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Abstract: Breast cancer is the leading cause of cancer incidence worldwide and among the five
leading causes of cancer mortality. Despite major improvements in early detection and new treatment
approaches, the need for better outcomes and quality of life for patients is still high. Extracellular
vesicles play an important role in tumor biology, as they are able to transfer information between
cells of different origins and locations. Their potential value as biomarkers or for targeted tumor
therapy is apparent. In this study, we analyzed the supernatants of MCF-7 breast cancer cells, which
were harvested following 5 or 10 days of simulated microgravity on a Random Positioning Machine
(RPM). The primary results showed a substantial increase in released vesicles following incubation
under simulated microgravity at both time points. The distribution of subpopulations regarding
their surface protein expression is also altered; the minimal changes between the time points hint
at an early adaption. This is the first step in gaining further insight into the mechanisms of tumor
progression, metastasis, the education of the tumor microenvironments, and preparation of the
metastatic niche. Additionally, this may lighten up the processes of the rapid cellular adaptions in
the organisms of space travelers during spaceflights.

Keywords: breast cancer; extracellular vesicles; exosomes; microgravity; tetraspanins; cell-cell com-
munication

1. Introduction

Female breast cancer is one of the scourges of our time, becoming the most com-
mon cancer globally in 2020 by surpassing lung cancer as the leading cause of global
cancer incidence. With an estimated 2.3 million new cases, representing 11.7% of all can-
cer cases worldwide in both sexes, and 685,000 deaths, breast cancer is the fifth leading
cause of cancer mortality [1,2]. Among women, it accounts for 1 in 4 cancer cases and
1 in 6 cancer deaths, making it first in ranking for incidence globally [1]. In 2022, an esti-
mated 287,850 new cases of invasive breast cancer are expected to be diagnosed in women
in the U.S. alone, along with 51,400 new cases of non-invasive (in situ) breast cancer [2].
Causes and risk factors for the development of breast cancer are numerous and include
genetic predisposition, reproductive and hormonal risk factors (early age at menarche, later
age at menopause, advanced age at first birth, fewer number of children, less breastfeeding,
menopausal hormone therapy, oral contraceptives) and lifestyle risk factors such as alcohol
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intake, excess body weight, and physical inactivity [3]. Among hereditary cases, almost a
fourth result from a mutation in one of a few rare but highly penetrant genes, including
breast cancer 1 (BRCA1), breast cancer 2 (BRCA2), phosphatase and tensin homolog (PTEN),
tumor protein P53 (TP53), E-cadherin (CDH1) and serine/threonine kinase 11 (STK11),
which present up to an 80% lifetime risk of developing breast cancer [4]. The relationship
between breast cancer development and outcomes and certain lifestyle factors is an area
that has been researched extensively [5].

Breast cancer is the most invasive cancer in women, and the immense tumor hetero-
geneity is the major issue limiting the efficacy of targeted cancer therapies. Seven subtypes
of female breast cancer can be differentiated, depending on their molecular characteristics,
and stratification into these subtypes, along with staging, directs the course of treatment
and is paramount to better clinical outcomes [6–8]. A key factor for a good prognosis and
high survival rate is—besides the elimination of lifestyle risk factors—the early diagnosis of
breast cancer. The improvement of current diagnostic tools, the development of new meth-
ods, and regular screenings have reduced cancer mortality dramatically, in combination
with the overall survival rate and quality of life for patients [9,10].

In the pursuit of alternative and “outside-the-box” approaches for this and other
detrimental diseases, medical research has begun to develop an interest in microgravity
(µg) research [11–13]. The strain on the human body caused by the lack of gravitational
force became apparent very early on in the age of spaceflight, as the technical challenges
were overcome and astronauts started exploring the orbit and beyond and continued to
do so [14–17]. Prolonged exposure of the human body to µg leads to multiple impair-
ments in various physiological systems, among them the musculoskeletal system and bone
metabolism, cardiovascular physiology, metabolic processes, and the microbiome [17–25].
These effects are observable not only on an organic but also on a cellular level, displaying
changes in proteomic, genomic, and metabolomic profiles [26,27]. Studies of the angiovas-
cular system in µg lead, among others, to advances in the understanding of wound healing
and the three-dimensional growth of tumors [28–31].

Any kind of tissue growth is dependent on cell-cell communication, healthy or oth-
erwise. Until roughly a decade ago, the only known methods of cell communication in
multi-cellular systems were via direct cell contact or receptor-based signaling [32]. Since
then, extracellular vesicles (EVs) have been discovered as an alternative way of cellular
information exchange and have quickly gained attention. EVs comprise a family of mem-
brane vesicles secreted from the majority, if not all, cells into the extracellular environment
and functionally mediate cell-cell communication [33,34]. Three major types of extracellular
vesicles can be distinguished: microvesicles, apoptotic bodies, and the so-called small EVs
or exosomes. Exosomes are found in essentially all circulating body fluids, including blood,
saliva, and urine, and can be distinguished from other EVs by their endosomal biogenesis,
size, as well as several surfaces and internal markers [33–39]. The vesicles reflect their cell
of origin in regard to their cargo and surface markers and, therefore, present as potential
clinical biomarkers for a vast number of diseases [34,40,41]. With their properties to deliver
their cargo and influence virtually any cell type, exosomes also promise a wide range of
therapeutical applications [42]. Overcoming the technical challenges, starting with isolation
and enrichment as well as proper characterization of these vesicles, the recent develop-
ments of very specific methods for small EV analysis enable the research community to
address many questions about these fascinating cellular tools [43,44].

Space travel has developed considerably in recent years in technology and the volume
of spaceflights. The International Space Station (ISS) harbors research resources and sup-
ports multiple projects [45]. Nonetheless, with the apparent limitations in available space
on the ISS, the still small amount of shuttle flights, and last but not least, the considerable
costs, the opportunities for experiments in real microgravity (r-µg) are scarce. Therefore, a
majority of experiments are being conducted on ground-based facilities under simulated
microgravity (s-µg). To replicate µg satisfactorily, various devices have been developed,
such as the random positioning machine (RPM, Figure 1) and clinostats [46–50]. These
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instruments are valuable resources for studying the influence of µg on a variety of cells
under changing conditions and multiple time points. The experimental setup can be easily
adapted and fairly rapidly, and the changes can be documented regularly during the time
course of the experiment, which is a major advantage to experiments in r-µg [49]. The ob-
served changes in cells following incubation within these devices are generally comparable
to the cellular adaptations in r-µg, and even though they are not identical, they can often
predict results gained during spaceflights [51].
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Figure 1. The spectrum of RPMs in our laboratory ranges from a small desktop RPM that remains
in an incubator during operation (right) to a large RPM with an integrated incubator (left and
center). The iRPM was designed and constructed by Jörg Seckler and Simon L. Wuest, Institute
for Automation Engineering, University of Applied Sciences and Arts Northwestern Switzerland
(FHNW), Brugg-Windisch, Aargau, Switzerland. The desktop RPM was purchased from Airbus
Defense and Space (ADS), Leiden, The Netherlands.

Over the course of our investigations with several breast cancer cells exposed to
both s-µg and r-µg, we have found that the tumor cells, incubated in s-µg, grow either
adherently as a monolayer or as a 3D spheroid [52–55]. The spheroids model is a better
in vitro representation of tumor growth in vivo; therefore, the cellular changes during the
spheroid formation promise a deeper insight into tumor development and progression than
ground-based cell culture experiments [54]. With cell-crosstalk in mind and the knowledge
of the impact of small EVs on the cell-cell communication not only between tumor cells but
also the tumor microenvironment and the preparation of the metastatic niche [34,56–59], the
role of small EVs in the cellular response to µg is a factor that should not be underestimated.
This research topic may provide a different angle and new findings worth exploring, also
in the processes triggering 3D spheroid development.

Here we are investigating the changes in exosomal release and population in the breast
cancer cell line MCF-7 following exposure to s-µg. We are aiming to learn whether the adap-
tive changes we observed in the CellBox-1 study will be mirrored. Ultimately, we would
like to expand our knowledge on the three-dimensional growth of these and other tumor
cells and how the communication between cells can be influenced to reduce tumorigenicity.

2. Results

The number of studies on EVs, and small EVs in particular, has risen quite rapidly
following the first description of their importance in cell crosstalk [60,61]. The earliest
experimental methods for EV isolation, namely differential centrifugation, filtration, and
precipitation protocols, meanwhile proved to produce highly variable results in regard
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to yield, purity, and functionality [62–64]. To ensure reproducible experimental outcomes
as much as to accommodate reliable research on the wide variety of source materials
and investigational requirements, multiple methods have been developed to improve the
isolation and characterization of EVs. In line with the volume of different source materials
and cell types small and other EVs can be harvested from, the definitions and descriptions
of exosomes were manifold, overlapping, and confusing. The International Society of
Extracellular Vesicles (ISEV), therefore, divulged guidelines for the minimal information of
studies in extracellular vesicles (MISEV), which includes a list of transmembrane proteins
and cytosolic proteins with membrane-binding capacity anticipated to be present or absent
in the various EV groups and recommended investigators to determine the expression
of three or more of these proteins at least semi-quantitatively. Transmembrane proteins
expected to be present in exosomal preparations include, among others, tetraspanins (CD9,
CD63, CD81), integrins, and growth factor receptors. The group of expected or enriched
cytosolic proteins includes endosome or membrane-binding proteins (TSG101) and signal
transduction or scaffolding proteins (syntenin). Intracellular proteins that are absent or
under-represented in exosomes but present in other types of EVs are proteins found in the
endoplasmic reticulum (ER) (calnexin) or the Golgi apparatus (GM130).

As in our previous study on cell supernatants from the CellBox-1 experiment, the
method of choice to investigate the supernatants of MCF-7 cells subjected to s-µg was SP-
IRIS, specifically the ExoView™ system (Unchained Labs, Pleasanton, CA, USA). This way,
human tetraspanin-positive exosomes are selectively captured on an antibody-coated chip
directly from biofluids without a prior need to isolate and concentrate EVs. Additionally,
the method is suitable for very small sample sizes, as high as 20 µL for unprocessed, not con-
centrated samples. As described previously, we used EV-TETRA-C ExoView Tetraspanin
chip plates, which capture exosomes on spots that are separately pre-loaded with antibodies
(Abs) to one of the tetraspanins CD9, CD63, and CD81, to assess the amount and population
distribution of exosomes in the cell supernatants harvested following incubation of the
cells on RPM for 5 and 10 d, as well as the corresponding 1 g controls. Via interferometric
analysis, we were able to investigate the particle count and the size distribution of the
given samples [43,65], and counter-staining the captured exosomes with fluorescent Abs to
CD9, CD63, and CD81, we characterized the small EVs according to their transmembrane
protein expression and identified the different populations present in the sample. Here, we
describe the results we gained from these analyses.

2.1. Interferometric Analysis
2.1.1. Particle Concentration

The absolute number of captured particles in the size range of 50–200 nm was mea-
sured via interferometric analyses by scanning the tetraspanin spots (CD9, CD63, and
CD81) as well as the IgG control, all in triplicates from three samples each of the following
experimental condition: 5 d 1 g, 5 d RPM, 10 d 1 g and 10 d RPM. Figure 2 shows an
overview of the particles captured in the size range from 50–200 nm. An increase in particle
number following exposure to s-µg is found in both time points, with a considerably more
pronounced increase at the 5 d timepoint. Table 1 details the average of all measured
triplicates, their means, and standard deviation (SD). The number of small EVs captured at
5 d 1 g and 10 d 1 g is fairly constant at all three Tetraspanin spots (CD81: 5 d 1 g = 683.7;
10 d 1 g = 777.7; CD63: 5 d 1 g = 1151.3; 10 d 1 g = 169.3; CD9: 5 d 1 g = 1611.3; 10 d
1 g = 1625.0). The largest increase between the 1 g and RPM condition was seen at the
5 d time point: CD81: 5 d 1 g = 683.7; 5 d RPM = 1726.3; CD63: 5 d 1 g = 1151.3; 5 d
RPM = 2511.0; CD9: 5 d 1 g = 1611.3; 5 d RPM = 2296.0, with none of the changes being
significant. After 10 d incubation, there was still a slight increase in exosome particles after
RPM exposure, but less distinct than after 5 d (CD81: 10 d 1 g = 777.7; 10 d RPM = 852.7;
CD63: 10 d 1 g = 1169.3; 10 d RPM = 1667.7; CD9: 10 d 1 g = 1625.0; 10 d RPM = 1840.0).
It is noteworthy that the amount of captured small EVs after 10 d on the RPM decreased
considerably compared to 5 d exposure (Figure 2, Table 1).
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Figure 2. Particle count via Interferometry of particles >50 nm. Values were measured in triplicates
of all three samples per experimental condition and timeline. Displayed are counts per capture spot.

Table 1. Particle counts in averages per sample.

CD81

A B C Mean SD

5 d 1 g 973.0 484.0 594.0 683.7 256.5

5 d RPM 2580.0 2211.0 388.0 1726.3 1173.6

10 d 1 g 313.0 1813.0 207.0 777.7 898.2

10 d RPM 552.0 1506.0 500.0 852.7 566.4

CD63

A B C Mean SD

5 d 1 g 1223.0 1029.0 1202.0 1151.3 106.5

5 d RPM 3081.0 3537.0 915.0 2511.0 1400.9

10 d 1 g 1020.0 1728.0 760.0 1169.3 501.0

10 d RPM 1236.0 2394.0 1373.0 1667.7 632.7

CD9

A B C Mean SD

5 d 1 g 2293.0 955.0 1586.0 1611.3 669.4

5 d RPM 2892.0 2756.0 1240.0 2296.0 917.0

10 d 1 g 1061.0 2539.0 1275.0 1625.0 798.7

10 d RPM 1530.0 2394.0 1596.0 1840.0 480.9

2.1.2. Particle Size Distribution

Measurement of the size distribution of the exosomes captured was equally done by
interferometry. As this technique is limited to a range of 50–200 nm, it should be noted
that a large amount of smaller particles, identified by the presence of a fluorescent signal
and the absence of interferometric-based size measurement, are not included in these data.
The number of these <50 nm particles will be included in the fluorimetric analysis. The
majority of particles can be found within the range of 50–120 nm in all conditions and time
points, as could be expected, and is consistent with the defined size range of exosomes
(Figure 3, Supplemental Table S1) [62]. As described above, the difference between the
particle number increase in this size range following RPM exposure vs. the 1 g control is
more pointed after 5 d than 10 d (5 d 1 g = 1136.6; 5 d RPM = 2127.9; 10 d 1 g = 1173.1; 10 d
RPM = 1433.2).
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Figure 3. Particle size distribution by the interferometric analysis of all sample sets. Measurements
were taken in triplicates from three samples each; the results were normalized with the IgG control,
and the size range spans from 50–200 nm.

The mode of particles is at around 55 nm with an average of 519.9 particles at 5 d 1 g,
768.7 at 5 d RPM, 459.2 at 10 d 1 g, and 585.1 at 10 d RPM.

2.2. Fluorescent Analysis
2.2.1. Total Fluorescent Particle Counts

As noted above, the interferometric analysis of the ExoView method is limited to
the detection of particles sized 50 nm or larger, thus excluding a substantial part of exo-
somes. The results are still valuable to determine size distribution, but counterstaining
the small EVs bound on the chip plate with fluorescent antibodies to the tetraspanins
completes this initial analysis. Therefore, the combination of interferometric sizing and
fluorometric detection allows the analysis of the entire EV content by detecting the size and
evaluating the distribution of subpopulations defined by the presence of one or multiple
exosomal markers.

The results of our examination of the total fluorescent particle counts with all three
ABs on the three capture spots can be seen in Figure 4. Panel a displays the combined
values of all three fluorescent tetraspanin ABs, and panels b–d displays the number of
fluorescently stained particles on each capture spot. Comparing this to the analysis of the
particles captured by interferometry, it can be stated that there is an increase in particle
number after exposure of the BC cells to the RPM. The increase after 10 d RPM is on all three
tetraspanin spots similar to the increase after 5 d RPM, suggesting that small EVs < 50 nm
not only make up a large part of the total particle number but their expression is also much
more influenced by exposure to s-µg. Statistically, the exposure of the MCF-7 cells to s-µg
via RPM vs. the 1 g control shows significance in all comparisons and on all tetraspanin
spots. The means of all samples (n = 3), the standard error of the means as well as the
corresponding p-value are listed in Table 2 There is also a small but not significant increase
in particle count after 10 d exposure vs. 5 d, in both the 1 g condition as well as after
incubation of the cells on the RPM.
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Figure 4. Particle number by fluorescence analysis via counterstain of captured small EVs with the
tetraspanins CD81, CD63, and CD9. Measurements were taken in triplicates from three samples
each; the results were normalized with the isotype control; the size includes particles below 50 nm.
(a) Total number of particles from all capture spots. (b) Number of particles captured on the CD81
spot. (c) Number of particles captured on the CD63 spot. (d) Number of particles captured on the
CD9 spot. ** is defined as p ≤ 0.01, *** as p ≤ 0.001.
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Table 2. Mean particle counts, standard errors of the mean, and p values.

Total

Mean SE p Value

5 d 1 g 5929 1341
0.0013

5 d RPM 10,260 987.8

10 d 1 g 6570 882.7
0.003

10 d RPM 10,529 572.1

CD81

Mean SE p Value

5 d 1 g 2462 362.8
0.0020

5 d RPM 4297 190.7

10 d 1 g 2976 262.2
0.0004

10 d RPM 5327 163.7

CD63

Mean SE p Value

5 d 1 g 2416 217.7
0.0006

5 d RPM 4624 267.5

10 d 1 g 3076 364.4
0.0002

10 d RPM 5606 129.4

CD9

Mean SE p Value

5 d 1 g 4350 671.9
0.0047

5 d RPM 6828 126.6

10 d 1 g 4554 412.7
0.0052

10 d RPM 6988 40.8

Looking at separate capture spots on the chip following the counterstain with the AB
for CD81, CD63, and CD9, it becomes apparent that CD9 is the most dominantly expressed
of the three tetraspanins (Figure 4a).

On the CD81 spot particularly, we observed that the EV count increased after s-µg at
both time points; similarly, the surface protein expression of all three tetraspanins increased
(Figure 4b, Table 3).

Table 3. Average fluorescent particle analysis of the CD81 card spot.

CD81

Total CD81 CD63 CD9

5 d 1 g 1489.9 323.2 770.0 1379.2

5 d RPM 2299.1 535.7 1184.0 2022.7

10 d 1 g 1636.4 380.1 920.0 1516.9

10 d RPM 2397.7 697.1 1338.7 2221.7

This pattern holds true for the CD63 spot as well, CD9 was the most expressed
of the three surface proteins, but in contrast to the CD81 spot, the number of particles
expressing the remaining two proteins showed a comparable value (Table 4). As prior,
the particle count was elevated after incubation on the RPM compared to 1 g in both time
points (Figure 4c).



Int. J. Mol. Sci. 2022, 23, 16095 9 of 20

Table 4. Average fluorescent particle analysis of the CD63 card spot.

CD63

Total CD81 CD63 CD9

5 d 1 g 1119.4 639.6 429.9 887.8

5 d RPM 2826.8 1157.2 1314.4 1583.4

10 d 1 g 1201.3 631.8 533.3 855.9

10 d RPM 1853.0 623.5 927.2 1495.4

On the CD9 spot again, EVs with CD9 expression displayed the highest particle count
in all conditions and time points (Figure 4d, Table 5). This spot, though, has a considerably
larger number expressing CD81 on its surface. All in all, the total exosome number captured
on the CD9 spot is far greater than on either the CD81 or the CD63 spot (CD81 = 7823.1;
CD63 = 7000.5; CD9 = 13,710.6).

Table 5. Average fluorescent particle analysis of the CD9 card spot.

CD9

Total CD81 CD63 CD9

5 d 1 g 3059.0 1468.6 1196.2 1982.8

5 d RPM 2011.9 904.1 880.2 1361.1

10 d 1 g 3507.6 1906.4 1592.4 2071.4

10 d RPM 5132.1 3176.8 2533.6 3182.9

2.2.2. Colocalization Analysis
Single Tetraspanin Surface Expression—CD9, CD63, and CD81

The number of small EVs with an expression of one tetraspanin only, the previously
described trend of an increased particle number post-exposure to s-µg continues apart from
CD9 at the 10 d timepoint. Here the count of bound exosomes on the CD9 spot is slightly
lower than after 10 d at 1 g with a mean of 912 (RPM) vs. 936.7 (1 g) (Figure 5, Table 6).
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Figure 5. Visual representation of the colocalization analysis of the CD81 capture spot. All possible
combinations are displayed: CD81, CD9/CD81, CD63/CD81 and CD9/CD63/CD81. None of the
presented changes are significant.
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Table 6. Colocalization analysis of the CD81 card spot.

CD81

CD81 Fold
Change CD9/CD81 Fold

Change CD63/CD81 Fold
Change CD9/CD63/CD81 Fold

Change

5 d 1 g 23.0
2.27

641.0
1.69

46.3
2.95

720.3
1.70

5 d RPM 52.3 1082.7 136.7 1225.7

10 d 1 g 32.7
1.44

758.7
1.40

100.3
1.55

919.7
1.44

10 d RPM 47.0 1060.0 155.7 1325.3

The count of CD81 only expressing exosomes is by far the lowest, the increase after
5 d RPM is more than double to 5 d 1 g (2.3-fold), whereas the increase following 10 d RPM
is much more modest and even lower than after day 5 (1.4-fold).

CD63-only expression vesicles show a stark increase between 5 d 1 g and 10 d 1 g;
exposure of the MCF-7 cells to s-µg for 5 d increases the small EV number almost 7-fold,
which is the only significant change in all populations (p = 0.0256). After the 10 d time
point, the increase in the RPM sample is 2.8-fold (Figure 6, Table 7).
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Figure 6. Visual representation of the colocalization analysis of the CD63 capture spot. All possible
combinations are displayed: CD63, CD9/CD63, CD63/CD81 and CD9/CD63/CD81. The increase of
CD63-only vesicles is significantly increased after 5 d of s-µg vs. 1 g. * is defined as p ≤ 0.05.

Table 7. Colocalization analysis of the CD63 card spot.

CD63

CD63 Fold
Change CD9/CD63 Fold

Change CD63/CD81 Fold
Change CD9/CD63/CD81 Fold

Change

5 d 1 g 82.3
6.89

369.7
1.69

83.3
2.41

620.7
1.54

5 d RPM 567.3 623.3 200.7 953.7

10 d 1 g 250.3
2.77

443.3
1.25

149.3
1.70

688.3
1.52

10 d RPM 693.3 555.7 254.3 1049.7

EVs captured on the CD9 slot with single tetraspanin expression comprise the largest
number of all. Overall, their number decreased after 10 d in both experimental conditions
compared to 5 d; after 5 d, we recorded a 1.3-fold increase in particle number but a decrease
of 0.03 after 10 d (Figure 7, Table 8).
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Table 8. Colocalization analysis of the CD9 card spot.

CD9

CD9 Fold
Change CD9/CD63 Fold

Change CD9/CD81 Fold
Change CD9/CD63/CD81 Fold

Change

5 d 1 g 1003.3
1.31

429.7
1.86

699.3
1.79

763.7
1.68

5 d RPM 1313.0 799.7 1254.7 1283.3

10 d 1 g 936.7
0.97

573.7
1.45

887.3
1.53

1018.0
1.53

10 d RPM 912.0 832.7 1361.0 1554.0

Co-Expression of Two Tetraspanins—CD9/CD63, CD9/CD81, and CD63/CD81

When it comes to co-expression of CD9/CD63, the number of exosomes found on the
CD63 spot compared to CD9 is slightly higher, and the EV numbers increase on both card
spots after RPM incubation, spanning over a range of 1.3- to 1.9-fold (Tables 7 and 8).

Tetraspanin co-expression of CD9/CD81 on the CD81 spot shows lower counts than
on the CD9 spot, the fold-increase following the incubation under s-µg condition varies
between 1.4 and 1.8 (Tables 6 and 8).

Lastly, the number of EVs expressing CD63 and CD81 is low compared to the other
tetraspanin combinations. Numbers on the CD63 spot are higher than on the CD81 card
spot, with mean counts ranging from 46.3 to 254.3 and the fold increase varying from
1.55 to 2.95 (Tables 6 and 7).

Co-Expression of All Three Tetraspanins—CD9/CD63/CD81

The population expressing all three tetraspanins is the largest in all conditions over
both time points. Comparing the three card spots, this set of exosomes captured on the
CD63 spots provide the smallest group (average counts from 620.7–1049.7) with almost
the same fold increases in the RPM group: 1.54 at 5 d and 1.52 at 10 d (Table 8, Figure 8).
The small EVs with triple protein expression on the CD81 spot show a higher count; the
average numbers range from 720.3 to 1325.3 with a fold change of 1.7 at 5 d and 1.44 at 10 d
(Table 7, Figure 8). The largest group of exosomes is found on the CD9 spot, with values
between 763.7 and 1554.0 on average and a fold change of 1.68 on 5 d and 1.53 on 10 d of
s-µg (Table 7, Figure 8).
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Figure 8. Fluorescence colocalization analysis via counterstain of captured small EVs with the
tetraspanins CD81, CD63, and CD9. (a) Complete overview of exosome populations on the different
tetraspanin spots at all experimental conditions. (b) Population detail of the three capture spots at
5 d 1 g. (c) Population detail of the three capture spots at 5 d RPM. (d) Population detail of the three
capture spots at 10 d 1 g. (e) Population detail of the three capture spots at 10 d RPM.

3. Discussion

Female breast cancer is a vast burden for patients and caregivers alike. The incidence
rates are higher than ever, despite the considerable advances made in treatments and early
discovery. The reasons why breast cancer cases are still on the rise are multifarious, be
it the heterogeneity of the disease, which calls for special targeted or even personalized
treatment options, the rise in lifestyle and environmental risk factors, genetic predisposition,
or in some instances the lack of access to care [1,3,5,10,66]. The fast-paced development
of new detection methods as well as new approaches to treatment though, have better
clinical outcomes for breast cancer patients and improved their quality of life [66]. Despite
these improvements, there is still a need to look further to discover new ways to better
understand the development of this cancer and to find new opportunities for a cure.

Cancer cells and tumors, even more than every other living tissue, depend on cell-cell
communication [56,67,68]. Besides the exchange of information via direct cell contact or
receptor-based transmission, extracellular vesicles are the alternate option for cell com-
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munication [56,57,69,70]. In recent years, these EVs have emerged as the major player in
information transfer during tumor growth, immune escape, TME education, progression,
metastasis, and the preparation of the metastatic niche [56,57,70–72]. With their presence in
virtually all biofluids, EVs are easily accessible biomarkers for cancers and other physiolog-
ical maladies [42,69,73]. As biomolecules, they are very stable and thus a great resource
to research changes in the number of secreted vesicles as well as in the contained cargo
following varying physiological or experimental conditions [70,74–77]. Lastly, by altering
the cargo and/or the expression of surface proteins of the EVs, they present themselves as
ideal vesicles for personalized, targeted treatments for the majority of malignancies and
other clinical pictures.

Our group has worked with various tumor cell lines, including breast cancer, and
explored their genomic and proteomic changes after subjection to s- or r-µg. s-µg is a partic-
ularly useful tool in tumor research as several malignant cell lines will form 3-dimensional
spheroids when incubated under µg conditions, which is a much better representation of a
tumorigenic growth than in regular 2D cell culture [31,78,79]. To find supporting evidence
of the results gained in previous experiments, we have also examined the changes in EV
release in thyroid cancer cells following exposure to r-µg on the ISS [80].

In this current study, we examined the changes in exosome release in MCF-7 breast
cancer cells following the subjection to s-µg for either 5 d or 10 d compared to the respective
1 g controls. As we did previously, we analyzed the small EV number, their size distribution,
and the expression of the surface tetraspanins CD81, CD63, and CD9. Similar to the results
we described in the study using r-µg, here we find an increased secretion of EVs following
incubation to the RPM. The experimental time points were 5 d and 10 d; our results show
a merely minimal increase in exosome numbers, if at all. This leads us to believe that
the adaptive changes in the cells leading to a change in exosomal release occur fairly
quickly upon the onset of s-µg. As mentioned previously, the interferometric analysis of
small EVs is due to the limitation to vesicles larger than 50 nm lacking a large part of the
entire exosome population. Still, through the size distribution we have shown that the
particles captured on the card spots fall into the defined size range of exosomes with a
mode of around 55 nm. Looking at the total particle counts after the fluorescent analysis
of the bound vesicles, we can see that a very large part of small EVs is found in the group
smaller than 50 nm. Additionally, the variance between the different samples is much
lower, most likely due to the higher vesicle number. The fluorescence analysis shows
significant changes in the release of exosomes following the cultivation on the RPM at
both time points on every capture spot, whereas we have no significant changes to report
when we analyze the populations in the 50–200 nm size range. The changes in the various
populations expressing one, two, or all three tetraspanins seem to follow the release pattern
of exosomes with increases in most populations following the exposure to s-µg. It seems
noteworthy to point out that compared to our previous study, our current results are
somewhat comparable regardless of the exposure to s-µg vs. r-µg and the use of breast
cancer vs. thyroid cancer cells.

Of the three analyzed tetraspanins, small EVs with surface expression of CD9 are,
compared to CD81 and CD63 populations, the largest group, both within single or co-
expression. CD9 has been described as determining invasiveness and tumorigenicity in
breast cancer cells [81]. Similarly, CD9 overexpression is implied to play a role in breast
cancer chemoresistance and is considered a biomarker for various cancers [41,82–84]. CD63
expression is the second highest overall; this tetraspanin has been described as carrying
both tumor suppressor as well as protumorigenic properties and is a predictor of poor
prognosis in several cancers [85]. Just like CD9, CD63 plays a part in the regulation of breast
cancer cell malignancy and the therapy resistance to tamoxifen [86,87]. Lastly, CD81 is the
tetraspanin expressed in the lowest number of exosomes in the entire pool of populations.
It does seem to hold the same properties, though, in breast cancer in regard to cell migration
and proliferation as CD9 and CD63, and suppression of this surface protein is reported to
reduce cancer invasion and metastasis [88,89].
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All in all, these results support our previous findings of the samples gained from the
CellBox-1 experiment. The demonstrated increases in small EV release (Figure 9) suggest
that the adaptive changes following µg conditions, either simulated or real, that we have
described in previous studies on both the genomic or proteomic level, are somewhat
mirrored in the cellular EV release and setup even though we cannot make any conclusions
on possible adaptations to the cargo composition in the released vesicles. Whether the
information transferred between cancer cells and the surrounding tumor microenvironment
is restricted to the modification in the number of released vesicles or whether there is an
actual variation in cargo needs to be determined. This study does demonstrate that the
adaptive alterations within the cancer cells following changes in µg conditions are not
only internal cellular events but that these adaptations are transmitted by vesicle-based
cell-cell communication, which, therefore, may be a determining factor for the speed of
the adaptive variations within the entire organism. This elevates the need for further
investigations on the proteomic changes to the small EV cargo following exposure to µg.
A recent proteomic analysis of both EVs and cells revealed a significant correlation with
GTPases and proliferation of MDA-MB-231 cells in µg, and the authors conclude that EVs
may be superior to cells in analyzing differentially expressed proteins, especially those that
are down-regulated ones and usually unidentified or neglected in the analysis of intact
cellular contents [90]. These are interesting new facets to this research area, which may aid
in answering the question of how variations in the cargo setup add to the overall cellular
response. We will attempt to address a variety of these questions in future follow-up
studies.
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Figure 9. Graphical Abstract displaying the increase of small EV release in MCF-7 breast cancer cells
following exposure to s-µg on a Random Positioning Machine (RPM) (Created with BioRender.com,
license number: JM24RW7M01).

4. Materials and Method
4.1. Cell Cultures

MCF-7 human breast adenocarcinoma cells were purchased from the American
Type Culture Collection (ATCC) (Manassas, VA, USA). Cells were cultivated in RPMI
1640 medium (Life Technologies, Naerum, Denmark), supplemented with 10% fetal calf
serum (FCS) (Biochrom, Berlin, Germany) and 1% penicillin/streptomycin (Biochrom) at
37 ◦C and 5% CO2. 1 × 106 cells were seeded into T25 vented cell culture flasks (Sarstedt,
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Nümbrecht, Germany) and incubated ON to ensure proper attachment of the cells. Prior
to the installation onto the RPM start and the experimental run, the flasks were filled
completely with medium, air bubble-free. After 5 d, half of the flasks were removed, and
cells and supernatant were harvested. The remaining flasks underwent a media change as
described earlier [91], were incubated for another 5 d, and subsequently harvested. For the
corresponding 1 g-controls, the flasks were placed and incubated adjacent to the RPM in
the same incubator.

4.2. Random Positioning Machine

The desktop RPM (Airbus Defense and Space (ADS), Leiden, The Netherlands) was
installed inside a standard incubator at 37 ◦C, 5% CO2. The RPM was operated in real
random mode with random direction and interval and at a maximum speed of 12.5 revo-
lutions per minute. Sample flasks to be tested were placed onto the middle frame with a
maximal distance of 7 cm to the center of rotation, allowing a µg quality between 10−4 and
10−2 g, which is reached over time [49,67]. Corresponding static 1 g-controls, which
were completely filled with medium, were placed next to the RPM in the same incubator
(n = 15 samples for each group/run).

4.3. Exosome Harvest and Isolation

After the harvest, the cell supernatants of the RPM and control samples were subjected
to an adjusted differential centrifugation protocol [92] using a swinging bucket rotor,
consisting of two consecutive centrifugations, 300× g (10 min, 4 ◦C) followed by 2500× g
(15 min, 4 ◦C, twice) to pellet cells, cell debris, and large vesicles. High-speed centrifugation
was not necessary as the analysis via ExoView® does not require upstream particle isolation.
The collected supernatants were divided into 2 mL aliquots and stored at −80 ◦C until
further analysis.

4.4. ExoView® Kit Assay Procedure

For the capture and analysis of the CellBox-1 supernatants, the EV-TETRA-C ExoView
Tetraspanin Kit (Unchained Labs, Pleasanton, CA, USA) was used, with all samples pro-
cessed and stained according to the manufacturer’s protocol. The spots on the chip plates
were coated with antibodies for the tetraspanins CD9, CD81, and CD63, as well as a nega-
tive IgG control, all in triplicates. In short, the samples, 0.5 uL, were diluted to 10 uL in PBS
and incubated overnight, in a 1:2 dilution with the provided buffer (Solution A), on the
sealed chip plate in order to capture the exosomes present. The incubation was followed by
three wash steps prior to the surface membrane immunofluorescence staining. An antibody
mixture containing fluorescently labeled anti-CD9 (CF® 488A), anti-CD81 (CF® 555), and
anti-CD63 (CF® 647) was pipetted onto the chip and incubated for 1 h on an orbital shaker,
blocked from light exposure. Three wash steps with the supplied wash buffer, and two
washes with DI water for 3 min each (RT, shaking, light omitted) followed this incubation.
Subsequently, the chip plates were dried and scanned as described below.

4.5. Digital Detection of Exosomes

The chip plates were scanned using the ExoView R100 (Unchained labs, Pleasanton,
CA, USA) in combination with the ExoViewer software. All the chip plates were pre-
scanned prior to the exosome capture to obtain a baseline signal; then, the exosome-
laden chips were scanned identically positioned on the stage platform. The analysis was
visualized with the ExoViewer software, resulting in the EV count, size distribution, and
colocalization of EV subpopulations.

4.6. Statistical Analysis

The total counts of numbers were analyzed via the unpaired t-test, comparing all the
samples from either the GM or FM group respective to the capture spot on the chip plate,
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CD9, CD63, or CD81. The analysis was conducted using the GraphPad Prism 9 software
(GraphPad Software, San Diego, CA, USA).

5. Conclusions

Despite advances in diagnosis and treatment, breast cancer is one of the most debili-
tating and deadly diseases of our time. Current knowledge about the importance of cell
communication during all stages of tumor development, growth, and metastasis point
to the role that extracellular vesicles can play in learning about and fighting all cancers.
Applying s-µg to breast cancer cells leads to an improved in vitro model to study the
changes in small EVs, among others. Investigations like this will extend our knowledge
of cell communication in the tumor microenvironment and may result in breakthrough
therapies to cure breast cancer.
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