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Abstract: Currently, one of the leading treatments for non-small-cell lung cancer is immunotherapy
involving immune checkpoint inhibitors. These monoclonal antibodies restore the anti-tumour
immune response altered by negative immune checkpoint interactions. The most commonly used
immunotherapeutics in monotherapy are anti-PD-1 and anti-PD-L1 antibodies. The effectiveness of
both groups of antibodies has been proven in many clinical trials, which have translated into positive
immunotherapeutic registrations for cancer patients worldwide. These antibodies are generally well
tolerated, and certain patients achieve durable responses. However, given the resistance of some
patients to this form of therapy, along with its other drawbacks, such as adverse events, alternatives
are constantly being sought. Specifically, new drugs targeting already known molecules are being
tested, and new potential targets are being explored. The aim of this paper is to provide an overview
of the latest developments in this area.

Keywords: non-small cell lung cancer; immunotherapy; immune checkpoints; immune checkpoint
inhibitors; immune checkpoint agonists

1. Introduction

At present, clinicians have a variety of options for treating advanced non-small-
cell lung cancer (NSCLC) patients. Molecularly targeted therapies are one of these op-
tions. In these therapies, patients are screened for mutations that predispose them to
respond to personalised treatment. The studied genes include EGFR (epidermal growth
factor receptor), ALK (anaplastic lymphoma kinase), ROS1 (ROS proto-oncogene 1), BRAF
(proto-oncogene B-Raf), MET (mesenchymal-epithelial transition factor), RET (RET proto-
oncogene), NTRK 1–3 (neurotrophic tyrosine kinase 1-3), and KRAS (Kirsten rat sarcoma
virus) [1]. In non-molecularly-predisposed NSCLC patients, treatment relies on immunother-
apy, which is based on immune checkpoint inhibitors (ICIs), which are monoclonal antibod-
ies that work against negative co-stimulatory molecules [2,3]. Physiologically, inhibitory
immune checkpoint pathways help to maintain self-tolerance and to control the anti-
microbial immune response. However, negative immune checkpoint molecules can be
expressed in the tumour microenvironment (TME) and may therefore be involved in the
evasion of host immune surveillance; accordingly, a blockade of those pathways enables
anti-tumour immune response restoration [4].

Currently, in the immunotherapy of cancer, the most common targets within negative
immune checkpoints are PD-1 (programmed death 1), its ligand PD-L1 (programmed death
ligand 1), and CTLA-4 (cytotoxic T lymphocyte antigen 4) molecule when combination
therapy is considered [3]. At present, the only validated biomarkers that qualify for ICI
treatment in cancer patients are the percentage of tumour cells and/or immune cells with
PD-L1 expression, as well as high microsatellite instability (MSI). PD-L1 expression on
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tumour cells, despite not being an ideal one, is the only predictive marker for immunother-
apy in NSCLC patients so far proven in prospective clinical trials [5,6]. Of all the methods
researched thus far, ICIs are the most efficient type of immunotherapy in advanced NSCLC.
Nevertheless, those ICIs that are currently used are not always effective, and durable
response is observed in a minority of patients. Unfortunately, in patients with PD-L1
expression on tumour cells, a lack of immunotherapy response could be observed, and this
treatment method may also be effective in patients without PD-L1 expression [5].

Three possible situations of systemic progression are described in the clinic: early,
intermediate, and late progression, and different immunological mechanisms are thought
to be responsible for them (Table 1) [7]. It should be kept in mind that the mechanism of the
anti-tumour immune response is extremely complex, involves multiple stages, and depends
on many factors. While progression is often linked to neoantigen depletion or defects in
IFN-γ signalling, some authors have described the upregulated expression of other negative
immune checkpoints on T cells at the time of acquired resistance. These include TIM-3
(T-cell immunoglobulin and mucin domain 3), TIGIT (T-cell immunoreceptor with Ig and
ITIM domain), and LAG-3 (lymphocyte-activation gene 3) molecules [8]. However, it has
also been postulated that the stimulation of positive immune checkpoints, such as OX40 and
CD137, can reverse ICI resistance. This has shifted researchers’ attention to the therapeutic
potential of the blockade or stimulation of immunological checkpoints other than PD-1/PD-
L1 and CTLA-4. These drugs are also not free of side effects, which are also known as
immune-related adverse events (irAEs). As peripheral tolerance pathways are blocked
mostly by anti-CTLA-4 or anti-PD-1 antibodies, these side effects have an autoimmune
character and can affect most organs [9]. Therefore, searching for new antibodies and
therapeutic targets is still the main subject of research for many oncologists.

Table 1. The short summary of three different types of resistance to immunotherapy [7].

Timing of Systemic
Progression Type of Resistance Description

Early
(<3 months) Primary resistance Cancer does not respond to an

immunotherapy strategy

Intermediate
(3 months–2 years) Adaptive resistance

Most cancer cells are recognized by the
immune system, but some cells are

equipped with protective mechanisms

Late
(>2 years) Acquired resistance

Cancer initially responds to
immunotherapy but after a period of

time progression is observed
Based on the article: Sharma et al., 2017; modified by authors.

The aim of this paper is to point out novel approaches, immunological targets, and
hopes in NSCLC immunotherapy. In addition to combination therapy, targeting check-
points other than the PD-1 and CTLA-4 pathways are presently being investigated. The
new molecules recently considered for immunotherapy targets include both activatory
and inhibitory checkpoints, and this review will focus on them. The results of preclinical
studies on these molecules are so encouraging that they have led to the continued use of
new ICIs in further phases of clinical trials. All the receptors described and the antibodies
targeting them are symbolically shown in Figure 1.
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Washington University cell adhesion molecule [WUCAM], V-set and transmembrane do-
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protein 9 [VSIG9]) belongs to the poliovirus receptor-like (PVR-like) family [10]. It is ex-
pressed by lymphocytes, including CD4+ lymphocytes, CD8+ lymphocytes, Tregs (T regu-
latory cells), memory T cells, and natural-killer (NK) cells [10–13]. TIGIT is an inhibitory 
receptor and has three ligands: CD155, CD112, and CD113, which are expressed mainly 
by antigen-presenting cells (APCs), haematopoietic cells (CD112-positive), and non-
haematopoietic tissues (CD155-positive, CD112-positive, and CD113-positive) [14–16]. 

While the exact effects of TIGIT interaction with its ligands are still being studied, it 
has been described as acting through several mechanisms. First, it is thought to transmit 
inhibitory signals to T cells and NK cells directly through its cytoplasmic tail via an intrin-
sic mechanism [12]. Second, in the cell-extrinsic mechanism, action on the TIGIT-CD155 
axis increases the secretion of anti-inflammatory cytokines and decreases the secretion of 
proinflammatory cytokines by dendritic cells (DCs); these processes lead to impaired T-

Figure 1. The monoclonal antibodies targeting positive (in green) and negative (in red) immune
checkpoints on T cells.

2. Pathway Inhibitors Other Than PD-1/PD-L1: Discovering New Immune
Checkpoint Inhibitors

The 2018 Nobel Prize in Physiology or Medicine awarded to Professors Tasuko Honjo
(for his work on PD-1) and James Allison (for his work on CTLA-4) was undeniable proof
of the enormous contribution of the discovery of these two negative control points to
modern cancer treatment. However, it should be remembered that the list of molecules
against which we can direct antibodies to block their functions is still incomplete. Cancer
cells can successfully evade anti-PD-1 or anti-PD-L1 immunotherapy by expressing other
negative molecules and extinguishing the activity of the immune system [8]. Other negative
checkpoints are discussed below, along with the results of the clinical trials involving them.

2.1. TIGIT

The T-cell immunoreceptor with the Ig and ITIM domain (TIGIT, also known as
the Washington University cell adhesion molecule [WUCAM], V-set and transmembrane
domain-containing protein 3 [Vstm3], and V-set and immunoglobulin domain-containing
protein 9 [VSIG9]) belongs to the poliovirus receptor-like (PVR-like) family [10]. It is
expressed by lymphocytes, including CD4+ lymphocytes, CD8+ lymphocytes, Tregs (T
regulatory cells), memory T cells, and natural-killer (NK) cells [10–13]. TIGIT is an in-
hibitory receptor and has three ligands: CD155, CD112, and CD113, which are expressed
mainly by antigen-presenting cells (APCs), haematopoietic cells (CD112-positive), and
non-haematopoietic tissues (CD155-positive, CD112-positive, and CD113-positive) [14–16].

While the exact effects of TIGIT interaction with its ligands are still being studied, it
has been described as acting through several mechanisms. First, it is thought to transmit
inhibitory signals to T cells and NK cells directly through its cytoplasmic tail via an intrin-
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sic mechanism [12]. Second, in the cell-extrinsic mechanism, action on the TIGIT-CD155
axis increases the secretion of anti-inflammatory cytokines and decreases the secretion of
proinflammatory cytokines by dendritic cells (DCs); these processes lead to impaired T-cell
activation [10]. Another study revealed that TIGIT causes polarisation of CD155-expressing
type 1 proinflammatory macrophages into IL-10-secreting type 2 macrophages (which are
tumour-promoting) in mice [17]. In another mechanism, TIGIT may outcompete DNAX
accessory molecule-1 (DNAM-1, CD226) from interacting with CD155 on macrophages,
as these two molecules share CD155 as a receptor, and TIGIT binds to CD155 with higher
affinity than DNAM-1 (expressed mainly by T cells, NK cells, and monocytes) [10]. Fur-
thermore, TIGIT may disturb cis-homodimerisation on the cell surface and thereby prevent
DNAM-1 interaction with CD155b [18]. Considering the nature of the DNAM-1 molecule,
which co-stimulates cytotoxic T cells (Tc), the expected effect of its blockade is the inhibition
of these cells’ function. It is worth adding that TIGIT-positive Tregs are described as cells
with an activated phenotype that could suppress T cells [19].

TIGIT is found to be expressed by tumour-infiltrating lymphocytes (TILs) in NSCLC
and ‘distant lung-associated lymphocytes’ (DLALs), but also by peripheral blood mononu-
clear cells (PBMCs) and, less significantly, tumour-free lung lymphocytes (TFLLs) [20,21].
Johnston et al. reported TIGIT overexpression by NSCLC-infiltrating CD8-positive T cells
and its positive correlation with PD-1 expression [18]. Moreover, researchers have shown
that there is synergistic action of PD-1 and TIGIT in tumour escape from immunologi-
cal surveillance in a mouse model. Furthermore, the simultaneous blockade of PD-L1
and TIGIT was found to be much more effective than a single anti-TIGIT or anti-PD-L1
antibody [18]. Another study reported that TIGIT-positive NK cells infiltrating mouse
subcutaneous tumours or human endometrial cancers were found to co-express other
inhibitory receptors, such as LAG-3 and TIM-3, and their functions were altered [22]. Im-
portantly, CD155 and CD112 are expressed by lung cancer cells or other cells in TME (e.g.,
tumour-associated macrophages [TAMs] with CD112 expression) [23,24]. Given the wide
range of actions and presence in TME, TIGIT appears to be a promising therapeutic target
in cancer treatment.

There have already been some clinical trials with anti-TIGIT monoclonal antibod-
ies (mAbs). Vibostolimab, an anti-TIGIT antibody, was tested in patients with advanced
NSCLC naive to prior anti-PD-1/PD-L1 therapy in a dose-finding study. In this case, vi-
bostolimab was administered with pembrolizumab (anti-PD-1 mAb) and was well tolerated.
The overall response rate (ORR) and progression-free survival (PFS) reached promising val-
ues, especially in patients with a tumour proportion score (TPS) of PD-L1 expression ≥1%
(i.e., more than 1% of tumour cells with PD-L1 expression). The ORR was 46% (95% CI:
19–75) in the TPS ≥1% group and 25% (95% CI: 5–57) in TPS <1% group. The median PFS
reached 8.4 months (95% CI: 3.9–10.2) in the TPS ≥1% group and 4.1 months (95% CI:
1.9-NR) in TPS <1% group. The median duration of response (DoR) for all patients was not
reached (ranging from 4 to up to 17 months). Adverse events typical of immunotherapy
occurred in 34 patients (83%) [25]. There are two other clinical trials with vibostolimab
worth observing that are recruiting NSCLC patients. The NCT04738487 study is intended
to verify the efficacy of the coformulation of pembrolizumab/vibostolimab in compari-
son to pembrolizumab monotherapy for PD-L1-positive metastatic NSCLC patients [26].
The NCT04725188 trial was designed to compare pembrolizumab/vibostolimab cofor-
mulation or pembrolizumab/vibostolimab coformulation plus docetaxel for metastatic
NSCLC patients with progressive disease after platinum doublet chemotherapy and
immunotherapy [27].

Another anti-TIGIT mAb, tiragolumab, was tested in a phase 2 trial in combination
with atezolizumab in chemotherapy-naive patients with locally advanced PD-L1-selected
NSCLC. At the beginning of 2021, tiragolumab was granted breakthrough therapy des-
ignation by the Food and Drug Administration (FDA) for use in combination with ate-
zolizumab (anti-PD-L1 mAb) in the first-line treatment of metastatic NSCLC patients whose
tumours have high PD-L1 expression but no EGFR mutations or ALK rearrangements. The
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most updated and critical results of the CITYSCAPE trial were presented at the ESMO
Immuno-Oncology Congress in 2021. The ORR and median PFS in the tiragolumab plus
atezolizumab group reached 38.8% (95% CI: 26.4–51.2) and 5.6 months (95% CI: 4.2–10.4),
respectively. In contrast, in the placebo plus atezolizumab group, the ORR was 20.6% (95%
CI: 10.2–30.9) and the median PFS was 3.9 months (95% CI: 2.7–4.5). In the subset analysis,
significantly prolonged PFS was observed in the group with PD-L1 expression ≥ 50%,
reaching 16.6 months (95% CI: 5.5–22.3), and the ORR reached 69.0% (95% CI: 50.4–87.5).
Safety profiles were similar (Table 2) [28]. The CITYSCAPE trial is the first randomised
trial of an anti-TIGIT therapy and provides evidence that targeting both TIGIT and PD-L1
molecules (tiragolumab plus atezolizumab) may improve anti-tumour activity by amplify-
ing the immune response in advanced NSCLC patients [28].

Table 2. Chosen clinical trials investigating antibodies targeting immune checkpoints in therapies of
patients with solid tumours including NSCLC.

Trial ID Target Treatment Method Line of
Treatment Cancer Type Primary End

Points Phase

NCT02964013 TIGIT
PD-1

vibostolimab +
pembrolizumab

1st
or 2nd

solid tumours
(including
NSCLC)

DLTs 1

NCT04738487 TIGIT
PD-1

vibostolimab +
pembrolizumab

versus
pembrolizumab

1st
PD-L1+

metastatic
NSCLC

OS, PFS 3

NCT04725188 TIGIT
PD-1

vibostolimab +
pembrolizumab

or vibostolimab +
pembrolizumab +

docetaxel
versus

docetaxel

2nd metastatic
NSCLC PFS 2

NCT03563716 TIGIT
PD-L1

tiragolumab +
atezolizumab versus

placebo +
atezolizumab

1st
advanced

PD-L1-selected
NSCLC

ORR, PFS 2

NCT02608268 TIM-3, PD-1

sabatolimab
(MBG453) alone or

sabatolimab +
spartalizumab

(PDR001)

1st
or subsequent

advanced solid
tumours

(including
NSCLC)

DLTs, ORR
and others 1/2

NCT02817633 TIM-3, LAG-3,
PD-1

TSR-022 (anti-TIM-3),
TSR-033

(anti-LAG-3),
TSR-042 (anti-PD-1),

nivolumab and
chemotherapy in

different
combinations

1st, 2nd or 3rd

advanced solid
tumours

(including
NSCLC)

DLTs, ORR
and others 1

NCT02460224 LAG-3, PD-1

ieramilimab
(LAG525) +

spartalizumab
(PDR001)

1st
or subsequent

advanced solid
tumours

(including
NSCLC)

DLTs, ORR 1/2
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Table 2. Cont.

Trial ID Target Treatment Method Line of
Treatment Cancer Type Primary End

Points Phase

NCT01644968 OX40 9B12

failure of all
standard

therapeutic
options

metastatic solid
malignancies DLTs 1

NCT02410512 OX40,
PD-L1

MOXR0916 +
atezolizumab

failure of all
standard

therapeutic
options

advanced solid
tumours

(including
NSCLC)

DLTs 1

NCT00309023
NCT00612664
NCT01471210
(integrated)

CD137 urelumab 2nd or
subsequent

advanced solid
tumours and
lymphoma

AEs, DLTs 1 or 2

NCT02179918 CD137,
PD-1

utomilumab
(PF-05082566) +
pembrolizumab

failure of all
standard

therapeutic
options

advanced or
metastatic solid

tumours
AEs, DLTs 1

NCT01307267 CD137 utomilumab 1st
or subsequent

advanced
malignancies

(including
NSCLC)

DLTs 1

NCT03088540 PD-1
cemiplimab

versus
chemotherapy

1st NSCLC OS, PFS 3

NCT02404441 PD-1 spartalizumab averagely 4th
solid tumours

(including
NSCLC)

DLTs, ORR 1/2

NCT03629925 PD-1

sintilimab + platinum
compounds +

gemcitabine (GP)
versus

placebo + GP

1st squamous
NSCLC PFS 3

NCT02517398 TGF-β
PD-L1

bintrafusp alfa
(bispecific) 2nd

solid tumours
(including
NSCLC)

TEAEs,
DLTs, BOR 1

NCT03631706 TGF-β
PD-L1

bintrafusp alfa
(bispecific)

versus
pembrolizumab

1st

metastatic
NSCLC with
high PD-L1
expression

PFS, OS 3

NCT03761017 PD-1
CTLA-4

MGD019
(bispecific) averagely 4th

solid tumours
(including
squamous
NSCLC)

TEAEs 1

NCT03530397 PD-1
CTLA-4

MEDI5752
(bispecific)

1st
or subsequent

advanced solid
tumours

(including
NSCLC)

TEAEs,
DLTs

and others
1

AEs—adverse events, BOR—best overall response, DLTs—dose limiting toxicities, ORR—overall response rate,
OS—overall survival, PFS—progression-free survival, TEAEs—treatment emergent adverse events.
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2.2. TIM-3

TIM-3 (CD366) is an immunoglobulin and mucin domain-containing membrane pro-
tein and a member of the TIM family originally found to be expressed on terminally
differentiated IFN-γ-producing Th1 (T helper cells; not on Th2) and Tc1 (T cytotoxic cells)
murine cells [29]. It was then confirmed in human cells that Th17 cells are also regu-
lated by this receptor [30]. TIM-3 is constitutively expressed by NK cells and DCs [31,32].
Gautron et al. demonstrated that TIM-3 can enhance the suppressor function of FoxP3+

Tregs with TIM-3 expression towards Th1 and Th17 responses [33]. This molecule has
several ligands, which are shown in Table 3, together with the effects of their interaction
with TIM-3 in the context of cancer (Table 3). The role of the TIM-3/phosphatidylserine
(phosphatidylserine, PtdSer) axis in malignancies is unclear. It was shown in a murine
model that TIM-3/PtdSer interaction may play a role in the clearance of apoptotic cells [34].
It has also been established to be present on human NSCLC cells and in vascular endothelial
cell membranes at the tumour site [35,36].

Table 3. TIM-3 ligands and their role in cancer.

Ligand TIM-3 Ligand Expression in
NSCLC

Effects of Interaction of TIM-3
Ligand with TIM-3 Molecule References

Galectin-9 tumour cells and TILs Apoptosis in TIM-3+CD8+ TILs [37,38]
CEACAM1

(carcinoembryonic antigen cell
adhesion

molecule 1)

tumour tissue (IHC) Tc exhaustion, cell-mediated
cytotoxicity suppression [31,39,40]

HMGB1
(high-mobility group box 1)

Primary
EpCAM+

epithelial
tumour cells

Suppression of innate immune
responses through the recognition of

nucleic acids by Toll-like receptors
and cytosolic sensors in DCs

[32]

PtdSer
(phosphatidylserine)

tumour cells and tumour
vasculature

meaning in cancer not described
(clearance of apoptotic cells) [34–36]

It has been demonstrated that TIM-3, like TIGIT, could promote type 2 macrophage
polarisation [41]. Also, TIM-3 can be present on an exhausted subset of CD8-positive TILs
and CD4-positive Tregs in TME [42,43]. TIM-3 was also discovered in tumour-infiltrating
DCs and found to suppress anti-tumour immunity [32]. As for NSCLC, TIM-3, along with
LAG-3 and PD-1, was found in TILs and connected with their activation, as well as with a
pro-apoptotic T-cell phenotype [44].

Clinical studies on anti-TIM-3 agents are still in their early stages. As mentioned above,
resistance to immunotherapy has been linked by some researchers to the upregulation
of TIM-3 molecule expression [45]. Considering this, many trials have focused on the
combinatorial approach. Patients with different solid tumours, including NSCLC (without
prior anti-PD-1/PD-L1 therapy), were enrolled in a trial with sabatolimab (MBG453),
an anti-TIM-3 mAb, alone and in combination with spartalizumab (anti-PD-1 antibody,
PDR001). In phase 1/1b, no responses were observed in the monotherapy arms using
both of these immunotherapeutics [46]. Acceptable tolerability but limited efficacy was
observed in the partial results for combination therapy. In phase 2, 41.2% (7/17) patients
had stable disease (SD) per RECIST 1.1 (response evaluation criteria in solid tumours),
3/17 patients had durable clinical benefit (complete or partial response [CR or PR] or SD for
≥6 months), 3/17 obtained stable disease for <6 months or progressive disease (PD), and
1 patient was defined with unknown clinical benefit [47]. The AMBER trial (NCT02817633)
aimed at testing different combinations of the anti-TIM-3 antibody (TSR-022) with the anti-
LAG-3 antibody (TSR-033) and anti-PD-1 antibody (TSR-042) and different chemotherapy
regimens in patients with solid tumours. One cohort recruited TIM-3-selected NSCLC
patients (Table 2) [48].
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2.3. LAG-3

LAG-3 (also called CD223) is a cell surface molecule and another inhibitory recep-
tor. As a homolog to CD4, it binds to major histocompatibility complex (MHC) class II
molecules, as well as liver sinusoidal endothelial cell lectin (LSECtin) and the galectin-3
molecule, negatively regulating T-cell functions [49–51]. It is expressed on activated CD4-
positive and activated CD8-positive T cells, NK cells, B cells, and plasmacytoid dendritic
cells [52–55]. Although LAG-3 mechanisms of action are still being investigated, we can
easily summarise this mechanism by stating that LAG-3 can inhibit T-cell activation. It
has been postulated that a unique ‘KIEELE’ motif (an amino acid sequence in the LAG-3
cytoplasmic tail) is essential for signal transduction of the LAG-3 molecule [56]. LAG-3
is involved in decreasing cytokine and granzyme production and the proliferation of T
cells [57]. It also mediates Tregs’ regulatory function and is required for the full suppressive
activity of natural and induced Tregs [58]. The LAG-3 ligand, galectin-3, was found to
negatively regulate CD4+ and CD8+ T cells in murine models [51,59].

Kouo et al. observed suppression of CD8-positive T-cell function by LAG-3/galectin-3
axis in TME and inhibiting expansion of plasmacytoid DCs [51]. Importantly, expression
of the galectin-3 gene was found in human NSCLC cell lines [60]. LAG-3 also binds to
LSECtin expressed by DCs. Xu et al. observed that if LSECtin is present in melanoma cells,
it inhibits the proliferation of tumour-specific effector T cells and thus enables immune
escape [50]. Furthermore, LAG-3 marks Tregs releasing immunosuppressive cytokines,
such as IL-10 and TGF-β1, with a more suppressive phenotype than LAG-3-negative cells
from the tumour sites of cancer patients [61]. In a murine model, LAG-3 blockade led to
augmentation of the amount and effector function in CD8+ T cells [62]. High expression
of this receptor was found on TILs in the TME of some patients with NSCLC as well,
and was positively correlated with PD-1 expression and related to poor prognosis [63].
Woo et al. indicated that, like TIGIT, LAG-3 may act synergistically with PD-1 to promote
tumoural immune escape, and that combination anti-LAG-3/anti-PD-1 immunotherapy
appears to be a legitimate strategy for cancer immunotherapy [64]. In NSCLC patients
treated with PD-1/PD-L1 blockers, high LAG-3 expression was associated with a shorter
PFS (p = 0.0314) [44].

Antibodies targeting LAG-3 are currently under investigation in different clinical
trials. Ieramilimab (LAG525), a humanised anti-LAG-3 mAb alone or in combination
with, remarkably, spartalizumab (PDR001), an experimental anti-PD-1 mAb, was tested
in a phase 1/2 study (NCT02460224). As primary results showed, among 121 patients
with advanced solid malignancies treated with LAG525 and spartalizumab combined
therapy, 11 partial responses and 1 complete response assessed by RECIST were observed.
Interestingly, in triple-negative breast cancer biopsies, investigators observed a trend in the
conversion of immune-cold to immune-activated biomarker profiles (Table 2) [65]. ‘Hot’
tumours are defined as exhibiting heavy infiltration of immune cells. ‘Cold’ tumours are
those without such infiltration or other features of an inflammatory response. Immune
exclusion tumours are also characterised when immune cells are found only at the periphery
of the lesion or in the stromal tissue of the tumour. Patients with resectable NSCLC are
also being enrolled in a study of relatlimab, another anti-LAG-3 antibody (BMS-986016),
as a neoadjuvant therapy [66]. Furthermore, an approach based on combining different
inhibitors has already been proven effective in melanoma, another type of cancer. A
combination of relatlimab and nivolumab (anti-PD-1 mAb) in phase 3 study RELATIVITY-
047 for previously untreated metastatic or unresectable melanoma provided a longer PFS
than nivolumab in monotherapy (10.1 months versus 4.6 months, p = 0.006) [67]. The
promising results of research on melanoma offer great hope for the use of relatlimab and
nivolumab combinations in the immunotherapy of other neoplastic diseases. Certainly, this
requires its own prospective clinical study.
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3. Is there Time to Stimulate Positive Immune Checkpoints in
Cancer Immunotherapy?

Immunotherapy aimed at blocking negative immune checkpoints has become the
standard of care for many cancers. The suppression of anti-tumour immune cell activity
in the tumour microenvironment is also well described in the literature. It should be
remembered, however, that the reactivation of exhausted lymphocytes in the tumour
microenvironment only by blocking negative checkpoints may not be sufficient to restore
full anticancer activity of these cells. Therefore, it may be reasonable to act simultaneously
on two checkpoints: negatively (i.e., unlocking the brake) and positively (i.e., stepping
on the gas pedal). The characteristics of the most important positive checkpoints and the
possibility of using their stimulation in immunotherapy are presented below.

3.1. OX40 Molecule with Stimulant Ability

OX40 (also described as CD134 or tumour necrosis factor receptor superfamily mem-
ber 4 [TNFRSF4]) is a type I transmembrane glycoprotein expressed mainly by T cells
(expression induced by TCR [T-cell receptor] stimulation) [68]. It is also found on NK cells,
NKT cells, and neutrophils [68]. Its ligand, OX40L (CD252), is expressed by DCs, activated
B cells, macrophages, and NK cells [68]. As for OX40 signalling, it has been postulated
that it acts through nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB),
mitogen-activated protein kinase (MAPK), nuclear factor of activated T cells (NFAT), and
Bcl-2/XL-dependent anti-apoptotic pathways [69,70]. Unlike the molecules mentioned
above, OX40 provides co-stimulatory signals to various subsets of T cells. Broader effects of
OX40/OX40L interaction include enhancement of the Th1-mediated immune response; Th2
cell maintenance; inhibition of Treg-mediated suppression; and augmentation of cytotoxic
T-cell survival, expansion, and function [71–74].

The role of OX40 in anti-tumour immunity has been demonstrated by activation
of the cytotoxic response through cooperation of CD8+ T cells with CD4+ T cells and
the enhancement of CD8-positive cell expansion by direct interaction [75]. Additionally,
in vitro studies have shown that the OX40 molecule is involved in the recall response to
tumour-associated antigens [76]. Another mechanism reverses the suppressive effects of
Tregs via OX40 agonism [77,78]. OX40 engagement also showed anti-tumour effects in a
murine cancer model [79]. Furthermore, OX40 was detected on TILs in NSCLC tissue, and
its ligand was found on cancer cells [80].

Preliminary studies have been conducted using agonistic agents against OX40 to
increase costimulation and therefore enhance T-cell function in cancer. A phase 1 study of
9B12, a murine agonistic anti-OX40 mAb, examined antigen-specific immune responses to
a variety of immunogens as a secondary outcome measure in patients with metastatic solid
malignancies. It was observed that this agent increased the proliferation of peripheral blood
CD4+ FoxP3-negative and CD8-positive T lymphocytes, as well as enhanced humoural and
cellular immunity [81]. Moreover, tumour regression of at least one metastatic lesion in
12 of 30 patients was observed [81]. Some authors have argued that, based on preclinical
data, therapy targeting both OX40 (as an agonistic agent) and PD-L1 (as an inhibitory
agent) has synergistic effects; thus, a combination approach may be more efficient [82,83].
A preliminary report of a phase 1b dose escalation study of OX40 agonist MOXR0916 in
combination with atezolizumab in patients with advanced solid tumours showed good
tolerability, and an expansion phase was conducted on selected tumour types (Table 2) [84].

3.2. Dual Role of the CD137 Molecule in NSCLC Patients

CD137 (also known as 4-1BB and TNFRSF9) is another co-stimulatory and activation-
inducible surface molecule found on a variety of immunological cells, such as CD4-positive
and CD8-positive T cells and NK cells, Tregs, DCs (including follicular DCs), monocytes,
neutrophils, and eosinophils [85,86]. Its ligand is expressed mostly by APCs, but CD137
and CD137L expression is not restricted only to immune cells [86–88]. Molecules involved
in CD137 signalling include NF-κB, Jun amino-terminal kinases/stress-activated protein
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kinases (JNK/SAPK), and p38 MAPK [89]. 4-1BB promotes cytotoxic response by enhancing
the proliferation and activation of CD8+ T cells [90]. CD137 signalling also augments the
survival of these cells via Bcl-2 family members [91]. Research on CD137 function using
agonistic antibodies showed that NK cell proliferation and IFN-γ production is promoted
by CD137 stimulation, and that primed CD4+ T cells are activated through CD137 but with
subsequent promotion of their apoptosis [92].

What distinguishes CD137/CD137L interaction is the fact that the ligand may act as a
receptor and transmit reverse signalling to APCs, thereby enhancing their activity [93]. In
monocytes, such signalling leads to their differentiation to DCs and augmentation of the
Th1/Tc1-mediated immune response by DCs [93]. This, along with direct CD8+ cell reacti-
vation (e.g., through PD-1 blockade), may be relevant in cancer, as cell-mediated responses
are one of the basic anti-tumour activities. CD137L expression has been detected in various
tumour cell lines, including lung cancer [94]. Furthermore, Qian et al. demonstrated the
inhibition of the proliferation and induction of apoptosis in cancer cells in NSCLC by
reverse signalling [95]. Zhu et al. determined that CD137+ T cells are tumour-reactive
and able to inhibit tumour growth [96]. In a related vein, Guo et al. demonstrated an
increase in the percentage of CD4+ and CD8+ T cells and a decrease in the percentage of
Tregs at tumour sites in a murine model of ovarian cancer as an effect of combined TIM-3
blockade and CD137 activation [97]. Other preclinical studies showed anti-tumour activity
of CD137-targeted treatment [98].

One agonistic anti-CD137 agent is urelumab. Results from integrated safety studies indi-
cated immunological activity, but severe dose-dependent liver toxicities and hepatotoxicity-
related deaths were also reported [99]. Utomilumab (PF-05082566) in combination with
pembrolizumab (anti-PD-1) showed, in contrast to urelumab, good tolerability in the
phase 1b study, and complete or partial responses were observed in 6/23 patients (26.1%)
with advanced solid tumours [100]. In another study with utomilumab as monotherapy,
preliminary anti-tumour activity was noted: the ORR was 3.8%, the median PFS was
1.7 months, and the median OS was 11.2 months in patients with solid tumours [101]. A
summary of the anti-CD137 trials is presented in Table 2.

4. Beyond Well-Known Anti-PD-1 Antibodies

In lung cancer immunotherapy, two groups of ICIs are widely used: anti-PD-1 as
well as anti-PD-L1 antibodies. Now, one of the most important questions oncologists
are facing is the following: Do we have other therapeutic options? Cemiplimab, an
antibody targeting the PD-1 molecule, was tested as a first-line monotherapy in a group of
patients with advanced NSCLC according to PD-L1 tumour cell expression (in a multicentre,
global, open-label phase 3 EMPOWER-Lung 1 study). In the group of patients with PD-
L1 expression on at least 50% of tumour cells, a median OS was not reached (95% CI:
17.9–NR) within cemiplimab treatment, but it was 14.2 months (95 CI: 11.2–17.5) in patients
receiving platinum-based chemotherapy. Significant improvements in median PFS were
also observed, which were 8.2 months in the cemiplimab group versus 5.7 months in
the chemotherapy group [102]. Notably, cemiplimab monotherapy is already indicated
for use (in the United States and in the European Union) as a first-line therapy for adult
patients with NSCLC and high PD-L1 expression (≥50% of tumour cells), but without
EGFR, ALK, or ROS1 aberrations. Moreover, cemiplimab could be used in locally advanced
NSCLC patients who are not eligible for radical chemoradiotherapy or in metastatic NSCLC
patients [103,104]. Cemiplimab is also approved for cutaneous squamous cell carcinoma
and basal cell carcinoma [105,106].

Spartalizumab (PDR001) is also a novel anti-PD-1 mAb, which was investigated in a
one to two phase study in various groups of patients (some of whom received immunother-
apy in earlier lines of treatment). The recommended phase 2 doses were selected as 400 mg
every 4 weeks or 300 mg every 3 weeks. The maximum tolerated dose was not reached.
Adverse events included those typical of therapy with other PD-1 antibodies. The response
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rate reached 3.4%, and partial responses occurred in two patients: one with an atypical
carcinoid tumour of the lung and one with anal cancer (Table 2) [107].

Another antibody that works against the PD-1 molecule, sintilimab, was the subject of
a phase 3 trial. Advanced or metastatic squamous NSCLC patients were enrolled in this
study. The toxicity and effectiveness of sintilimab with gemcitabine and platinum-based
chemotherapy (GP) were compared to the corresponding effects with a placebo plus GP.
An interim analysis showed benefits in PFS for the sintilimab plus GP group versus the
placebo plus GP group (hazard ratio = 0.536, 95% CI: 0.422–0.681). Median OS was not
reached in either group, but in the sintilimab plus GP group, it was significantly improved.
The incidence of grade ≥ 3 adverse events was similar between both groups (Table 2) [108].

5. New Antibody Production Process: Dual-Affinity Re-Targeting (DART)
Antibody Technology

To address the problems associated with conventional monoclonal antibodies, re-
searchers recently managed to produce stable bispecific antibodies that demonstrate activity
both in vitro and in vivo. A structure called dual-affinity re-targeting (DART) is a molecule
composed of two pairs of a variable heavy chain domain (VH) and a variable light chain
domain (VL) and a polypeptide linker; therefore, it is bispecific [109]. Some preclinical and
clinical studies have shown promising results in indicating anti-tumour response.

One of the investigated drugs is bintrafusp alfa, a bifunctional fusion protein targeting
TGF-β (tumour growth factor beta) and PD-L1. The role of the PD-L1 molecule is widely
known. Considering the function of TGF-β, it may also play a role in regulating immuno-
logical processes in TME and inhibiting host tumour immune surveillance [110]. Moreover,
it has been found to be overexpressed in various types of cancers [111]. The expansion
cohort of a phase 1 trial in patients with NSCLC previously treated with platinum-based
chemotherapy showed that bintrafusp alfa (M7824) was effective and tolerable as a second-
line treatment. At a 1200 mg dose, which was recommended in phase 2, patients with
PD-L1-positive (≥1% PD-L1+ tumour cells) and PD-L1-high (≥80% PD-L1+ tumour cells)
cell counts had ORRs of 36.0% and 85.7%, respectively. Median PFS was 5.5 months (95%
CI: 1.3–11.0) in patients with low PD-L1 expression (≥1%–<80% PD-L1+ tumour cells) and
15.2 months (95% CI: 1.3–NR) in patients with high expression [112]. Another randomised
study of bintrafusp alfa versus pembrolizumab as a first-line treatment in patients with
PD-L1 expressing advanced NSCLC is ongoing (Table 2) [113].

Combination therapy, where a PD-1/PD-L1 inhibitor is combined with a CTLA-4
inhibitor, has been proven to be more effective than monotherapies in some types of cancer,
but an increase in the incidence of adverse events was observed [114]. In many clinical
trials assessing the cellular composition of neoplastic tissue, an increased proportion of
double positive cells (CTLA-4+/PD-1+) was observed in comparison to healthy tissues.
Therefore, it seems reasonable to block both of these receptors simultaneously in tumour
tissue, but to avoid systemic toxicity through Treg depletion in peripheral tissues, the
function of these cells should be maintained. Berezhnoy et al. reported that bispecific
DART protein binding PD-1 and CTLA-4 in a first-in-human study (still ongoing) showed
that a combination blockade had an acceptable safety profile and satisfactory objective
response rate in multiple tumour types [115].

DART technology is not the only method currently being explored to create bispecific
drugs. An anti-PD-1/CTLA-4 monovalent, bispecific antibody (‘DuetMab’) is being tested
in a trial in patients with advanced solid tumours, and some partial responses have already
been observed (Table 2) [116]. Thus far, the simultaneous blockade of two targets appears
to offer new opportunities in lung cancer treatment.
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6. Summary

To date, among the various immunological treatment options for NSCLC, the adminis-
tration of ICIs has been proven to be the most effective method for restoring the function
of T cells at the tumour site. However, it is not completely free from limitations. Specifi-
cally, not all patients respond to the therapy, and resistance occurs in some cases. These
difficulties are being addressed by researchers testing the potential of new drugs based on
blocking or activating molecules other than PD-1 and PD-L1, as well as completely new
methods of producing antibodies with dual specificity. The various receptors described
above play a significant role in immunological processes occurring at the tumour site.
Additionally, inhibitory molecules are often co-expressed by immune cells in the tumour
microenvironment, which creates the possibility of targeting them. Numerous clinical trials
have shown promising outcomes and acceptable safety profiles, either in monotherapy or
in combination with other agents.

Naturally, more research is required to confirm the mostly promising results obtained
in the trials mentioned above. First, it would be necessary to more precisely determine
the prevalence of these molecules in the tumour microenvironment. The relationship
between their expression and tumour diagnosis, treatment, and other factors should also
be investigated, and it is expected that this area of research will certainly develop in
the near future. Second, because the studies are mostly in the preliminary stages, there
is little information on the adverse effects and the exact mechanisms of action of the
new ICIs and checkpoint agonists. For instance, it would be interesting to analyse the
populations of lymphocytes that are stimulated and whether they are different from those
stimulated after currently used anti-PD-1/PD-L1 agents. As one of the mechanisms of
resistance to immunotherapy is the expression of other inhibitory molecules, there should
be studies conducted to specifically evaluate the efficacy of new antibodies in the first line
of treatment for different groups of patients, but also in PD. Finally, some of the studies
presented combined previously used antibodies with new ones, and this appears to be
a forward-looking approach. However, we must consider whether double blockade in
these circumstances would result in a higher rate of side effects, or whether appropriate
dosing of each monoclonal antibody could minimise side effects while maintaining the
efficacy of the therapy. The blockade of multiple immune checkpoints may be crucial in
cancer immunotherapy, especially in overcoming resistance in further treatment lines or
preventing their appearance in the first line of therapy. Nevertheless, it can clearly be seen
that further advances in the field of lung cancer immunotherapy are achievable.
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nuclear factor kappa-light-chain-enhancer of activated B cells, NK—natural killer, NR—not reached,
NSCLC—non-small-cell lung cancer, OR—objective response, ORR—overall response rate, OS—
overall survival, PD—progressive disease, PD-1—programmed death 1, PD-L1—programmed death
ligand 1, PFS—progression-free survival, PtdSer—phosphatidylserine, PVR—poliovirus receptor,
RECIST—response evaluation criteria in solid tumours, ROS1—ROS proto-oncogene 1, SD—stable
disease, Tc—T cytotoxic cell, TEAEs—treatment emergent adverse events, Th—T helper cell, TIGIT—
T-cell immunoreceptor with Ig and ITIM domain, TIL—tumour-infiltrating lymphocyte, TIM-3—T-
cell immunoglobulin mucin-3, TME—tumour microenvironment, TNFRSF—tumour necrosis factor
receptor superfamily, TPS—tumour proportion score, Treg—T regulatory cell
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