural interstitial matrix between cells of the CNS parenchyma.
The pink glial cells depict astrocytes, oligodendrocytes or microglia. This figure has been reproduced
from [80] with permission from Springer Nature.

Experimental investigations of particle motion in ECM have already started to hint at
how much this complex network can influence the flow and distribution mechanisms. It
is being recognised that NP interaction with various components of the ECM depends on
the inherent properties of these components [81]. An important physiochemical parameter
in this regard is the surface charge of macromolecules or particles that are transported
through ECM. Charge particles or macromolecules electrostatically attract or repel charged
components of the ECM that in return perturb their transport. In terms of electrostatics,
the ECM is a network of unspecific localised charged patches through which the ECM
provides selective filtering for the charged particles’ motion and regulates the transport
of local molecules [82]. For example, collagen fibres possess a slightly positive charge in
neutral pH [83,84] that can push them to interact with negatively charged particles and
form aggregates. On the other hand, glycosaminoglycan chains of the ECM possess a
highly negative charge [85] that even in small quantities can influence the transport of
charged particles [86]. Therefore, for charged particles, electrostatic interactions with the
ECM components could be a limiting force [82].

Ex vivo studies by Lieleg et al. [23] on ECM isolated from mice sarcoma have shown
that the presence of surface charge on polystyrene particles (irrespective of positive or
negative) significantly suppresses their diffusion. They further reveal that by tuning the
strength of the interactions between particles and the ECM via masking surface charges, the
local mobility of otherwise trapped particles could be restored. They masked the surface
charges of negatively charged particles with the addition of salt (1 MKCl) or positively
charged particles with polyanionic proteins (0.5 mM Heparin), which hints at the role of
ionic interactions between particles and ECM components [87]. Braunger et al. [88] used
an in vitro flow-based device containing ECM gel to investigate particle interactions with
ECM. They used two types of polymer-based particles—nearly neutral poly(ethylene glycol)
(PEG: −4 ± 2 mV) and negatively charged poly(methacrylic acid) (PMA: −38 ± 5 mV)—
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and attributed the negative surface charge to PMA to induce attachment to the positively
charged patches of ECM. Such findings, though not conclusive in terms of predicting
particle flow in relation to surface charges, still highlight the important role of filtering via
electrostatic interaction by ECM components for drug delivery.

It is worthy to note that existing studies on particle mobility in isolated ECM or mim-
icked materials (hydrogels) are restricted to investigations of diffusion-based transport only.
In the current literature, the transport of charged particles in CNS tissue via infusion-based
delivery remains out of focus. To the best of our knowledge, there are no systematic reports
accounting for the influence of pressure during charged particle flow under a positive
pressure gradient in brain CNS tissue. However, considering molecular processes, pressure
can be an important factor. Hydrostatic pressure is well known as a thermodynamics and
kinetic variable for biomolecular systems such as lipid bilayers [89]. Moreover, it is known
that an altered expression of ECM molecules ultimately affects biochemical processes [81].
This suggests that an applied pressure may affect the electrostatics involved in the ECM
filtering mechanism and consequently particle flow behaviour.

The interactions between particles and tissue components are not limited to only
ECM, and it is important to consider neurons and glial cells as well. The importance of
surface chemistry in particles’ interactions with cells has been well documented [90]. The
ability of cells to interact via molecular interactions with surrounding objects based on
their specific physiochemical characteristics, e.g., NPs [91,92], is important to consider. A
review on molecular-level interactions between engineered materials and cells can be found
at [93]. Physiochemical characteristics, e.g., integrins (cell anchoring molecules) binding
to ECM or other cells, are well studied and are known to affect cellular processes such as
growth and development [94,95]. Electrostatics play an important role, e.g., higher cellular
uptakes of NPs have been correlated to their positive surface charges, which facilitate
interaction with negatively charged cell membranes [96–98]. Such interactions can be
mathematically modelled. For example, the framework developed by [99] that considers
aspects of particle-cell, particle-microenvironment, and particle-particle interactions.

This understanding also becomes relevant when considering neurons and glial cells
in localised drug delivery in CNS. In the case of infusion-based drug delivery, besides
the biomechanical resistance, neurons and their elongated axons and glial cells can also
influence flow and distribution behaviour through various interactions with drug particles.
The adhesion, cellular uptake and aggregation of particles can reduce the concentration
required at the target site for the maximum efficacy of the drug. However, it is not known
how the infusion pressure would affect this all. This emphasises how much less we know
when it comes to associated molecular processes in infusion-based targeted drug delivery
and its link to the other aspects of the process, at least when the focus is to design the entire
workflow to enable the delivery and maximise the drug reach and uptake. Thus, it will be
critical to introduce particle interactions with CNS components in future infusion-based drug
delivery research and pursue an improved understanding of the mechanisms controlling drug
flow and uptake from both experimental and modelling perspectives. Only by shedding light
on such molecular processes will it be possible to develop realistic models for infusion-based
drug flow in CNS. Such models can then be incorporated to optimise CED-like systems to
maximise the chances of success of infusion-based neurosurgical procedures.

4. Simulations and Existing Models for Infusion-Based Drug Delivery
4.1. Mathematical Models

Mathematical modelling has been playing an important role in the development of
CED. There have been many theoretical models established to understand how fluid flows
in the brain parenchyma and how brain tissues deform accordingly. Depending on the
research objectives, these models mainly fall into three categories, namely single-phase
models, biphasic models and multiphasic models.
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4.1.1. Single-Phase Model

In studies where the efforts to theoretically improve CED were primarily focused
on predicting the flow field in the brain, Darcy’s law and computational fluid dynamics
(CFD) are the major theories and methods to build the single-phase models. An example
of pioneering work is [100], where the authors used a magnetic resonance imaging (MRI)
technique to reconstruct a 2D brain geometry; through solving convection–diffusion equa-
tions, they precited the transport of interleukin-2 in the brain parenchyma after perfusion.
They argued that the brain microstructure and transport properties of drug molecules have
a great effect on drug transportation and distribution in the brain.

Years later, a more advanced image-based 3D brain model was developed, which allowed
for considering and comparing different areas of the brain [24]. The authors also stressed the
importance of establishing anisotropic and microstructurally heterogeneous models since they
found significant differences of the drug distribution in white matter and grey matter, along
and perpendicular to nerve fibres. Linninger’s group [40,101,102] and Kim’s group [103–105]
then conducted a series of studies to explore the methods of obtaining anisotropic and het-
erogeneous models of brain by using diffusion tensor imaging (DTI). They also considered
chemical kinetics in the new models, which further improved the accuracy of drug flow
prediction in brain tissue and provided more reliable suggestions on the design of catheters
for CED.

Hydraulic permeability (κ) is a vital parameter in these models as Darcy’s law [106]
serves as the most fundamental theory. κ of brain tissues is usually measured by experimen-
tal tests, but the tested values are distributed in a wide range, as discussed in Section 3.1.
As an alternative, Vidotto [36] established a CFD approach to characterised κs of corpus
callosum, superior longitudinal fascicle and uncinate/inferior occipitofrontal fascicle, three
different regions of white matter. Based on this method, with the aid of an advanced diffu-
sion imaging technique, namely the Neurite Orientation Dispersion and Density Imaging
(NODDI), the authors further established an anisotropic permeability tensor in real brain
geometry to predict drug distribution after CED [107].

Single-phase models have been very sophisticated after nearly 20 years of devel-
opment, especially with the aid of advanced imaging techniques in building realistic
geometries. However, they have an obvious limitation as they neglect the tissue defor-
mation during the infusion process. In reality, the neuron and glial cells together with
ECM, which constitute brain tissues, are extremely soft in nature (E is lower than 20 kPa for
cells [108,109] and a few hundred Pa for ECM [74]) which means that brain tissues are very
easily deformed under the hydraulic pressure, as discussed in Section 3.1. Therefore, to
obtain more precise predictions of the flow field in brain tissue, it is important to consider
the biphasic nature of brain tissue.

4.1.2. Biphasic Model: Fluid Flow and Solid Response

The tissue deformation is classified into two categories: macroscopic and microscopic
deformation (as illustrated in Figure 3). While macroscopic deformation is mainly rep-
resented by the phenomenon of backflow, microscopic deformation is to consider the
deformation of microstructure that can change the local flow field. In 2002, Chen et al. [110]
established the poroelastic model of brain tissue for the purpose of providing more accurate
prediction of fluid flow in brain tissue via CED. Apart from being able to visualise the flow
field in the brain tissue, the microstructural deformation driven by the localised hydraulic
pressure could also be considered. Experiments with brain-like agarose gel were conducted to
validate the model. As this was the initial stage to build the poroelasticity model for brain
tissues, some hypotheses were applied, such as the linear elasticity, isotropy and homogeneity.

To overcome the limitation of linear elasticity hypothesis, ref. [34] adopted an ex-
ponential form of deformation-dependent hydraulic permeability which was obtained
from agarose gels and biological soft tissues such as cartilage. Apart from using empiri-
cal formulas, introducing nonlinear material properties to the model is also an effective
approach and has been thoroughly investigated, especially in Smith’s group. They firstly
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described the brain tissue by an Ogden-type hyperelastic compressible function so that
the nonlinear correlation between the local hydraulic permeability and the local hydraulic
pressure could be modelled [111]. Then, the geometrical nonlinearity was also added to the
model so that the hydraulic permeability depends on both the matrix strain and nonlinear
boundary conditions at the infusion cavity [112]. By comparing the prediction difference
between the single-phase model and the biphasic model, they highlighted the significance
of considering the finite deformation of the matrix in predicting drug distribution patterns
and concentration distribution. Their studies also indicated the importance of experimental
determination of material nonlinearity of brain tissue over a range of strains [112,113].

Figure 3. Schematic representation of macro- and microscale deformation of brain parenchyma
during infusion.

Another direction to improve the poroelasticity models is to consider the anisotropy
and heterogeneity of brain tissues. The pioneering work was conducted in 2012 by [38],
where the authors utilised DTI to obtain patient-specific brain structure and parameters
and implemented the data in the biphasic model. The difference between white matter
and grey matter was also characterised by fractional anisotropy. However, the material
nonlinearity was not considered in this model.

Backflow is one of the main drawbacks of CED as it would significantly decrease the
drug volume and should be avoided [114–116]. To model this phenomenon, a fluid–solid
interaction method should be an ideal option as this involves overall deformation of the
tissue driven by the flow, and there is a clear boundary between the solid phase and the
fluid phase where the fluid–solid interface develops. However, fluid–solid interaction has
not been applied due to numerical challenges introduced by the unknown time-varying
hydraulic pressure between the tissue and the catheter [116]. Some alternative methods
were then proposed. One method was to use two layers of solid elements to represent
the forward flow and backflow, respectively [117]. Benefitting from the deformability of
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the two layers of solid elements, the deformation of fluid–solid boundaries was able to be
described. This method was also adopted and extended to 3D in [116]. The most important
factors that determine the accuracy of this treatment are the properties of these two layers
of elements, which require the elements to be able to possess fluidic behaviours. Another
method is to load the hydraulic pressure directly on the solid domain and monitor the solid
deformation [114]. Therefore, determining how to obtain the hydraulic pressure is one of
the most important steps.

4.1.3. Multiphasics Model

Other fluids or components, such as the CSF and IF, may also affect the flow field of
the drug inside brain tissues, thus constituting the other phases of the mathematical model.
In Stine’s review [118], the relationship between CED and IF dynamics was thoroughly
analysed. By integrating pulsatile CSF motion and intracranial pressure into the biphasic
model, Linninger’s group established a prototype of a more systematic model [119,120].
Although the original purpose of developing this model was to study hydrocephalus and
no external fluid was considered in this model, it could be adapted for CED simulation.
Later, transvascular fluid exchange was added to a nonlinear biphasic model to present
a more sophisticated system for analyses of flow infusion in the brain [121]. To be more
realistic, IF, blood plasma [122,123] and tumour leakiness [124] were also taken into account.
In Zhan’s model [125–128], the whole journey of drug transport in the brain, including
drug release, extracellular exchange and intercellular reaction, was considered together
with the drug fluid, IF and blood. By modelling the most realistic situation, this model has
great potential to provide holistic pre-operative suggestions.

4.2. Mathematical Models for Particle Distribution in CNS

The distribution of drug particles (e.g., NPs) in brain parenchyma via diffusion is also a
major factor that determines the efficiency of drug delivery [57]. Thus, understanding how
NPs diffuse in the extracellular space (ECS) of the brain is vital for not only the development
of drugs for brain diseases but also the pre-operative planning of CED treatment. The
diffusivity of NPs in brain tissues is, in fact, the macroscopic and statistical expression of
particle behaviours at the micro scale, which is governed by biophysical and biochemical
particle–tissue components (TCs) interactions. Therefore, in theory, the diffusivity of NPs in
CNS can be mathematically predicted if the particle–particle and particle–TCs interactions
can be properly defined. However, progresses and applications in this direction are rare.
The major factors are lack of brain microstructure with high resolution and accuracy
of existing data. The accurate description of particle–TC interactions depends highly
on the spatial relations between the particle and the TCs. Despite this limitation, some
mathematical models based on idealised geometries have been established. In Nicholson’s
group, which has been devoted to unveiling the mystery of brain ECS [16,129–133], three
different types of idealised ECS geometries were constructed, within which 3D Monte
Carlo (MC) simulations were performed and the diffusivity of the particles was calculated
statistically [134]. Through this study, the geometrical hindrance of ECS on particle diffusion
was revealed. Years later, the 3D simulation scheme was reduced to be a quasi-1D method
to avoid heavy consumption of computational resources, which might promote wider
applications of this method [135]. Some other groups also used the MC method to model
particle diffusion in simplified brain geometries. For example, Fieremans et al. [136]
combined a fibrous geometry of different packing patterns and packing densities with MC
simulation to show that fibre phantoms are able to quantitatively validate the diffusion
image on clinical MRI scanners. Nilsson et al. [137] reported how axonal undulation
manipulates the diffusion of water molecules. Although the aims of these two works were
to improve the accuracy of MR imaging, the mathematical methods and the simplified
geometric models were worth considering in the prediction of drug diffusion in CNS.
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Another direction of mathematical modelling work is using a single particle tracking
algorithm, which can calculate the real trajectory of every single particle and then derive
the diffusivity of the drug particles by Equation (1)

D =< R2 > /6t,< R2 >=
n

∑
i=1

(dx2
i + dy2

i + dz2
i ) (1)

where < R2 > is the average of mean square displacement (MSD) of all the particles. dx,
dy and dz are the displacement of an NP in the x, y and z directions, respectively. n is the
number of NPs in the system. t is the diffusion time.

Su et al. [138,139] have carried out some pioneering studies on exploring the ability
of the mathematical particle tracking method to estimate the diffusivity of NPs in tissue.
The model was able to consider particle–cell interactions and the consequent results, such
as particle deposition. However, the object was cancer tissue, and no brain properties
were considered. If brain microstructure can be properly constructed, this method may
also possess great potential to predict NP diffusion in CNS. The framework developed
by [99] contains stochastic reconstructing geometry of brain white matter and a mathe-
matical particle tracing model. Based on this framework, they were able to investigate the
relationship between surface charge, size and the effective diffusion coefficient of NPs in
brain white matter.

4.3. Modelling Molecular Interactions

An important aspect of NP transport mechanisms in the brain is to investigate their
interactions with TCs at the molecular scale. Adopting a suitable modelling approach can
indeed provide valuable information on the effect of interactions at the molecular level.
Approaches based on CFD and molecular dynamics (MD) simulations are not best suited
for this task because the former deals with higher length and time scales, which are not
capable of describing molecular interactions, and the latter can only consider a limited
number of atoms and very short time scales (order of nm), which are not sufficient to
describe the interaction between tissue components and complex drug molecules [140,141].
The coarse-grained molecular modelling approach via representing a cluster of atoms
as a single bead, e.g., using dissipative particle dynamics (DPD) [142], allows for larger
timesteps to be taken and is therefore appropriate for tackling such meso-scale problems.
This can allow for investigation into how certain parameters of NPs and various physical
characteristics of the tissue components affect molecular interactions, so as to allow a range
of drug particles and environments to be modelled accurately. In the DPD approach, NPs
can be simulated in the form of micelles and the axon’s surface as bilayer membranes to
investigate adherence between them. Considering the role of the drug concentration–time
profile in its effectiveness, it is desirable for the drug to attach to the targeted site of tissue
only. This can be investigated in DPD by adopting a single bilayer comprised of two
portions—attractive and repulsive—and determine factors that could possibly enhance or
detract away from these localised interactions, such as bilayer geometry or micelle size in a
confined space. These insights could thus help in the formulation of larger-scale descriptors
and models. The DPD does have the ability to produce these more complex structures [143],
but it is common to employ a bottom-up methodology in obtaining interaction parameters
in order to match properties to a particular surfactant or drug molecule. If a standardised
drug carrier were to be adopted for the CED process, the time investment to obtain such
parameters from either experimental data or MD simulations would be justified by reducing
the time spent matching parameters as with the top-down approach and extremely time-
consuming trial-and-error adjustments and re-formulation of drugs.
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4.4. Geometric Models

Along with the development of mathematical models is the updating of geometric
models. The development and applications of geometrical models can be categorised into
two types, namely idealised models and image-based realistic models.

4.4.1. Idealised Models

On the initial stage of model development, idealised geometric models are usually
used to test the mathematical model. For example, based on brain phantom gels, which
can be treated as an isotropic and homogeneous medium, Chen et al. [110] established the
poroelastic biphasic model in 2002. The upgrading work to add material and geometric
nonlinearity was also based on an idealised spherical model [34,111–113,121,139]. An ide-
alised model is suitable to conduct parametric studies to investigate the effects of different
material and infusion parameters on drug distribution because geometrical properties are
not the main focus. Therefore, in Zhan’s work that studied the effect of tissue permeability
and drug diffusion anisotropy on CED [57], and in Su’s work that investigated how infusion
rate, needle diameter and tissue properties affected the development of backflow, spherical
models were also adopted [139]. It is also worth mentioning that, so far, almost all the
geometrical models used to simulate particle diffusion were idealised models [135,137–139].
Some of the major reasons that might have influenced this are: (i) the lack of anatomical
images with high resolution and fidelity to reconstruct the realist microstructure of brain
tissue; (ii) complexity of the realistic microstructure and microenvironment will lay an
extremely heavy burden on computational resources to solve the mathematical equations.

4.4.2. Realistic Models Using MRI and DTI as Input

Owing to the role of anisotropy and heterogeneity of brain tissues, the employment
of more realistic geometric models is necessary if an accurate prediction is needed at the
relevant length scales [24,57]. Therefore, the past 20 years have seen vast developments and
applications of anatomical MRI and DTI techniques in the simulation works. The earliest
work could date back to 1997 when Kalyanasundaram [100] used MRI to build a 2D realistic
brain geometry. Soon after, the 3D geometry of the brain was also successfully reconstructed
with the aid the anatomical MRI [24]. When the importance of anisotropy was realised, the
DTI technique also began to be widely applied to characterise the direction of nerve cells,
especially the axons in white matter and anisotropy of brain tissue [40]. From then on, the
utilisation of anatomical MRI and DTI techniques to reconstruct brain tissue became the
routine method in the application of mathematical modelling [38,103–105,123,124,126,127].

The ultimate goal of developing mathematical models is to provide suggestions on
pre-operative planning. However, due to individual variation, one geometric model cannot
be used for another patient. Therefore, obtaining patient-specific models is also a hot topic
and has been widely explored [38,144–147].

4.5. Limitations and Perspectives

Although mathematical and geometric models for CED have been improving consis-
tently in the past 20 years, they still need perfected to meet clinical requirements.

4.5.1. On Mathematical Models

The theory of poroelasticity in geoscience is a great inspiration and powerful tool in the
study of mechanical behaviours of saturated porous tissues. However, being different from
soil and rocks, the microstructure in biological tissues is far more complex [16,130,131].
While assuming localised homogeneity and isotropy agrees well with geology experi-
ments [148], the same hypothesis may not applicable for brain tissues [18]. To achieve
more accurate outcomes, it is worth moving to a microscopic scale in order to analyse
the interaction between the hydraulic pressure and microstructures, which also raise the
need for a reconstruction method with higher resolution imaging techniques [19,58]. It is
also worth mentioning the mathematical models for backflow simulation here. As of now,
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backflow cannot be modelled phenomenologically by fluid–solid interaction methods due
to the continuously evolving fluid–solid interfaces. Alternative methods may be able to
provide reliable predictions, but rely heavily on proper determinations of the elemental
properties in the two layers of solid elements [116,117] and the pre-stress on the solid
phase [114]. Therefore, building a more intuitive model to simulate backflow needs further
consideration. For the particle tracking method, there is another obstacle which needs
to be highlighted. The mainstream particle tracking algorithms and software packages
treat particles as points without considering the real surface [149]. However, the width
of ECS, or the gap between axons, is about 100 nm [150], which is comparable to the size
of NPs. Under such conditions, simplifying the particles to be points would lead to large
errors because the relatively high-frequency collision between the particle surface and cells
membrane or ECM components is not considered by these simplified models. Therefore,
particle tracking algorithms still need to be improved before they can provide quantitative
predictive capabilities in the simulation of particle diffusion in CNS.

4.5.2. On Model Compatibility

As analysed above, single-phase models show the best compatibility with advanced
imaging-based realistic geometries, but not being able to consider the effect of tissue
deformation on the drug distribution is a major deficiency. Biphasic models are indeed
able to consider the coupling effect of solid phase and fluid phase, but they have not been
widely integrated with the realistic geometric model. The reason may be due to numerical
challenges and computational burdens. More difficulties might be encountered when
embedding multiphase mathematical models into patient-specific brain structures, though
this will provide the most reliable predictions. In parallel to exploring the most accurate
approach, how to balance the benefits from advanced mathematical and geometric models
may also need to be thought out at the current stage.

5. Robotics Solutions

Neurosurgery is a field that can greatly benefit from robotic solutions [151–153], not
least because of the rich history of neurosurgical innovation in stereotaxy, the constrained
anatomical environment, the microsurgical nature of procedures, the highly technical nature
of the field, the need for growth in minimally invasive surgery and a culture that adopts
and embraces new technology [154]. However, general system solutions are rare, likely
due to the inherently complex nature of procedures. Early robotic neurosurgical platforms
served as computer-assisted stereotactic guidance systems. Indeed, the first medical robotic
demonstration in 1985 used a PUMA 560 Industrial robot to guide a brain biopsy needle
to a target along a straight trajectory [155]. In 1991, a later version of the system allowed
the successful resection of deep benign astrocytomas in six children without morbidity or
mortality [156]. Currently, the Renishaw neuromate® stereotactic robot is a commercially
available five Degrees-of-Freedom (DoF) serial manipulator system [157] suitable for a
broad range of procedures (e.g., deep brain stimulation), including precise deployment of
CED infusion needles [158]. Commercial robotic platforms for neurosurgical procedures
are an alternative solution to a conventional stereotactic frame or neuronavigation system,
with benefit for repetitive tasks (e.g., insertion of multiple electrodes), but still, they provide
little improvement on the level of dexterity during needle insertion. Straight needles limit
clinical options toward reaching the Region Of Interest (ROI) safely, performing vessel
avoidance and following anatomical structures.

Robotic steerable needles [159,160] have the advantage of addressing limitations of
straight needles, with the further advantage of allowing the operating surgeon to reach the
ROI with a specific orientation and while avoiding obstacles (sulci, vessels, delicate areas)
along the way. On the other hand, these mechatronic systems require additional instruments
to precisely navigate into the brain and reach the planned target with sufficient accuracy
(compared to experienced physicians performing procedures using rigid needles [161,162]
as described in [163]). There are three main aspects to consider for an accurate insertion:
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(i) planning a safe and feasible path to reach an ROI, (ii) tracking the position of the needle’s
tip during the insertion, (iii) tracking changes and deformations happening in the brain
during surgery.

5.1. Planning

There are two main types of planners required to successfully organise and perform
steerable needle insertion into the brain: preoperative and intra-operative.

The preoperative planner should consider different types of information (target pose,
clinical obstacles to avoid, kinematics constraints of the needle) and give the surgeon a
choice of feasible paths that satisfy all the constraints. The many possible solutions can
be evaluated and ranked on the basis of specific optimal criteria [163,164]: minimisation
of the surgical path length and maximisation of the distance from anatomical obstacles
are mostly used in current practice. In the literature, there are many different approaches
to preoperative planning of steerable needles. Besides more recent attempts exploiting
evolutionary strategies [165] or machine learning techniques [166], the majority of the
state-of-the-art planners are graph-based methods, such as A* [167,168], or sampling-based
methods, such as Rapidly exploring Random Trees (RRT) [169–172] and Adaptive Fractal
Trees (AFT) [173,174]. In [175], the authors presented a new searched-based planner based
on [176,177] for steerable needles that guarantees completeness under some clinically
reasonable assumptions. This is important because having the formal proof that if a plan
exists, it will be found and if it does not exist, the user will be notified may prove to be an
important aspect for medical certification.

The intra-operative planner must take into account the same criteria that were applica-
ble during the preoperative phase, with the additional constraints of the computation time
limit and tissue deformation affecting the needle insertion process, which would lead to a
change of the safety distance from obstacles if not accounted for. The time bounds for each
computation can be tight and depend on the insertion velocity of the needle and the sen-
sory computation time needed to localise the needle. On the other hand, the search space
is usually smaller than in the preoperative case, because of the nonholonimic kinematic
limitations of the needle and the overarching aim to maintain high “path similarity” to the
original, preoperative plan. Path similarity is a measure of the deviation between the path
evaluated and initially chosen by the surgeon and the new path taken by the needle during
the insertion. The approaches are like those for preoperative planners, but with specific
optimisation to limit computational time. In [163], a modified RRT algorithm for rapid
replanning is presented, and it is integrated in the robotic system as control algorithm.
The same approach is followed in [178], with a modified version of the bubble-bending
algorithm [179,180] and a 3D extension of the Convex Elastic Smoothing presented in [181].

5.2. Needle Tracking

Conventional neuro-navigation systems [182–184] use stereotactic frames or optical
trackers to identify the position of the tip of the needle knowing the entry point in the skull
and the angle of insertion. This is not enough for steerable needles. In many technological
solutions, such as Programmable Bevel-Tip Steerable Needles (PBNs), the kinematics of the
needle and the dynamic interaction with the tissue of the brain make it difficult to rely only
on mathematical models for tracking. In these cases, some type of sensing is required to
provide accurate feedback to the robotic control system and the visualisation to the user.

Intra-operative MRIs are used for CED with rigid needles [185] and other applications
with steerable catheters [186,187]. MRI is usually preferred over computed tomography
(CT) because it does not expose the patient to ionising radiation. On the other hand,
the robotic system should be designed to be MRI-compatible, with some solutions like
PBNs [188] more suitable than others. There are also CT-based solutions when ionising
radiations are not a concern [189]. Both approaches tend to be slow [190] and require a
complex setup.
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Among others, the most promising alternative sensing system available for needle
tracking is Fiber Bragg Grating (FBG)-based optical fibres, or FBGs for short [191]. FBGs
can be easily embedded into lumens to provide information such as the full shape recon-
struction of the needle, hence providing a wealth of geometrical information, including the
pose of the tip [192–194].

Another alternative intra-operative tracking modality is ultrasound (US), which has
been shown to be effective for neurosurgical procedures such as biopsies [195]. Ultrasound
has many advantages over other imaging modalities: it is less expensive, easy to setup and
use and has a very good temporal resolution, and it is already in use for guiding needle
insertion [196]. However, to be used for neurological applications (including CED), it is
invasive since it requires contact with the dura, if wide, unimpeded and appropriately
resolved volume data are required. There are other reasons to use US in this type of surgery,
as explained below. In these cases, US can be used also for tracking, especially together
with other sensors, including FBGs, to increase accuracy [197].

5.3. Brain Deformation Sensing

During brain surgery, significant deformations can occur due to brain shift or tool–
tissue interactions. This means that preoperative plans are not reliable intra-operatively
because the patient-to-image registration becomes invalid [198]. In previous subsections,
intra-operative planners were presented to adjust tool paths during the insertion process.
To compute a new safe path, complete knowledge of the deformation affecting the target
and clinical obstacles is desirable. MRI and CT have enough spatial information for the
planner, but they are slow and often cumbersome to use intra-operatively, as previously
stated. Trans-cutaneous US (through an additional burr hole in the skull) would offer an
appropriate update time and portability, but it lacks resolution. One solution is to use
fast 2D/3D US information to deform preoperative high-resolution images acquired with
another higher-fidelity imaging modality.

In the literature, there are many methods for MRI/US registration, including linear cor-
relation of linear combination LC2 [199], block-matching approach [200] and self-similarity
descriptors [201]. These approaches must be able to manage 2D/3D US images in real-time.
In [202], a modern open-source graphic processing unit (GPU) accelerated ultrasound
processing platform is presented. Another approach is to develop models that can accu-
rately predict the deformation of the brain during neurosurgical procedures. For example,
Forte et al. [203] developed a numerical model for the prediction of brain shift during
surgical procedures and employed a phantom made of a composite hydrogel [204,205] to
validate their findings. Such studies, combined with the use of advanced experimental
investigations [41,61,206], highlight the importance of modelling using robust and fully
validated constitutive laws for the simulations of brain deformation [42,47,207]. The use
of reduced-order models derived from more complex descriptions of the tissue deforma-
tion has also been pursued and holds promise in the context of guiding intra-operative
adjustment and helping clinicians during surgical procedures [208,209].

5.4. Software

Complex tasks such as surgery planning, initialisation and control of a robotic system
require a reliable and solid software suite. Currently, there are no commercial systems for
CED that are based on steerable needles, so the only actual implementations are prototypes
developed for research purposes.

In [9], the current state of open source for robotically steerable needles is presented, list-
ing software tools that can be used for the planning of the operation and any computation
required, such as 3D Slicer [210] or the Medical Imaging Interaction Toolkit (MITK) [211].
There are also open protocols that can be used to transfer medical images, transformations
and parameters from different computational units, such as OpenIGTLink [212]. Finally,
there are more traditional robotic frameworks for simulation and control such as the Simu-
lation Open Framework Architecture (SOFA) and Kitware’s Interactive Medical Simulation
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Toolkit [213,214]. They are all valuable instruments to create ad-hoc solutions starting from
a solid and tested base. Yet, there are some aspects of a robotic surgical platform that are
not completely addressed by those tools.

Another critical aspect of a medical system is the user interface (UI). In fact, the UI
should be usable without ambiguity by clinicians, and this requires a careful design of the
graphical elements of the interface and a deep understanding of the type of information
that is important to the user. Companies providing neuro-navigation systems [182–184]
usually have well-designed and easy-to-use UIs. In some research CED projects [215], a
standard commercial system is used for clinical assessment or interventional planning, as is
importing or exporting files between other research software components. In [160], a proper
communication protocol was developed in collaboration with Renishaw plc (a partner of
the project) to enable data exchange between a custom version of the neuroinspireTM suite
and the computational back-end running the steerable catheter and sensors computation.
The UI has been designed with the same User Experience (UX) design principles of the
standard navigation interface that is already familiar to radiologists and surgeons. The
need to drive a steerable catheter in a three-dimensional space, while providing information
about anatomical structures, eloquent areas and navigation information, on the other hand,
is not part of the standard user experience of conventional neuro-navigation software.
In [216], a pilot study to evaluate, both qualitatively and quantitatively, a novel human–
machine visual interface for the steering of a PBN was carried out. Annotated axial,
coronal and sagittal planes from available medical images are displayed together with
a manned/unmanned aerial vehicle-inspired [217,218] 3D first-person viewpoint when
navigating the needle. Visual cues are used to convey additional information, such as
the deviation from the planned trajectory and prediction about the motion of the needle.
The study provided good results, in terms of qualitative evaluation of the interface and
quantitative evaluation of the performance of the subjects in following a 3D path.

6. Clinical Implications

Imaging plays a key role in planning and performing convective drug delivery in the
brain. Conventional and advanced imaging techniques provide essential morphological,
physiological and metabolic details of the targeted pathological tissue and of its adjacent
neural and vascular structures [219,220]. A review of the most relevant preclinical and
clinical studies using CED for GBM identifies optimal catheter positioning and detailed
analysis of drug distribution as major challenges associated with CED [221]. As for cannula
placement, the PRECISE trial is the largest study to date using CED for the delivery of
a genetically engineered therapeutic agent for the treatment of patients with recurrent
GBM [215]. Despite intensive training, in this trial a majority of catheters were not posi-
tioned correctly, highlighting the complexity of this technique. Detailed analysis of catheter
positioning score, overall placement score and imaging change score did not reveal any
correlation of these parameters with clinical outcome. As such, further trials using CED
as a delivery method should incorporate advanced imaging, even using real-time intra-
operative imaging, to confirm adequate catheter positioning and accurate drug distribution,
ensuring that a targeted brain area is adequately covered [222]. Imaging tracking also en-
hances safety by confirming that drug delivery is limited to the targeted site. Furthermore,
data derived from infusions can be used to directly inform predictive drug delivery models,
which could optimize catheter placement in the future by proving convective delivery
properties in vivo. In this regard, the possibility to virtually dissect white matter fibers
by the DTI-based tractography technique allows to consistently reconstruct the course of
eloquent tracts in the brain [223] and depict pathological involvement [224]. While trac-
tography is widely employed in the presurgical evaluation of brain tumor resections [225],
and it has recently proven its relevance in the planning of tomotherapy radiation treat-
ment [226] and Deep Brain Stimulation [227], it is not currently fully integrated into the
pre-operative planning and intra-operative targeting system of CED procedures neither in
clinical studies on human subjects nor in most preclinical studies on animals conducted in
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swine [228], monkey [229], ovine [230] and rat models [231]. The few exceptions are repre-
sented by works, where a precise brain structure was targeted according to tractography
reconstructions [232], or the relationship between the tissue properties and the infusate
was investigated [105,146,233]. A meticulous definition of the brain microstructure in the
exact location of infusion would be impactful to better understand and possibly predict the
actual geometry of the spatial distribution of a drug in a given patient [38,145,234,235], and
also to depict the pathological rearrangement determined by the lesion and previous treat-
ments, such as surgery or radiation therapy. Such pre-surgical infusion planning would be
essential to apply CED technological platforms to patient-specific clinical use cases, given
the relevant structural and temporal heterogeneity of brain tumors, that may also disclose
inter-subject variability according to a patient’s therapeutic history. In addition, advanced
imaging techniques would also be essential, along with the clinical status, to assess the
response to therapeutic infusion, as current disease parameters have imaging as an essential
parameter of response. Ultimately, the outcome of CED procedures is influenced by several
factors, such as catheter design and placement; tumor site, size and microstructure; infusion
parameters (rate, frequency, volume); drug chemical structure and concentration; and brain
morphology. To increase the likelihood of clinical impact, these parameters should all
be regarded as essential and then tailored to the subject, according to the clinical history
and actual pathological condition. Finally, it would be essential to take advantage of both
mathematical modelling and diagnostic accuracy in describing tumor and unaffected brain
tissue microstructure to better understand how brain flow pathways affect both tumor
preferential tissue invasion and drug distribution [118].

7. Conclusions and Future Perspectives

Brain diseases cost the European Economy approximately 35% [236–238] of the overall
disease burden. Of all brain diseases, brain tumours are comparatively rare, but very costly
per case [239]. GBM, for instance, affects 6 out of every 100,000 people. The location of
the disease and its biology pose major challenges for effective treatment [240], which has
resulted in a lack of improvement in mortality rates during the last 20 years. Even in
cases in which surgery is possible, the excision has to be relatively conservative in order to
prevent potential damage to the surrounding healthy brain. Due to this requirement, the
tumour cannot always be fully eliminated. Chemotherapy is also of limited treatment value
for GBM because of the BBB, which impairs drug delivery [241,242]. The US Brain Tumor
Foundation estimates that the cost of treating a GBM is between $450,000 and $700,000 in
a lifetime. However, the investment in brain-cancer-related research in Europe remains
very low in absolute value (approximately ten times lower than for affective disorders)
and in comparison to the United States. Furthermore, over two thirds of European brain
cancer research funding is privately invested by pharmaceutical companies in the quest
for new drugs [239]. As an illustrative number, the estimated average cost of developing
a new pharmacological agent to improve cancer patients’ quality of life is in the order of
1 billion euros. A similar investment is needed in the modelling of disease processes and
drug delivery mechanisms and on advanced technologies for the accurate administration
of targeted drugs through minimally invasive approaches.

This review has covered the fundamental aspects of research that have been performed
in the field of drug delivery in brain tissue, with particular focus on techniques that
require drugs to infuse and diffuse into the tissue. We have highlighted the limitations
that must be addressed in order for the research community to be able to tackle the
outstanding important issues which have hindered progress in this field. A synergistic
approach is needed, whereby the molecular level mechanisms, which control the chemical
processes that regulate drug uptake as well as biomechanical aspects of drug flow and
reach within the tissue, must be studied and linked to larger-scale models and experiments
in order to better capture drug delivery mechanisms at the macro scale using a bottom-
up approach. This will enable to better predict the outcome of, e.g., CED procedures,
especially when these are assisted by the development of state-of-the-art minimally invasive
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devices for robotic surgery and accompanying software, hence providing clinicians with
important tools to plan and optimise such procedures and improve the mortality rate. The
technological advancements needed to allow clinicians and brain researchers to achieve a
marked improvement in outcomes include, amongst others:

1. Consider tumour growth and expansion according to computational evolution data
and, from these data, achieve procedure-optimised therapy plans which account for
patient-specific anatomy.

2. Obtain a better understanding of molecular-level processes that govern drug uptake,
interaction with the tissue and ultimately drug reach and efficacy.

3. Pair diffusion imaging data with histology, microstructural measurements and high-
fidelity diffusion models based on computational fluid dynamics and finite element
analysis to improve our understanding of the brain biphasic nature.

4. Develop better bottom-up models and associated experimental techniques that enable
to describe drug diffusion and convection across the scales and quantify its uptake
considering the complexity of the tissue and its variability.

5. Target the main diffusion tracts along and within the tumour and deploy CED systems
that can deliver various molecules in various areas of the tumour.

6. Rely on a single, integrated platform for neuro-oncological treatment and a spec-
trum of other uses, ranging from degenerative disease management and structural
definition to stem cell therapy and localised tissue ablation.

7. Integrate pre-operative imaging with online imaging via save modalities, such as
ultrasound, to correct for brain shift and to ensure a more accurate targeting, over-
coming most of the limitations of current systems for catheter insertion based on
preoperative imaging alone and reducing the cost of those few systems (e.g., MR
Interventions’ ClearPoint) which rely on an interventional MRI or CT suite.

It is by solving these outstanding open challenges in molecular level understanding,
experimental characterisation, modelling, imaging and medical device development that
patient outcomes for a range of untreatable brain diseases will finally take a turn for the better.
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κ Hydraulic Permeability
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130. Nicholson, C.; Hrabětová, S. Brain Extracellular Space: The Final Frontier of Neuroscience. Biophys. J. 2017, 113, 2133–2142.

[CrossRef]
131. Nicholson, C.; Kamali-Zare, P.; Tao, L. Brain extracellular space as a diffusion barrier. Comput. Vis. Sci. 2011, 14, 309–325.

[CrossRef]

http://dx.doi.org/10.1115/1.3169248
http://dx.doi.org/10.1007/s11517-009-0564-7
http://dx.doi.org/10.1007/s10439-012-0566-8
http://dx.doi.org/10.1007/BF01036523
http://dx.doi.org/10.1007/s10439-020-02598-7
http://dx.doi.org/10.1103/PhysRevLett.99.018301
http://dx.doi.org/10.1016/j.jmbbm.2013.11.010
http://dx.doi.org/10.1109/10.979348
http://dx.doi.org/10.1007/s10439-008-9610-0
http://www.ncbi.nlm.nih.gov/pubmed/19058008
http://dx.doi.org/10.1016/j.jbiomech.2009.06.014
http://www.ncbi.nlm.nih.gov/pubmed/19643415
http://dx.doi.org/10.1016/j.jbiomech.2010.09.010
http://www.ncbi.nlm.nih.gov/pubmed/20869718
http://dx.doi.org/10.1115/1.4001164
http://www.ncbi.nlm.nih.gov/pubmed/20459209
http://dx.doi.org/10.1016/j.medengphy.2017.02.018
http://www.ncbi.nlm.nih.gov/pubmed/28478918
http://dx.doi.org/10.1177/0954411920937220
http://dx.doi.org/10.1115/1.4007311
http://dx.doi.org/10.3389/fonc.2019.00966
http://dx.doi.org/10.1109/TBME.2005.844021
http://dx.doi.org/10.1109/TBME.2006.886853
http://dx.doi.org/10.1007/s11538-011-9696-7
http://www.ncbi.nlm.nih.gov/pubmed/21979463
http://dx.doi.org/10.1002/pamm.201010042
http://dx.doi.org/10.1002/pamm.201110058
http://dx.doi.org/10.1371/journal.pone.0089594
http://dx.doi.org/10.1007/s11095-017-2114-6
http://dx.doi.org/10.1016/j.jconrel.2018.07.006
http://www.ncbi.nlm.nih.gov/pubmed/30009891
http://dx.doi.org/10.1016/j.jconrel.2017.12.020
http://dx.doi.org/10.1016/j.ejps.2019.105094
http://dx.doi.org/10.1016/j.bpj.2017.06.052
http://dx.doi.org/10.1007/s00791-012-0185-9


Int. J. Mol. Sci. 2022, 23, 3139 25 of 29

132. Thorne, R.G.; Nicholson, C. In vivo diffusion analysis with quantum dots and dextrans predicts the width of brain extracellular
space. Proc. Natl. Acad. Sci. USA 2006, 103, 5567–5572. [CrossRef]

133. Syková, E.; Nicholson, C. Diffusion in Brain Extracellular Space. Physiol. Rev. 2008, 88, 1277–1340. [CrossRef]
134. Tao, L.; Nicholson, C. Maximum geometrical hindrance to diffusion in brain extracellular space surrounding uniformly spaced

convex cells. J. Theor. Biol. 2004, 229, 59–68. [CrossRef]
135. Nicholson, C.; Kamali-Zare, P. Reduction of Dimensionality in Monte Carlo Simulation of Diffusion in Extracellular Space

Surrounding Cubic Cells. Neurochem. Res. 2020, 45, 42–52. [CrossRef]
136. Fieremans, E.; De Deene, Y.; Delputte, S.; Özdemir, M.S.; D’Asseler, Y.; Vlassenbroeck, J.; Deblaere, K.; Achten, E.; Lemahieu, I.

Simulation and experimental verification of the diffusion in an anisotropic fiber phantom. J. Magn. Reson. 2008, 190, 189–199.
[CrossRef]

137. Nilsson, M.; Lätt, J.; Ståhlberg, F.; van Westen, D.; Hagslätt, H. The importance of axonal undulation in diffusion MR measure-
ments: A Monte Carlo simulation study. NMR Biomed. 2012, 25, 795–805. [CrossRef]

138. Su, D.; Ma, R.; Salloum, M.; Zhu, L. Multi-scale study of nanoparticle transport and deposition in tissues during an injection
process. Med. Biol. Eng. Comput. 2010, 48, 853–863. [CrossRef]

139. Su, D.; Ma, R.; Zhu, L. Numerical study of nanofluid infusion in deformable tissues for hyperthermia cancer treatments. Med.
Biol. Eng. Comput. 2011, 49, 1233–1240. [CrossRef]

140. Hollingsworth, S.A.; Dror, R.O. Molecular Dynamics Simulation for All. Neuron 2018, 99, 1129–1143. [CrossRef]
141. Dror, R.O.; Jensen, M.Ø.; Borhani, D.W.; Shaw, D.E. Exploring atomic resolution physiology on a femtosecond to millisecond

timescale using molecular dynamics simulations. J. Gen. Physiol. 2010, 135, 555–562. [CrossRef]
142. Hoogerbrugge, P.J.; Koelman, J.M.V.A. Simulating Microscopic Hydrodynamic Phenomena with Dissipative Particle Dynamics.

Europhys. Lett. (EPL) 1992, 19, 155–160. [CrossRef]
143. Dai, X.; Ding, H.; Yin, Q.; Wan, G.; Shi, X.; Qiao, Y. Dissipative particle dynamics study on self-assembled platycodin structures:

The potential biocarriers for drug delivery. J. Mol. Graph. Model. 2015, 57, 20–26. [CrossRef]
144. Sweetman, B.; Xenos, M.; Zitella, L.; Linninger, A.A. Three-dimensional computational prediction of cerebrospinal fluid flow in

the human brain. Comput. Biol. Med. 2011, 41, 67–75. [CrossRef]
145. Messaritaki, E.; Rudrapatna, S.U.; Parker, G.D.; Gray, W.P.; Jones, D.K. Improving the Predictions of Computational Models of

Convection-Enhanced Drug Delivery by Accounting for Diffusion Non-gaussianity. Front. Neurol. 2018, 9, 1092. [CrossRef]
146. Brady, M.; Raghavan, R.; Sampson, J. Determinants of Intraparenchymal Infusion Distributions: Modeling and Analyses of

Human Glioblastoma Trials. Pharmaceutics 2020, 12, 895. [CrossRef]
147. Bander, E.D.; Tizi, K.; Wembacher-Schroeder, E.; Thomson, R.; Donzelli, M.; Vasconcellos, E.; Souweidane, M.M. Deformational

changes after convection-enhanced delivery in the pediatric brainstem. Neurosurg. Focus 2020, 48, E3. [CrossRef]
148. Cheng, A.D. Material coefficients of anisotropic poroelasticity. Int. J. Rock Mech. Min. Sci. 1997, 34, 199–205. [CrossRef]
149. Multiphysics, C. The COMSOL Multiphysics Reference Manual. 2015. Available online: https://doc.comsol.com/5.5/doc/com.

comsol.help.comsol/COMSOL_ReferenceManual.pdf (accessed on 9 March 2022).
150. Hrabetova, S.; Cognet, L.; Rusakov, D.A.; Nägerl, U.V. Unveiling the extracellular space of the brain: From super-resolved

microstructure to in vivo function. J. Neurosci. 2018, 38, 9355–9363. [CrossRef]
151. Faria, C.; Erlhagen, W.; De Momi, E.; Ferrigno, G.; Bicho, E. Review of Robotic Technology for Stereotactic Neurosurgery. IEEE

Rev. Biomed. Eng. 2015, 8, 125–137. [CrossRef]
152. Smith, J.A.; Jivraj, J.; Wong, R.; Yang, V. 30 Years of Neurosurgical Robots: Review and Trends for Manipulators and Associated

Navigational Systems. Ann. Biomed. Eng. 2016, 44, 836–846. [CrossRef]
153. Fomenko, A.; Serletis, D. Robotic Stereotaxy in Cranial Neurosurgery: A Qualitative Systematic Review. Neurosurgery 2017,

83, 642–650. [CrossRef]
154. Wang, M.Y.; Goto, T.; Tessitore, E.; Veeravagu, A. Introduction. Robotics in neurosurgery. Neurosurg. Focus FOC 2017, 42, E1.

[CrossRef]
155. Kwoh, Y.S.; Hou, J.; Jonckheere, E.A.; Hayati, S. A robot with improved absolute positioning accuracy for CT guided stereotactic

brain surgery. IEEE Trans. Biomed. Eng. 1988, 35, 153–160. [CrossRef]
156. Drake, J.M.; Joy, M.; Goldenberg, A.; Kreindler, D. Computer- and robot-assisted resection of thalamic astrocytomas in children.

Neurosurgery 1991, 29, 27–33. [CrossRef]
157. Li, Q.H.; Zamorano, L.; Pandya, A.; Perez, R.; Gong, J.; Diaz, F. The application accuracy of the NeuroMate robot—A quantitative

comparison with frameless and frame-based surgical localization systems. Comput. Aided Surg. 2002, 7, 90–98. [CrossRef]
158. Lewis, O.; Woolley, M.; Johnson, D.; Rosser, A.; Barua, N.U.; Bienemann, A.S.; Gill, S.S.; Evans, S. Chronic, intermittent

convection-enhanced delivery devices. J. Neurosci. Methods 2016, 259, 47–56. [CrossRef]
159. van de Berg, N.J.; van Gerwen, D.J.; Dankelman, J.; van den Dobbelsteen, J.J. Design Choices in Needle Steering—A Review.

IEEE/ASME Trans. Mechatron. 2015, 20, 2172–2183. [CrossRef]
160. EDEN2020. Enhanced Delivery Ecosystem for Neurosurgery in 2020. Available online: https://www.eden2020.eu. (accessed on

29 October 2021).
161. Blumenfeld, P.; Hata, N.; DiMaio, S.; Zou, K.; Haker, S.; Fichtinger, G.; Tempany, C.M. Transperineal prostate biopsy under

magnetic resonance image guidance: A needle placement accuracy study. J. Magn. Reson. Imaging Off. J. Int. Soc. Magn. Reson.
Med. 2007, 26, 688–694. [CrossRef]

http://dx.doi.org/10.1073/pnas.0509425103
http://dx.doi.org/10.1152/physrev.00027.2007
http://dx.doi.org/10.1016/j.jtbi.2004.03.003
http://dx.doi.org/10.1007/s11064-019-02793-6
http://dx.doi.org/10.1016/j.jmr.2007.10.014
http://dx.doi.org/10.1002/nbm.1795
http://dx.doi.org/10.1007/s11517-010-0615-0
http://dx.doi.org/10.1007/s11517-011-0819-y
http://dx.doi.org/10.1016/j.neuron.2018.08.011
http://dx.doi.org/10.1085/jgp.200910373
http://dx.doi.org/10.1209/0295-5075/19/3/001
http://dx.doi.org/10.1016/j.jmgm.2015.01.002
http://dx.doi.org/10.1016/j.compbiomed.2010.12.001
http://dx.doi.org/10.3389/fneur.2018.01092
http://dx.doi.org/10.3390/pharmaceutics12090895
http://dx.doi.org/10.3171/2019.10.FOCUS19679
http://dx.doi.org/10.1016/S0148-9062(96)00055-1
https://doc.comsol.com/5.5/doc/com.comsol.help.comsol/COMSOL_ReferenceManual.pdf
https://doc.comsol.com/5.5/doc/com.comsol.help.comsol/COMSOL_ReferenceManual.pdf
http://dx.doi.org/10.1523/JNEUROSCI.1664-18.2018
http://dx.doi.org/10.1109/RBME.2015.2428305
http://dx.doi.org/10.1007/s10439-015-1475-4
http://dx.doi.org/10.1093/neuros/nyx576
http://dx.doi.org/10.3171/2017.2.FOCUS1783
http://dx.doi.org/10.1109/10.1354
http://dx.doi.org/10.1227/00006123-199107000-00005
http://dx.doi.org/10.3109/10929080209146020
http://dx.doi.org/10.1016/j.jneumeth.2015.11.008
http://dx.doi.org/10.1109/TMECH.2014.2365999
https://www.eden2020.eu
http://dx.doi.org/10.1002/jmri.21067


Int. J. Mol. Sci. 2022, 23, 3139 26 of 29

162. Schouten, M.G.; Bomers, J.G.; Yakar, D.; Huisman, H.; Rothgang, E.; Bosboom, D.; Scheenen, T.W.; Misra, S.; Fütterer, J.J.
Evaluation of a robotic technique for transrectal MRI-guided prostate biopsies. Eur. Radiol. 2012, 22, 476–483. [CrossRef]

163. Patil, S.; Burgner, J.; Webster, R.J.; Alterovitz, R. Needle Steering in 3-D Via Rapid Replanning. IEEE Trans. Robot. 2014,
30, 853–864. [CrossRef] [PubMed]

164. Essert, C.; Haegelen, C.; Lalys, F.; Abadie, A.; Jannin, P. Automatic computation of electrode trajectories for deep brain stimulation:
A hybrid symbolic and numerical approach. Int. J. Comput. Assist. Radiol. Surg. 2012, 7, 517–532. [CrossRef]

165. Segato, A.; Sestini, L.; Castellano, A.; De Momi, E. GA3C Reinforcement Learning for Surgical Steerable Catheter Path Planning.
In Proceedings of the 2020 IEEE International Conference on Robotics and Automation (ICRA), Paris, France, 31 May–31 August
2020; pp. 2429–2435. [CrossRef]

166. Favaro, A.; Segato, A.; Muretti, F.; Momi, E.D. An Evolutionary-Optimized Surgical Path Planner for a Programmable Bevel-Tip
Needle. IEEE Trans. Robot. 2021, 37, 1039–1050. [CrossRef]

167. Likhachev, M.; Ferguson, D.; Gordon, G.; Stentz, A.; Thrun, S. Anytime Dynamic A*: An Anytime, Replanning Algorithm. In
Proceedings of the Fifteenth International Conference on International Conference on Automated Planning and Scheduling
(ICAPS’05), Monterey, CA, USA, 5–10 July 2005; pp. 262–271.

168. Leibrandt, K.; Bergeles, C.; Yang, G.Z. Concentric Tube Robots: Rapid, Stable Path-Planning and Guidance for Surgical Use. IEEE
Robot. Autom. Mag. 2017, 24, 42–53. [CrossRef]

169. Patil, S.; Alterovitz, R. Interactive motion planning for steerable needles in 3D environments with obstacles. In Proceedings
of the 2010 3rd IEEE RAS EMBS International Conference on Biomedical Robotics and Biomechatronics, Tokyo, Japan, 26–29
September 2010; pp. 893–899. [CrossRef]

170. Fauser, J.; Sakas, G.; Mukhopadhyay, A. Planning nonlinear access paths for temporal bone surgery. Int. J. Comput. Assist. Radiol.
Surg. 2018, 13, 637–646. [CrossRef] [PubMed]

171. Yang, K.; Sukkarieh, S. 3D smooth path planning for a UAV in cluttered natural environments. In Proceedings of the 2008
IEEE/RSJ International Conference on Intelligent Robots and Systems, Nice, France, 22–26 September 2008; pp. 794–800.
[CrossRef]

172. Favaro, A.; Cerri, L.; Galvan, S.; Baena, F.R.Y.; De Momi, E. Automatic Optimized 3D Path Planner for Steerable Catheters
with Heuristic Search and Uncertainty Tolerance. In Proceedings of the 2018 IEEE International Conference on Robotics and
Automation (ICRA), Brisbane, QLD, Australia, 21–25 May 2018; pp. 9–16. [CrossRef]

173. Liu, F.; Garriga-Casanovas, A.; Secoli, R.; Rodriguez y Baena, F. Fast and Adaptive Fractal Tree-Based Path Planning for
Programmable Bevel Tip Steerable Needles. IEEE Robot. Autom. Lett. 2016, 1, 601–608. [CrossRef]

174. Pinzi, M.; Galvan, S.; Rodriguez y Baena, F. The Adaptive Hermite Fractal Tree (AHFT): A novel surgical 3D path planning
approach with curvature and heading constraints. Int. J. Comput. Assist. Radiol. Surg. 2019, 14, 659–670. [CrossRef] [PubMed]

175. Fu, M.; Salzman, O.; Alterovitz, R. Toward Certifiable Motion Planning for Medical Steerable Needles. Proceedings of Robotics:
Science and Systems. arXiv 2021, arXiv:2107.04939.

176. Barraquand, J.; Latombe, J.C. Nonholonomic multibody mobile robots: Controllability and motion planning in the presence of
obstacles. In Proceedings of the Proceedings. 1991 IEEE International Conference on Robotics and Automation, Sacramento, CA,
USA, 9–11 April 1991; Volume 3, pp. 2328–2335. [CrossRef]

177. Lindemann, S.; LaValle, S. Multiresolution approach for motion planning under differential constraints. In Proceedings of
the 2006 IEEE International Conference on Robotics and Automation, 2006. ICRA 2006, Orlando, FL, USA, 15–19 May 2006;
pp. 139–144. [CrossRef]

178. Pinzi, M.; Watts, T.; Secoli, R.; Galvan, S.; Baena, F.R.y. Path Replanning for Orientation-Constrained Needle Steering. IEEE Trans.
Biomed. Eng. 2021, 68, 1459–1466. [CrossRef]

179. Quinlan, S.; Khatib, O. Elastic bands: Connecting path planning and control. In Proceedings of the [1993] Proceedings IEEE
International Conference on Robotics and Automation, Atlanta, GA, USA, 2–6 May 1993; Volume 2, pp. 802–807. [CrossRef]

180. Lee, C.T.; Tsai, C.C. 3D Collision-Free Trajectory Generation Using Elastic Band Technique for an Autonomous Helicopter. In
Next Wave in Robotics; Li, T.H.S., Tu, K.Y., Tsai, C.C., Hsu, C.C., Tseng, C.C., Vadakkepat, P., Baltes, J., Anderson, J., Wong, C.C.,
Jesse, N., et al., Eds.; Springer: Berlin/Heidelberg, Germany, 2011; pp. 34–41.

181. Zhu, Z.; Schmerling, E.; Pavone, M. A convex optimization approach to smooth trajectories for motion planning with car-like
robots. In Proceedings of the 2015 54th IEEE Conference on Decision and Control (CDC), Osaka, Japan, 15–18 December 2015; pp.
835–842. [CrossRef]

182. Brainlab AG. Cranial Navigation Application. Available online: https://www.brainlab.com/surgery-products/overview-
neurosurgery-products/cranial-navigation/ (accessed on 29 October 2021).

183. Medtronic plc. Stealth Navigation for Neurosurgery. Available online: https://www.medtronic.com/us-en/healthcare-
professionals/products/neurological/surgical-navigation-systems.html (accessed on 29 October 2021).

184. Renishaw plc. Neuroinspire. Available online: https://www.renishaw.com/en/neuroinspire-neurosurgical-planning-software-
-8244 (accessed on 29 October 2021).

185. Chittiboina, P.; Heiss, J.D.; Lonser, R.R. Accuracy of direct magnetic resonance imaging-guided placement of drug infusion
cannulae. J. Neurosurg. 2015, 122, 1173–1179. [CrossRef]

186. Chen, Y.; Godage, I.S.; Sengupta, S.; Liu, C.L.; Weaver, K.D.; Barth, E.J. MR-conditional steerable needle robot for intracerebral
hemorrhage removal. Int. J. Comput. Assist. Radiol. Surg. 2019, 14, 105–115. [CrossRef] [PubMed]

http://dx.doi.org/10.1007/s00330-011-2259-3
http://dx.doi.org/10.1109/TRO.2014.2307633
http://www.ncbi.nlm.nih.gov/pubmed/25435829
http://dx.doi.org/10.1007/s11548-011-0651-8
http://dx.doi.org/10.1109/ICRA40945.2020.9196954
http://dx.doi.org/10.1109/TRO.2020.3043692
http://dx.doi.org/10.1109/MRA.2017.2680546
http://dx.doi.org/10.1109/BIOROB.2010.5625965
http://dx.doi.org/10.1007/s11548-018-1712-z
http://www.ncbi.nlm.nih.gov/pubmed/29502230
http://dx.doi.org/10.1109/IROS.2008.4650637
http://dx.doi.org/10.1109/ICRA.2018.8461262
http://dx.doi.org/10.1109/LRA.2016.2528292
http://dx.doi.org/10.1007/s11548-019-01923-3
http://www.ncbi.nlm.nih.gov/pubmed/30790172
http://dx.doi.org/10.1109/ROBOT.1991.131750
http://dx.doi.org/10.1109/ROBOT.2006.1641174
http://dx.doi.org/10.1109/TBME.2021.3060470
http://dx.doi.org/10.1109/ROBOT.1993.291936
http://dx.doi.org/10.1109/CDC.2015.7402333.
https://www.brainlab.com/surgery-products/overview-neurosurgery-products/cranial-navigation/
https://www.brainlab.com/surgery-products/overview-neurosurgery-products/cranial-navigation/
https://www.medtronic.com/us-en/healthcare-professionals/products/neurological/surgical-navigation-systems.html
https://www.medtronic.com/us-en/healthcare-professionals/products/neurological/surgical-navigation-systems.html
https://www.renishaw.com/en/neuroinspire-neurosurgical-planning-software--8244
https://www.renishaw.com/en/neuroinspire-neurosurgical-planning-software--8244
http://dx.doi.org/10.3171/2014.11.JNS131888
http://dx.doi.org/10.1007/s11548-018-1854-z
http://www.ncbi.nlm.nih.gov/pubmed/30173334


Int. J. Mol. Sci. 2022, 23, 3139 27 of 29

187. Patel, N.A.; van Katwijk, T.; Li, G.; Moreira, P.; Shang, W.; Misra, S.; Fischer, G.S. Closed-loop asymmetric-tip needle steering
under continuous intraoperative MRI guidance. In Proceedings of the 2015 37th Annual International Conference of the IEEE
Engineering in Medicine and Biology Society (EMBC), Milano, Italy, 25–29 August 2015; pp. 4869–4874. [CrossRef]

188. Matheson, E.; Rodriguez y Baena, F. Biologically Inspired Surgical Needle Steering: Technology and Application of the
Programmable Bevel-Tip Needle. Biomimetics 2020, 5, 68. [CrossRef]

189. Boviatsis, E.J.; Kouyialis, A.T.; Stranjalis, G.; Korfias, S.; Sakas, D.E. CT-guided stereotactic aspiration of brain abscesses. Neurosurg.
Rev. 2003, 26, 206–209. [CrossRef] [PubMed]

190. Bhattacharji, P.; Moore, W. Application of real-time 3D navigation system in CT-guided percutaneous interventional procedures:
A feasibility study. Radiol. Res. Pract. 2017, 2017, 3151694. [CrossRef] [PubMed]

191. Lo Presti, D.; Massaroni, C.; Jorge Leitão, C.S.; De Fátima Domingues, M.; Sypabekova, M.; Barrera, D.; Floris, I.; Massari, L.;
Oddo, C.M.; Sales, S.; et al. Fiber Bragg Gratings for Medical Applications and Future Challenges: A Review. IEEE Access 2020,
8, 156863–156888. [CrossRef]

192. Chevrie, J.; Shahriari, N.; Babel, M.; Krupa, A.; Misra, S. Flexible Needle Steering in Moving Biological Tissue With Motion
Compensation Using Ultrasound and Force Feedback. IEEE Robot. Autom. Lett. 2018, 3, 2338–2345. [CrossRef]

193. Khan, F.; Denasi, A.; Barrera, D.; Madrigal, J.; Sales, S.; Misra, S. Multi-Core Optical Fibers With Bragg Gratings as Shape Sensor
for Flexible Medical Instruments. IEEE Sens. J. 2019, 19, 5878–5884. [CrossRef]

194. Khan, F.; Donder, A.; Galvan, S.; Baena, F.R.y.; Misra, S. Pose Measurement of Flexible Medical Instruments Using Fiber Bragg
Gratings in Multi-Core Fiber. IEEE Sens. J. 2020, 20, 10955–10962. [CrossRef]

195. Brainlab AG. Intraoperative Ultrasound. Available online: https://www.brainlab.com/surgery-products/overview-
neurosurgery-products/intraoperative-ultrasound/ (accessed on 9 March 2022).

196. Scholten, H.; Pourtaherian, A.; Mihajlovic, N.; Korsten, H.; A. Bouwman, R. Improving needle tip identification during
ultrasound-guided procedures in anaesthetic practice. Anaesthesia 2017, 72, 889–904. [CrossRef] [PubMed]

197. Denasi, A.; Khan, F.; Boskma, K.J.; Kaya, M.; Hennersperger, C.; Göbl, R.; Tirindelli, M.; Navab, N.; Misra, S. An Observer-
Based Fusion Method Using Multicore Optical Shape Sensors and Ultrasound Images for Magnetically-Actuated Catheters. In
Proceedings of the 2018 IEEE International Conference on Robotics and Automation (ICRA), Brisbane, QLD, Australia, 21–25
May 2018; pp. 50–57. [CrossRef]

198. Gerard, I.J.; Kersten-Oertel, M.; Petrecca, K.; Sirhan, D.; Hall, J.A.; Collins, D.L. Brain shift in neuronavigation of brain tumors: A
review. Med. Image Anal. 2017, 35, 403–420. [CrossRef] [PubMed]

199. Fuerst, B.; Wein, W.; Müller, M.; Navab, N. Automatic ultrasound–MRI registration for neurosurgery using the 2D and 3D LC2
Metric. Med. Image Anal. 2014, 18, 1312–1319. [CrossRef] [PubMed]

200. Drobny, D.; Ranzini, M.; Ourselin, S.; Vercauteren, T.; Modat, M. Landmark-Based Evaluation of a Block-Matching Registration
Framework on the RESECT Pre- and Intra-operative Brain Image Data Set. In Large-Scale Annotation of Biomedical Data and Expert
Label Synthesis and Hardware Aware Learning for Medical Imaging and Computer Assisted Intervention; Zhou, L., Heller, N., Shi, Y.,
Xiao, Y., Sznitman, R., Cheplygina, V., Mateus, D., Trucco, E., Hu, X.S., Chen, D., et al., Eds.; Springer International Publishing:
Cham, Switzerland, 2019; pp. 136–144. [CrossRef]
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