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Abstract: Plant–pathogen interactions induce a signal transmission series that stimulates the plant’s
host defense system against pathogens and this, in turn, leads to disease resistance responses.
Plant innate immunity mainly includes two lines of the defense system, called pathogen-associated
molecular pattern-triggered immunity (PTI) and effector-triggered immunity (ETI). There is extensive
signal exchange and recognition in the process of triggering the plant immune signaling network.
Plant messenger signaling molecules, such as calcium ions, reactive oxygen species, and nitric oxide,
and plant hormone signaling molecules, such as salicylic acid, jasmonic acid, and ethylene, play
key roles in inducing plant defense responses. In addition, heterotrimeric G proteins, the mitogen-
activated protein kinase cascade, and non-coding RNAs (ncRNAs) play important roles in regulating
disease resistance and the defense signal transduction network. This paper summarizes the status
and progress in plant disease resistance and disease resistance signal transduction pathway research
in recent years; discusses the complexities of, and interactions among, defense signal pathways;
and forecasts future research prospects to provide new ideas for the prevention and control of
plant diseases.
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1. Introduction

Plants have established multi-level passive and active resistance mechanisms during
the course of evolution that can be used coordinately against pathogen infection. Passive
resistance mainly involves physical barriers on the plant cell surface and substances inside
cells that are toxic to pathogens, such as antibacterial compounds, phenols, unsaturated
lactones, and antimicrobial peptides [1–5]. Active defense is mainly induced rapidly
after pathogen infection, and it includes the release of reactive oxygen species (ROS), the
production of the hypersensitive response (HR), the formation of phytoalexin, and the
reinforcement and repair of the cell wall [2,6]. The activation time and intensity of the
defense response determine the plant’s resistance level [7].

After plants are infected by pathogens, such as bacteria, fungi, oomycetes, my-
coplasma, or viruses, the activation of the defense response is finely regulated. At the
infection site, the plant defense response is initiated by two types of molecules that are
derived from pathogens. A pathogen-associated molecular pattern (PAMP), recognized by
cell-surface-localized pattern-recognition receptor (PRR)-triggered immunity (PTI), initiates
the first defense line of host-induced defense responses, giving plants a basic resistance to
most pathogens. In the resistant host–pathogenic microbe pathosystem, after recognizing
the PAMPs produced by pathogens, resistant hosts directly induce PTI, such as calcium
ion (Ca2+) influx, ROS production, and mitogen-activated protein kinase (MAPK) activa-
tion. Then, the downstream salicylic acid (SA) or jasmonic acid (JA)/ethylene (ET) signal
pathway is activated, which leads to the biosynthesis of defense-related factors and the
activation of disease resistance in plants (Figure 1). The other type of initiator is effector
proteins, such as AvrPto, AvrPtoB, and AvrPphB, which are transported to plant cells
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mostly by the pathogen type III secretion system [8–10]. Effector-triggered immunity (ETI)
induced by the interactions of plant resistance (R) proteins and pathogen effectors can
start the second line of host-induced defense responses (Figure 1). It stimulates a series
of defense responses, such as HR/programmed cell death (PCD) and systemic acquired
resistance (SAR). These reactions can be induced by SA, resulting in a strong resistance
to some biotrophic or hemi-biotrophic pathogens [11]. The JA/ET-mediated pathway is
involved in inducing resistance to necrotrophic pathogens [12]. To survive pathogen inva-
sion, plants use a variety of signaling pathways to activate their resistance responses [13].
Therefore, plant-induced resistance is regulated by a complex signal transduction network
and involves the expression of a series of resistance-related genes (Figure 2).
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rich repeat; PRRs, pattern recognition receptors; SA, salicylic acid; JA/ET, jasmonic acid/ethylene; 

Figure 1. A model of immune responses in plant–pathogen interactions. A plant’s innate immune
system consists of PTI and ETI. PTI induced through the recognition of PAMPs by PRRs can inhibit
the growth of most pathogens. Then, downstream signaling pathways such as Ca2+ signaling, the
MAPK cascade, and ROS signaling are activated. Some pathogens can release pathogenic effectors to
interfere with PTI, causing susceptibility triggered by effectors. The disease R proteins with conserved
NB-LRR can directly or indirectly identify specific effectors to trigger ETI, which often causes an
HR at the infection site of the pathogen, and then inhibit the growth of the pathogens again. The
SA and JA/ET signaling pathways are also involved in PTI and ETI activation and the resistance
response to pathogen infections, thereby stimulating downstream transcription factors and initiating
plant defense responses. Many ncRNAs play critical roles in PTI or ETI responses by regulating
various biological processes, such as the MAPK cascade, the expression of signaling components,
ROS production, plant hormone biosynthesis, and signaling. NB-LRR, nucleotide-binding leucine-
rich repeat; PRRs, pattern recognition receptors; SA, salicylic acid; JA/ET, jasmonic acid/ethylene;
HR, hypersensitive response; PCD, programmed cell death; SAR, systemic acquired resistance; R,
resistance; ROS, reactive oxygen species; MAPK, mitogen-activated protein kinase; PAMPs, pathogen-
associated molecular pattern; PTI, PAMP-triggered immunity; ETI, effector-triggered immunity;
ncRNAs, non-coding RNAs. The arrows indicate positive regulation, and open blocks indicate
negative regulation.
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Figure 2. Schematic representation of the plant defense signal transduction network. In the process of
plant–pathogen interactions, a series of signals are triggered to induce plant defense responses. The
complex and diverse signal pathways interact with each other and form signal transduction networks
in plants. After the resistant host recognizes the elicitors produced by pathogens, it activates the
signal transduction system, causing the release of Ca2+, an MAPK cascade reaction, and the activation
of R genes. Ca2+ flowing into the cytoplasm can activate CaMs and CMLs, induce downstream NO
synthesis, and then induce a primary immune response, including HR. Moreover, NO may regulate
an HR/PCD through a synergistic effect with ROS. Besides being a signal to activate SAR, ROS can
directly act as antibacterial effectors and enhance the structural resistance of the host. The interaction
between the R gene and the avirulent gene (Avr) can stimulate a series of defense responses, such as
the HR/PCD and SAR, which are induced by SA and give a strong resistance against some biotrophic
pathogens. GDG1 is necessary for pathogen-induced SA biosynthesis, and its expression is regulated
by EDS1 and PAD4. SA can also control the expression of GDG1, EDS1, and PAD4 through a positive
feedback loop. The positive feedback regulation of GDG1 lies in the high level of SA accumulation.
JA/ET signaling pathways mainly regulate plant resistance to necrotic pathogens and wounds.
JA and ET also mediate the resistance induced by root microorganisms, which is called induced
systemic resistance (ISR). SA inhibits the JA/ET pathway by activating NPRl, a positive regulatory
gene of the SA pathway. ERF1 is located at the intersection of the JA and ET signaling pathway
defense against pathogen infections and in wound responses. A JA signal can promote the interaction
between JAZ and the SCFCOI1 ubiquitin ligase, resulting in the ubiquitination of the JAZ protein and
degradation by the 26S proteasome, and then the activation of transcription factors such as MYC2
to induce JA responses. Ultimately, a series of downstream responses, such as the reinforcement
of physical defensive structures, the production of secondary metabolites, the inhibition of growth
pathogens by the induction of defensive proteins, the activation of the ROS scavenging system, and
other disease resistance factors, are activated to fight against pathogen infection. CNGCs, cyclic
nucleotide-gated channels; CaMs, calmodulins; CPKs, calcium-dependent protein kinases; GLR,
glutamate receptor-like genes; NO, nitric oxide; POD, peroxidase; SOD, superoxide dismutase; CAT,
catalase; APX, ascorbate peroxidase; GST, glutathione S-transferase; ROS, reactive oxygen species;
RBOHD, respiratory burst oxidase homolog D; H2O2, hydrogen peroxide; O2

−, superoxide ion; OH,
hydroxyl radical; BIK1, BOTRYTIS-INDUCED KINASE1; MAPK, mitogen-activated protein kinase;
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R-Avr, interaction between an avirulence (Avr) gene in the pathogen and the corresponding resistance
(R) gene in the host; EDS1, enhanced disease susceptibility; PAD4, phytoalexin-deficient 4; NPR1, non-
expresser of PR genes 1; GDG1, GH3-like defense gene 1; EIN2, ethylene-insensitive 2; ISR, induced
systemic resistance; SCF, Skp/Cullin/F-box; COI1, coronatine-insensitive 1; LOX2, lipoxygenase 2;
VSP2, vegetative storage protein 2; JAZ, jasmonate ZIM-domain; CTR1, copper transport protein 1;
ETR1, ethylene receptor gene 1; ERF, ethylene response factor; PR, pathogenesis-related protein; PGIP,
polygalacturonase-inhibitory protein; OXO, oxalate oxidase. The arrows indicate positive regulation,
and open blocks indicate negative regulation. Dashed lines indicate possible or indirect interactions.

At present, it is clear that some signal molecules, such as Ca2+, ROS, nitric oxide (NO),
the heterotrimeric G protein, and non-coding RNAs (ncRNAs), play important roles in
regulating disease resistance and the defense signal transduction network. Both PTI and ETI
are regulated by plant hormones, with SA, JA, and ET being the main signals. In addition,
the disease resistance response by plants also involves the immune response mediated
by MAPK and the subsequent antibacterial products, ROS, defensins, and phytoalexins,
which can also enhance the defensive capability against pathogens [14,15]. In recent years,
important progress has been made in the research on plant disease resistance signaling
pathways. This paper summarizes the progress and forecasts future research to provide a
theoretical basis for the prevention and control of plant diseases.

2. Plant Messenger Signal Molecule-Mediated Signaling Pathways
2.1. Calcium-Mediated Disease Resistance Pathway

Ca2+ is a conserved second messenger and the main mediator of plant immune and
stress responses. A recent study showed that NRG1.1, a plant nucleotide-binding leucine-
rich repeat receptor function in ETI, actually encodes a Ca2+-permeable channel [16]. As
a ubiquitous signal molecule, Ca2+ controls a wide range of cellular metabolic processes,
including the regulation of oxidative burst, gene expression, and signal transduction, and
it also regulates many key points in the apoptotic process. It is crucial to the regulation
of various stress genes involved in plant resistance [17]. The distribution of Ca2+ in plant
cells is extremely unbalanced. A change in the intracellular free Ca2+ concentration may be
mainly realized by the transmembrane transport of Ca2+ or the regulation of Ca chelates [18].
The Ca2+ concentration is crucial for immunity triggered by Ca2+-dependent PAMPs in
plants. At a sufficient external Ca2+ concentration, the encoded cyclic nucleotide-gated
channel is the key determinant of Ca2+ signaling and PTI responses induced by PAMPs and
ROS. After pathogen invasion, the channel is phosphorylated and activated by the effector
kinase Botrytis-induced kinase 1 of the pattern-recognition receptor complex, triggering an
increase in the intracellular Ca2+ concentration [19]. Plant perception of pathogen-related
stress usually leads to stomatal closure. The Arabidopsis thaliana Ca2+ osmotic channel
OSCA1.3 and its phosphorylation by Botrytis-induced kinase 1 can control stomatal closure
during immune signal transduction [20]. Ca2+ signals are also involved in the regulation of
biotic/abiotic stress-induced PCD in plants, and Ca2+ participation in early apoptosis is
particularly important [21].

Intracellular Ca2+ signals are transduced through downstream receptor proteins. At
present, there are mainly two kinds of calcium receptor proteins in plants: calmodulins
(CaMs) and Ca2+-dependent protein kinase (CDPK) [21,22]. In Arabidopsis, CaMs and
calmodulin-like proteins (CMLs) constitute a large Ca2+-sensing receptor protein family
that translates and transmits Ca2+ signals in many signal transduction cascade reactions [23].
In addition, a CaM antagonist can inhibit the PAMP-induced Ca2+ channel and nitric oxide
synthase (NOS)-mediated induction of NO, suggesting that Ca2+, CaMs, and NOS are
involved in the signal transduction cascade of plant pathogens [24,25]. Moreover, the CaM
transcription activator factor is involved in SA biosynthesis and SA-mediated immune
responses [26]. Recent studies have shown that CML proteins, such as CML13 and CML8,
are involved in plant defense responses to many pathogens, such as Pseudomonas syringae
and Ralstonia solanacearum, and their overexpression regulates pathogenesis-related (PR)
genes as well as many genes involved in signal transduction and stress responses [27–29].
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In recent years, the evidence for CDPKs being involved in plant defense responses has
gradually increased. The A. thaliana CPK5 enhances SA-mediated resistance to the bacterial
pathogen P. syringae pv. tomato strain DC3000, resulting in the differential expression of
plant defense genes and the synthesis of ROS [30,31]. Rice OsCPK10 interferes with the
growth of necrotic fungi by reducing the accumulation of hydrogen peroxide (H2O2),
which improves basic disease resistance [32]. However, the overexpression of some CDPKs,
such as AcoCPK1 and GhCDPK28–6, weakens plant resistance to necrotic pathogens and
reduces hormone response gene expression [33,34]. In short, Ca2+, as a very important
intracellular signal transduction factor, is crucial to the regulation of plant defense response
gene expression and plays a key role in plant innate immunity. However, the specific
mechanisms of Ca2+ regulation at the molecular level are still unclear.

2.2. ROS-Mediated Disease Resistance Signaling Pathway

During biotic or abiotic stress, ROS in plants will be produced rapidly and briefly,
resulting in the cellular ROS concentration being significantly higher than normal. This
represents the frequently mentioned ‘oxidative burst’ [35–38]. In addition, glucan, galactos-
aldehyde, peptides, and SA from pathogenic fungi and their plant hosts can also induce the
plants to produce ROS and increase cell mortality [39]. There are five types of ROS, with
H2O2 being a relatively stable type that can diffuse into subcellular intervals, making it a
more physiologically important ROS type [40,41]. The plant NADPH oxidase RBOHD is the
main participant in ROS production during innate immunity, and the ROS oxidative burst
is likely caused by NADPH oxidase activity [42,43]. The C-terminal of RBOHD is regulated
by the phosphorylation and ubiquitination of various kinases to ensure the production of a
full elicitor-induced ROS burst [44]. The mutation of a phosphorylation site weakens the
defense responses of plants against pathogen infection [45]. However, how the ROS level
is precisely regulated to avoid cell damage owing to excessive ROS production, and how
pathogens tolerate ROS stress, remains unclear.

ROS have dual functions under stress conditions [46]. On the one hand, due to their
strong oxidative properties, ROS disrupt the normal metabolism of organisms and also
cause the degradation of macromolecular substances, resulting in cell damage, the loss of
normal physiological functions, and even death. On the other hand, ROS, as important
signal molecules, are active in many biological systems [37,47]. For example, ROS may
be used as antibacterial agents and have direct toxicity against invasive pathogens [48].
ROS are also involved in the lignification of the cell wall and the cross-linking of related
proteins with the cell wall, strengthening the cell wall and enhancing the structural disease
resistance of the host [49,50].

An ROS burst is also considered to be a characteristic response of an HR and one of the
earliest responses to pathogens. From the beginning of pathogen infection to the production
of plant SAR, a continuous signal transmission process occurs. As a signal in this process,
ROS also function as excitation signals to induce the formation of SAR [51,52]. At this point,
ROS play dual roles in plant defense responses; that is, at high concentrations, ROS damage
plants, but at low concentrations, ROS signal transduction induces the expression of plant
resistance and defense genes [53,54]. Although ROS waves have been shown to be essential
for rapid systemic signaling, they do not convey the specificity of all systemic responses.
Recent studies have shown that ROS waves and calcium waves interact with each other and
have potential co-amplification effects [55]. Moreover, ROS, calcium, and electric signals
have also been proposed to have a potential link in systemic signal transduction from local
tissues to the whole plant [46,56,57]. How these rapid systemic signals interact with and
integrate each other under different stresses remains largely unknown.

2.3. NO-Mediated Disease Resistance Signaling Pathway

NO is a redox signaling molecule that is widely distributed in organisms and that
participates in a variety of physiological processes through the regulation of different
post-translational modifications (PTMs) [58,59]. The bioactivity of NO can be initiated by
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S-nitrosation, a process involving the addition of the NO moiety to protein cysteine thiols
to form S-nitrosothiols, which are considered to be important PTMs that control numerous
cellular processes associated with plant immunity. In plants, NO can regulate SUMOylation
through the S-nitrosation of the SUMO (small ubiquitin-like modifier)-conjugating enzyme,
which has been proposed to control the activation of plant immunity [60,61]. The range
of research on NO free radicals as messengers involved in plant immune responses has
increased gradually [62,63]. Under the stimulation of pathogens, the NO synthesis efficiency
increases, which can induce the accumulation of phytoalexins, affect the accumulation of
peroxidase ROS, induce the generation of H2O2, regulate the redox state of the host, and
activate the expression of MAPK defense genes and disease-related proteins [64]. Many
studies have shown that NO regulates the HR–PCD and activates the expression of plant
disease resistance- and defense-related genes through synergistic effects with ROS [65].
During the compatible interaction between tobacco and the necrotrophic fungus Botrytis
cinerea, both NO and ROS increase, and SA-induced protein kinases and some defense
related genes are activated [66]. A loss of function and virus-induced gene silencing
analyses have shown that NO plays key roles in the resistance to B. cinerea and in inducing
PR-1 expression. In contrast, ROS are positively correlated with lesion expansion [67,68]. In
the HR reaction, NO can also interact with SA to regulate the production of ET, and finally
affect the formation of an HR [69]. After plants perceive a pathogen infection, an oxidative
burst promotes the accumulation of NO and ROS and activates the downstream signal
cascade. However, the production and transmission of NO in plants, and the regulation
of downstream genes, are still vague. In the future, the untapped role of NO in gene
transcription should be further explored using omics technology.

3. Plant Defense Hormone-Mediated Signaling Pathways
3.1. SA-Mediated Disease Resistance Signaling Pathway

In recent years, research on the function of SA has become an important and rapidly
developing field in biology. SA plays a wide range of physiological roles in plant growth,
development, maturation, aging regulation, and stress-resistance induction. However,
the current research on the physiological roles of SA in plants is still focused on disease
resistance and signal transduction [70–72]. After infection, SA is closely related to the
formation of the local resistance of infected tissues and the SAR of uninfected tissues
(Figure 3). Infected tissues show the HR response, produce signaling substances such as
SA, and activate SAR gene expression [73,74]. SA, as a system signal, can also cause an
increase in the SA level in uninfected tissues and then induce the expression of PR genes,
resulting in disease resistance throughout the whole plant [75].

Plant SAR is realized through the mutual recognition and interaction between plant
resistance genes (R) and the avirulence genes of pathogenic microorganisms [76]. SA is
a signal molecule of plant systemic resistance responses that is specific to many R genes,
and which can regulate many immune-related genes [77] (Shine et al. 2016). The SA accu-
mulation caused by pathogen infection can be controlled by some protein regulators, such
as enhanced disease susceptibility 1 (EDS1), phytoalexin-deficient 4 (PAD4), EDS4, EDS5,
and non-race-specific disease resistance 1 (NDR1) [78–81]. EDS1 and its interaction factors,
including PAD4 and the sensitivity-associated senescence-associated gene 101 (SAG101),
are involved in regulating the accumulation of HR–PCD and SA. In turn, SA can enhance the
expression of EDS1/PAD4/SAG101 through a positive feedback loop [82–84]. Moreover, EDS1
and SA have redundant functions in some coiled-coil nucleotide-binding site–leucine-rich
repeat (CC-NB-LRR) protein-mediated signal transduction [85]. NDR1 is an R protein
containing a CC domain located in the plasma membrane. The Arabidopsis NDR1 gene is a
positive regulator of SA accumulation and is necessary for R gene-mediated signaling. As
with EDS1, NDR1 acts upstream of SA to regulate SA accumulation, and the induction of
the SA/NDR1-mediated pathway may increase plant resistance to pathogens [81,86].
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Figure 3. The function of SA in the formation of local resistance and SAR. Plants can accumulate
a large amount of SA after being infected by many pathogens. In addition to the SA accumulated
at the infection site, SA is also associated with the SAR of uninfected tissues. NPR1 is critical for
SA-dependent PR gene expression and SAR. The inhibition of SA accumulation or biosynthesis
will inhibit the formation of SAR. NahG is an inhibitor of SA synthesis, which can convert SA into
inactive catechol. Therefore, the overexpression of this gene can inhibit SAR formation and PR
gene expressions. INA and BTH are analogues of SA, which are also plant defense activators and
can induce SAR and the expression of PR genes. MeSA is a derivative of SA, which can act as a
mobile inducer of SAR and induce the expression of defense genes in adjacent plants. SAR, systemic
acquired resistance; MeSA, methyl salicylate; BTH, benzothiadiazole; INA, 2,6-dichloroisonicotinic
acid; NahG, salicylate hydroxylase; BSMT1, benzoic acid/salicylic acid carboxyl methyltransferases;
MES, methylesterases.

SA is perceived by two classes of receptors: transcriptional activator non-expressor of
PR genes 1 (NPR1) and the transcriptional repressors NPR3/NPR4. NPR1’s encoding of
a redox-sensitive protein results in an important regulatory element in the SA signaling
pathway. NPR1 is a key component of SA-induced SAR [87]. When there is no pathogen in-
fection, NPR1 is continuously cleared by proteasomes to limit the activity of its coactivator,
thereby preventing untimely SAR activation. However, not all SAR-mediated responses
depend on NPR1. The Arabidopsis whirly transcription factor (AtWHY1) and SSI1 are two
regulators of SAR that depend on SA and not on NPR1 [88–90]. The activation of NPR1
also regulates SA tolerance, the expression of isochorismate synthase 1 (ICS1), and SA accu-
mulation in Arabidopsis [86]. As a transcription inhibitor, NPR3/NPR4 inhibits the response
of the SA pathway in the absence of pathogen infection, which is the opposite function
of NPR1 in plant immune regulation. After binding with SA, its transcriptional repressor
activity is inhibited, activating downstream target genes and defense responses [91]. Recent
studies have shown that SAR requires the opposite effects of NPR1 and NPR3/NPR4,
which may also contribute to the production of PTI and ETI [92].

3.2. JA-Mediated Disease Resistance Signaling Pathway

JA is also a stress signal molecule that accumulates rapidly and massively when plant
tissues are invaded by microbial pathogens or insects [93]. JAs may induce the expression
of defense-related proteins, such as polyphenol oxidase, protease inhibitors, peroxidase,
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and lipoxygenase. JAs may also induce the production of alkaloids and some volatiles, and
the formation of defense structures, which exert the stress and disease resistance functions
of plants [94].

Although there is a good understanding of the JA synthesis pathway, the perception
and subsequent signal transduction of JA are not very clear. The jasmonate ZIM domain
(JAZ) is known to be an inhibitor of the JA signaling pathway that inhibits the expression of
JA response genes through interactions with MYC2. JA signals can promote the interaction
between JAZ and SCFCOI1 ubiquitin ligase, resulting in the ubiquitination of the JAZ
protein and degradation by the 26S proteasome [95]. After JAZ protein degradation,
transcription factors such as MYC2 are promoted to activate JA response genes [96–98].
Recent studies have shown that JAZ4, a family member of JAZ, enhances resistance to the
bacterial pathogen P. syringae pv. tomato strain DC3000 by inhibiting the JA pathway [99].
Phytochrome and flowering time 1, which encodes the subunit of the mediator complex,
is a key regulator of JA-dependent defense responses in Arabidopsis, and it presumably
acts downstream of the COI1–JAZ–MYC2 complex. In combination with another mediator
complex subunit, MED8, it is involved in regulating plant growth and development (such as
flowering time) and JA-dependent defense responses [100]. There may be crosstalk between
the JA signaling pathway and antiviral RNA-silencing pathways. The JA-responsive
transcription factor JAMYB transcriptionally activates Argonaute18, the core component
of RNA silencing, to increase the resistance of rice to viral diseases [101]. In addition, JA
suppresses the brassinosteroid (BR) pathway in a COI1-dependent manner in response to
rice black-streaked dwarf virus infection [102]. However, BR and JA positively regulate
rice stripe virus resistance in the rice–virus interaction [103].

3.3. ET-Mediated Disease Resistance Signaling Pathway

ET plays an important regulatory role in many physiological processes of plants,
from seed germination to senescence [104]. ET biosynthesis is regulated by many factors,
including developmental and environmental factors [105]. There are five ET membrane-
binding receptors in Arabidopsis, ETR1, ETR2, ERS1, ERS2, and EIN4, which can transmit
signals to downstream effectors. Arabidopsis infected by Fusarium oxysporum can stimulate
ETR1-mediated ET signaling and enhance susceptibility. Additionally, ETR1 receptor
mutant plants can significantly increase the resistance compared with wild-type plants, but
other ET mutants, including ein2, ein5, and ein4, are as susceptible as wild-type plants [106].
CTR1 is a serine/threonine protein kinase belonging to the Raf family that is located
downstream of the ET receptor. In the absence of an ET signal, the ET receptor activates
CTR1, which negatively regulates the downstream ET response pathway [107]. After
binding to ET, the receptor is inactivated, resulting in the inactivation of CTR1, and EIN2
becomes a positive regulator of the ET pathway [108]. EIN2 transmits a signal to the EIN3
transcription factor located in the nucleus, causing EIN3 to bind to the ET response element
in the promoter of ET response factor 1 (ERF1). ERF1 can interact with the GCC box of
the target gene promoter to activate the downstream ET response [109]. The ineffective
mutation of EIN2 leads to insensitivity to ET during the whole plant developmental process,
indicating that EIN2 is a key positive regulator in the ET signal transduction pathway.
EIN3 is a member of a multigene family of nuclear localization proteins in Arabidopsis.
Among the six members of this family, EIN3, EIN3-like 1 (EIL1), and EIL2 can restore the
phenotypes of EIN3 mutants, indicating that EIL1 and EIL2 are also involved in ET signal
transduction [110,111].

JA and ET jointly mediate rhizosphere microorganism-triggered induced systemic re-
sistance (ISR), which can improve the resistance of plants to a broad spectrum of pathogens,
such as Alternaria brassicicola [112], Botrytis cinerea [113], and Pseudomonas syringae pv. tomato
DC3000 [114]. ERF1 and MYC2 integrate signals from the JA/ET signal transduction path-
way and activate defense-related genes, such as PR-3, PR-4, and PR-12, which encode
antimicrobial peptides involved in the JA/ET response [115]. Further studies showed that
the expression of PDF1.2 depends on the simultaneous activation of JA and ET signals,
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whereas the expression of Thi2.1 only depends on methyl jasmonate (Me-JA) [116,117]. In
addition, ET can also produce inducible systemic resistance in the jar1 mutant, indicating
that the elements of the ET response act downstream of JA in the signal transduction
process of inducible systemic resistance [118].

4. Heterotrimeric G Protein-Mediated Disease Resistance Signaling Pathway

The growth, development, and differentiation of plant cells are controlled by the
stimulation of plant internal factors and the external environment. A considerable number
of regulatory factors do not enter the cell, but are transformed into intracellular signals
through transmembrane signaling pathways, in which the signal transduction components
on the plasma membrane play crucial roles [119]. Among them, heterotrimeric G proteins
are currently considered to be ubiquitous signal transduction elements in eukaryotes,
including plants, fungi, and animals [120]. The heterotrimeric G protein signaling pathway
not only converts extracellular signals into intracellular signals, but it also functions to
amplify signals and activate multiple downstream effector enzymes, such as adenylate
cyclase in animals and phospholipase C (PLC) in plants [121,122]. Effector enzymes can
produce a large number of second messengers, such as cAMP, which can also further
amplify signals through signal transduction pathways [123].

In Arabidopsis and rice, the typical heterotrimeric G protein consists of one α subunit,
one β subunit, and two γ subunits. Heterotrimeric G protein signaling in plants is related
to a variety of plant responses to biotic/abiotic stresses and the regulation of plant physio-
logical growth and development [124]. In particular, heterotrimeric G proteins are involved
in the resistance and immunity of plants to a variety of pathogens [125,126]. Arabidopsis G
proteins could directly interact with the FLS2–BIK1 receptor complex to modulate flg22-
triggered immunity through both pre-activation and post-activation mechanisms [127,128].
In Arabidopsis, resistance to the necrotrophic pathogenic fungi A. brassicola and F. oxysporum
depends on the Gβγ-mediated signaling pathway, and interfering with the Gβγ signaling
pathways later affected many JA-mediated responses. Therefore, it has been speculated that
G proteins may participate in plant resistance to necrotrophic pathogenic fungi by enhanc-
ing the JA signaling pathway [129]. The heterotrimeric G protein β subunit is necessary for
plant resistance against different P. syringae strains. It activates MAPK signaling and pro-
duces ROS through NADPH oxidase downstream of the G protein signal [130]. The MAPK
cascade can be used as a downstream effector of G protein signal transduction. RACK1
is a plant MAPK protein connecting heterotrimeric G proteins and the MAPK cascade to
form a unique signal pathway in plant immunity [131]. However, the mechanisms behind
the ability of G protein complexes to trigger the activation of the MAPK cascade are still
unknown. Moreover, how the upstream and downstream components of heterotrimeric G
protein signaling participate and how the G protein regulates their active metabolism need
to be explored.

5. MAPK Cascade-Mediated Disease Resistance Signaling Pathway

Protein kinases are the target enzymes of many intracellular second messengers, which
further transduce signals by regulating the phosphorylation of intracellular proteins [132].
In plants, there are more than 30 kinds of known protein kinases, and they affect many
processes, including light resistance, cold resistance, photosynthesis, self-incompatibility,
and cell division [133,134]. Among the protein kinases, MAPK is a type of Ser/Thr protein
kinase, and it has three main types: MAPKs, MAPKKs, and MAPKKKs [40]. They form
a series of reactions that transfer and magnify external signals. MAPKKKs are located
upstream of the chain reaction and link external signals with downstream regulators by
phosphorylation [135]. An activated MAPKKK activates MAPKK, and then the MAPK
is activated through dual phosphorescence by MAPKK at Thr/Tyr phosphorylation sites.
MAPK stays in the cell to activate a series of other protein kinases or enters the nucleus to
regulate the expression of certain genes through transcription factor phosphorylation [136].
MAPK signaling actively participates in PTI and ETI responses and mediates a variety of
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defense mechanisms in response to pathogen infection [137–139]. Arabidopsis MKK7 belongs
to group D of plant MAPKKs. Group D members from other species also play key roles
in plant defense responses. For example, the overexpression of MKK4 from tomato leaves
leads to cell death and activates MPK2 and MPK3, both of which are related to plant defense
responses [140]. The overexpression of MKK7 in Arabidopsis can positively regulate basic
resistance and SAR by regulating SA synthesis. This is characterized by constitutive PR gene
expression and enhanced resistance to pathogens [141]. The transcriptional activation of
MPKs depends on their phosphorylation. Under pathogen attack, cotton GhNTF6 is the only
member of the MPK family that requires a phosphorylation reaction, and the overexpression
of this gene in Arabidopsis enhances resistance against Verticillium dahlia [142]. WRKY is a
downstream transcription factor in the MAPK pathway, and its resistance role has been
reported in many plants. An RNA-Seq analysis of rice WRKY67 shows that it can induce
the transcription of defense-related genes, and the overexpression of WRKY67 in rice can
increase resistance to bacterial blight [143].

The reverse phosphorylation of protein phosphatase is a termination signal or a re-
verse regulation. Although research on protein phosphatase is not as in-depth as that on
phosphokinases, it is of equal significance. The results of protein phosphorylation and
dephosphorylation are different, and this may be related to the transduction of differ-
ent stimulating signals in cells. In fact, it is the reversibility of protein phosphorylation
that provides a switching effect for cell information that enables cells to effectively and
economically regulate their responses to internal and external information.

6. ncRNA-Mediated Disease Resistance Pathway

Non-coding RNAs (ncRNAs) refer to RNAs that do not encode proteins, which play
an essential role in plant growth and development and resistance to abiotic/biotic stresses.
ncRNAs involved in the regulation of plant innate immunity mainly include microRNAs
(miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs), which play
an important role in plant immune responses [144,145]. As short-chain (21–25 nt) ncRNAs,
miRNAs usually regulate gene expression by cleaving or inhibiting the translation of target
gene transcripts, and play critical roles in regulating plant development and immune
responses [146,147]. In Arabidopsis, tobacco, barley, and other species, miRNAs can regulate
R gene expression by guiding the cleavage of R genes or triggering phasiRNA production,
indicating that miRNAs play a role in regulating plant PTI or ETI [148–150]. Moreover,
some miRNAs and small interfering RNAs (siRNAs) can directly target key signaling
components such as immune receptors, receptor-like kinases, or downstream transcription
factors to modulate immunity [151,152]. Disease resistance and high yields in plants are
often antagonistic. miR393 can enhance plant immunity by fine-tuning the balance of
SA–auxin hormone and promoting the exocytosis of antibacterial proteins in plants [153].
In rice, miR396 and its target growth-regulating factor (OsGRF) genes modulate the trade-offs
between rice blast disease resistance and yield [154]. However, the specific mechanisms by
which most miRNAs regulate disease resistance are still poorly understood.

ncRNAs with a length greater than 200 nt are called lncRNAs, and some lncRNAs serve as
precursors of miRNAs and siRNAs to assist in the cleavage of target genes [155,156]. lncRNAs
can regulate ROS accumulation and induce the expression of PR genes to modulate plant
immunity [157,158]. In tomato, lncRNA16397 induces the expression of glutaredoxin (GRX)
to reduce the accumulation of ROS in cells, thereby reducing the damage to the cell
membrane and enhancing the resistance to Phytophthora infestans [159]. In addition, some
lncRNAs serve as targets of miRNAs or endogenous target mimics for miRNAs to regulate
host immunity [157,160]. Circular RNA (circRNA) is another type of lncRNA, which is a
closed-loop single-stranded RNA formed by the reverse splicing of introns or gene exons
and delivered to the cytoplasm. Plant circRNAs can directly or indirectly bind to miRNA
to competitively inhibit the regulation of miRNA on target genes, and are widely involved
in the regulation of plant immune responses [145,161].
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Many studies have revealed that mobile ncRNAs, mainly miRNAs, can translocate
between plants and pathogens to mediate cross-kingdom RNAi [162,163]. Notably, virus-
derived small interference RNAs (vsiRNAs) were shown to be a potential trigger for virus
resistance via RNA silencing-related antiviral mechanisms or via regulating host defensive
gene expression in transgenic plants [164,165]. Thus, ncRNA-mediated regulation plays
an important role in plant disease resistance, but the regulatory mechanisms and roles of
ncRNAs in immunity response need to be further studied.

7. Interaction and Complexity of Disease Resistance Signaling Pathways

In nature, plants often need to fight simultaneously against a variety of pathogens,
and this alters the defense responses originally induced by plants. Therefore, plants need
effective regulatory mechanisms to adapt to the changes in a hostile environment. The
crosstalk between signaling pathways provides the plant with a powerful capacity to finely
regulate defense responses [166]. Plants can activate an effective defense response by
regulating the level of signal molecules, changing the expression of defense-related genes,
and coordinating the complex relationships among defense signaling pathways.

There are at least two signaling pathways against different pathogens in Arabidopsis,
the SA-dependent and JA/ET-mediated pathways. Many studies have shown that there is
crosstalk between SA- and JA/ET-induced signaling pathways, and most evidence shows
that the SA and JA/ET pathways have an antagonistic relationship (Figure 2) [167–170].
Perhaps because of this, the activation of SA responses may make plants more vulnerable
to attackers connected to the JA/ET defense response [171]. Robert showed that the
antagonistic effect of SA on the JA signal transduction pathway is likely to be achieved
by inhibiting the JA-mediated degradation of the JAZ protein [172]. However, some
studies have shown that there is a synergistic relationship between the SA and JA signaling
pathways [173]. JA and ET co-regulate and activate the expression of some defense-related
genes, such as PR-3, PR-4, and PR-12 [174]. ERF1 is a positive regulator of JA and ET signal
transduction. Recent studies have found that the overexpression of rice JAZ1 significantly
inhibited the transcriptional expression of ERF1, confirming the synergy between the JA
and ET pathways [175]. However, JA and ET do not always cooperate with each other. For
example, the wound response gene activated by JA is inhibited by ET, and the activation
of JA by the transcription factor MYC inhibits their respective transcriptional activities
by binding with an ET transcription factor, resulting in the weakening of plant defenses
against insect attacks [176].

The interaction between plants and pathogens is generally accompanied by intracel-
lular Ca2+ transients, which activate the Ca2+ signaling pathway, induce the production
of ROS and NO, and positively regulate early local and systemic acquired resistance
(Figure 2) [177]. SA and ROS also have a common disease resistance signal-sensing mech-
anism. Recent studies have shown that small defense-associated protein 1 can regulate
plant immunity through the SA-mediated defense pathway and induce a tolerance to
oxidative stress [178]. However, the relationship between SA-mediated defense responses
and the Ca2+ signaling pathway is unclear. SA and ROS also have a common molecular
signal-sensing mechanism of disease resistance. In wheat spotted-leaf mutants, the SA
accumulation and enhanced Ca2+ signaling jointly triggered PCD, which eventually led to
spontaneous leaf necrosis [179]. However, it is not clear whether or how SA is regulated by
the Ca2+ signal transduction pathway during plant–pathogen interactions.

Regulatory proteins are the basis of crosstalk between different defense signal path-
ways, and they are also the key factors regulating the overall disease resistance of plants.
At present, some key regulatory proteins involved in the crosstalk between the SA and
JA/ET pathways and the coordination of their complex relationships, such as NPR1, EDS1
and MPK4, have been identified in Arabidopsis by gene mutation and gene transgenic
techniques (Table 1), and this enables us to better understand the interaction mechanisms
among different signaling pathways. However, although progress has been made in the
study of plant disease resistance signaling pathways, the locations and mechanisms of syn-
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ergistic or antagonistic interactions among pathways still lack direct experimental evidence.
In addition, how plants coordinate these complex relationships and the corresponding
molecular mechanisms need to be further studied.

Table 1. Key regulators in SA and JA/ET crosstalk.

Gene Name Species Biological Function Molecular Switch Function Citations

NPR1 A. thaliana SA-dependent PR gene expression and SAR SA signaling (+)
JA/ET signaling (−) [180]

EDS1 A. thaliana R-mediated resistance; regulation of HR/PCD and
SA accumulation

SA signaling (+)
JA/ET signaling (−) [80,82,181]

PAD4 A. thaliana EDS1 interactor, basal and receptor-triggered immunity, and
SA accumulation

SA signaling (+)
JA/ET signaling (−) [84,182,183]

WRKY70 A. thaliana Regulator of developmental senescence and plant defense SA signaling (+)
JA/ET signaling (−) [184,185]

WRKY52 Vitis quinquangularis SA-dependent signaling pathway and in HR cell death SA signaling (+)
JA/ET signaling (−) [186]

WRKY62 A. thaliana Downstream of cytosolic NPR1 SA signaling (+)
JA/ET signaling (−) [167,187]

WRKY13 O. sativa Enhances rice resistance to bacterial blight and fungal blast SA signaling (+)
JA/ET signaling (−) [188]

GRX480 A. thaliana TGA-interacting protein, controlling the redox state of
regulatory proteins

SA signaling (+)
JA/ET signaling (−) [189]

MPK4 A. thaliana JA-responsive gene expression; represses SAR SA signaling (−)
JA/ET signaling (+) [182,190]

SSI2 A. thaliana Regulates the overall level of desaturated FAs SA signaling (−)
JA/ET signaling (+) [191]

WRKY33 A. thaliana Defense toward necrotrophic fungi SA signaling (−)
JA/ET signaling (+) [192]

RST1 A. thaliana Lipid synthesis; cuticular wax with embryo development SA signaling (+)
JA/ET signaling (−) [193]

+ positive regulator of the pathway; − negative regulator of the pathway.

8. Conclusions and Prospects

Plant diseases have always been a considerable problem that limit the achievement of
high and stable yields, high-quality produce, and the safe production of crops. In-depth
studies and the utilization of plant disease resistance mechanisms and disease resistance-
related signaling pathways will provide new ideas for the prevention and control of plant
diseases. The mechanisms of plant disease resistance responses are very complex and di-
verse. There are huge numbers of regulatory factors and genes involved in plant–pathogen
interactions, disease resistance signal transduction, and defense responses, and they form a
complex regulatory network (Figure 2). Signaling molecules, such as Ca2+, H2O2, NO, SA,
JA, ET, and the heterotrimeric G protein, play important roles in this network. At present,
studies have shown that other signaling molecules, such as abscisic acid, gibberellic acid,
cytokinin, BR, and peptide hormones, are also involved in plant defense-related signal
transduction pathways, but their roles in plant defense are still unclear.

Plant hormone regulation involves complex signal transduction networks, such as
those involved in growth, development, and environmental stress responses. At present,
with the development of modern molecular biology and transgenic technology, substantial
progress has been made in the identification of the key components in plant signal trans-
duction and in the understanding of plant hormone signal transduction (especially for SA,
JA, and ET). Now, an important issue is how different hormone-mediated developmental
processes and defense responses are regulated in specific tissues and cells. In addition,
not only can plants produce hormones, but some plant pathogens can also produce plant
hormones, which can cause hormone imbalances and break the plant defense response
system. It is not clear how pathogens regulate hormone signal transduction elements
to make plants susceptible. An in-depth understanding of hormone-mediated defense
responses is very important for controlling crop diseases and insect pests.

Plant disease resistance signaling pathways are not isolated, but they are inter-connected
through complex regulatory networks. Understanding how plants coordinate various sig-
nal components is an important aspect of future research. In recent years, many researchers
at home and abroad have tried to identify the regulatory proteins acting between signaling
pathways, but the results have not been consistent, and their specific functions and roles in
hormone signaling pathways need to be studied further. Finding new contact points will



Int. J. Mol. Sci. 2022, 23, 16200 13 of 20

be one of the hotspots in the research on plant disease resistance signaling pathways in
the future. With the development of molecular biology and the in-depth study of disease
resistance-related transcription profiles from some model plants, such as Arabidopsis and
rice, many plant regulatory protein-encoding genes related to pathogen infection have been
extensively studied and analyzed. Using plant genetic engineering technology, various
transgenic disease-resistant plants have been constructed and applied in agricultural pro-
duction. This may increase our understanding of plant resistance mechanisms and also
enrich the candidate genes for crop disease resistance breeding and improvement, which
has particularly important research significance and broad application prospects.
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