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Abstract: Computer simulation techniques are gaining a central role in molecular pharmacology. Due
to several factors, including the significant improvements of traditional molecular modelling, the
irruption of machine learning methods, the massive data generation, or the unlimited computational
resources through cloud computing, the future of pharmacology seems to go hand in hand with in
silico predictions. In this review, we summarize our recent efforts in such a direction, centered on the
unconventional Monte Carlo PELE software and on its coupling with machine learning techniques.
We also provide new data on combining two recent new techniques, aquaPELE capable of exhaustive
water sampling and fragPELE, for fragment growing.
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1. Introduction

There is little doubt that computational techniques are becoming indispensable when
developing molecular therapeutic projects. Whether working on the design of a neoantigen
peptide, the engineering of an antibody or an epitope, or when screening a small molecule
targeting a protein or RNA/DNA molecule, disrupting a protein–protein interface or
enhancing their interaction for degradation, computational techniques are becoming a
driving force. Despite recent developments providing models for ADMET and clinical
phases [1], most of these modelling efforts focus on the early preclinical phases and, in
particular, on the screening and lead optimization stages [2].

Our lab has centered on developing molecular modelling (MM) and bioinformatic
techniques for advancing in these preclinical stages; recently, we have also added machine
learning (ML) techniques, mostly in combination with MM methods [3]. Our main con-
tribution, the PELE software, could be considered an out-of-the-box Monte Carlo (MC)
approach. Instead of performing millions of small fast movements [4], we generate only
a few (thousands of) MC steps providing significant conformational rearrangement; in a
single step, we might observe a significant ligand translation, coupled with side chain reor-
ganization and backbone displacement [5]. For this, we designed a procedure combining
theoretical algorithms with protein structure prediction techniques. As a result, an MC step
might take up to a minute to complete, with a full simulation requiring a few hundred steps
on several computing cores, each of them performing an individual MC trajectory. These
trajectories can be independent or perform a collective effort, using an adaptive scheme [6].
For example, refining a docking pose might require 16–32 computing cores running for 1 to
2 h and provide a fully flexible (all-atom) protein and ligand reorganization [7]. A similar
computing effort can also provide growing a fragment into a core, for lead optimization
stages, providing an analogous ranking to state-of-the-art FEP + techniques [8].

Results and benchmarks of PELE have been widely introduced in multiple articles [9].
In the CSAR blind international competition, for example, it was recognized as a break-
through approach, being the main novel technique underlined by the organizers [10]. Such
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a good performance has driven the transfer of technology to a BSC spin-off company, Nos-
trum Biodiscovery. Currently, it is being used in prospective projects in multiple countries
across Europe, Asia, North America, and Oceania.

In recent years, we have also focused on introducing workflows combining ML models
with our MM techniques. This combination aims to bypass applicability domain problems
of ML-alone techniques by introducing in silico MM data augmentation [3]. Along this line,
novel developments are currently being implemented in screening extra large libraries,
such as the REAL one from Enamine, or when combined with generative models.

In this review we will summarize our recent contributions in the drug discovery field,
focusing on the potential of our MM methods when used alone or when combined with
ML. In the last section, we will also introduce some new developments where we combine
two recently developed approaches: aquaPELE [11] and fragPELE [8], for addressing the
role of explicit waters when growing ligand fragments.

2. Molecular Modelling Advances

Biological systems require molecular models capable not only of describing with high
accuracy the structure and energy of molecules but also the dynamics of these systems. The
most common strategy to enable movement once molecular energies have been properly
described is molecular dynamics (MD), through the integration of Newton’s equations of
motion. Many algorithms have been developed using this approach, achieving excellent
results and performance, thereby setting it as the standard [12]. However, there are alter-
native techniques that raise additional lines of action. The most popular alternative is the
Monte Carlo method (MC), which relies on a series of artificial perturbation movements
randomly applied to the system and, typically, the Metropolis criterion to satisfy the Boltz-
mann distribution. The advantage of MC over MD is its flexibility when exploring the many
degrees of freedom of large systems, resulting in a cheaper method when perturbation
algorithms are precisely tailored.

The pioneer of the MC strategy applied to biochemistry is Prof. Williams L. Jorgensen,
from Yale University. Along with the popular force field OPLS [13], his group developed
BOSS back in the late 1970s, which could be applied to minimize energies of isolated
molecules, analyze normal modes, and search conformations [14]. Further development
on BOSS led to MCPRO, an MC algorithm specifically designed to study biomolecules in
solution. Among its applications, we can highlight the binding mode minimization and
refinement [15] and the estimation of binding free energies of protein–ligand complexes
upon protein mutations or ligand modifications [4,16–18]. Another reference lab is led by
Prof. Jonathan Essex at the University of Southampton. Essex explored various applications
of MC, of which we highlight the Grand Canonical MC strategy (GCMC), which focused
on the sampling of explicit water molecules within biomolecular simulations and the
prediction of their thermodynamic properties [19,20], and the Adaptive Sequential MC to
enhance the exploration of the conformational space of protein–ligand complexes [21].

As stated in the Introduction section, PELE is our main contribution that complements
the aforementioned techniques. Following seminal work from Scheraga combining MC
and minimization [22], PELE supports large perturbation algorithms, randomly applied,
with tailored relaxation strategies to tolerate big conformational changes while keeping
a reasonable Boltzmann acceptance probability. As a result, it is capable of exploring a
wide conformational space of large biochemical systems, e.g., to simulate ligand migration
pathways within protein cavities, with little computational effort. Examples of these appli-
cations include the elucidation of binding mechanisms in nuclear hormone receptors [23],
in tyrosinases [24], or in the Ca2+ Channel α2δ-1 subunit [7].

The minimization strategy in PELE works along a side chain prediction algorithm that
is focused on looking for the best contacts between the protein cavity and the perturbed
small molecule, considering its rotatable bonds, as well, thus granting a fair probability
of accepting the new state. Consequently, other applications of PELE make use of these
exploration capabilities to perform induced-fit docking of small molecules in protein
cavities. We can highlight several studies where we map the protein–ligand conformational
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space with this protocol, such as in the HIV-1 [25] or the soluble epoxide hydrolase [26].
In the HIV-1 case, PELE’s induced fit was challenged against 100 ns molecular dynamics
simulations, demonstrating better sampling performance. The hydrolase case strongly
challenged the perturbation and side chain prediction algorithms of PELE due to the
high flexibility of this protein and the promiscuity of its binding site. Beyond exploration
performance, PELE’s algorithms have been positioned as a solution to capture relevant
binding modes in quick drug design cycles [27].

Compared to other MC techniques, PELE offers great potential to map medium to
large conformational changes. It provides a good compromise between computational
resources and exploration of the energy landscape. Global explorations, ligand migration,
or local extensive rearrangements are easily handled by routine calculations in PELE [6,28].
On the other hand, PELE cannot perform exhaustive free energy perturbation analysis,
such as the ones provided by MPRO or GCMC techniques, due to the lack of resolution
when performing a drastic perturbation plus a minimization scheme.

Further development focused on designing external packages to incorporate new
capabilities into PELE such as an enhanced sampling strategy, called adaptivePELE [6], and
a Markov State Model to estimate absolute binding free energies, named MSM-PELE [29].
The first solution enabled faster exploration protocols introducing biased sampling that
could boost exploration by up to 10 times the standard code. This strategy has been helpful
to determine ligand binding pathways, for example, in the nuclear hormone receptor [30]
and in the vanillyl, alcohol oxidase [31]. Additionally, PELE’s sampling could handle global
explorations to identify binding sites around the protein surface as in this study where
ligand binding interfaces for protein–protein inhibition in the flu virus hemagglutinin were
identified [32]. The second package, despite the challenge it represents, offers a promising
approach to the determination of absolute binding free energies, especially in systems with
non-occluded binding sites such as urokinase or plasmin receptors where binding events
can easily happen.

Latest developments focused not only on enhancing applications on global explo-
rations but also on improving predictions in local protein pockets. To better determine
affinity changes upon ligand changes, assisting hit-to-lead campaigns, we developed frag-
PELE [8]. It is a fragment-based alchemical growth procedure that relies on a series of
consecutive PELE simulations capable of incorporating additional molecular fragments
onto a structural scaffold (referred to as the core, already bound into the protein). Thus, the
effects of the new fragment are gradually introduced into the model through the modifica-
tion of the forcefield parameters. As a result, fragPELE executions allow a quick structural
and energetic comparison of the ligand upon fragment addition, including protein flexibility
such as side chain reallocation.

Complementing the fragPELE approach, we recently developed a hybrid method to
treat solvent effects in PELE to further improve accuracy. Standard PELE uses implicit
solvent models to account for the effects of water. To benefit from the speed of implicit
models and, at the same time, explicitly introduce and sample water contributions ignored
by implicit approaches, we developed aquaPELE [11]. It introduces an extra perturbation
algorithm specifically designed to sample explicit water molecules within a pocket. Thus,
it can handle explicit water molecules in combination with the surface generalized Born
solvent model (with a variable dielectric implementation and a nonpolar term), which is
used to consider solvent effects in the rest of the system. This extra perturbation step allows
several water molecules to adapt to the ligand, enabling the detection of hydrogen bonds
or water displacement upon ligand entrance. As a result, aquaPELE offers a good solution
to deal with systems where water plays important roles in ligand recognition. It is also an
interesting plugging for fragPELE as it can be used to detect which fragment candidates
are more suitable for water displacement. The combination of both techniques is discussed
below in more detail.
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3. Combining ML and MM

Applicability domain, quality, and optimal performance of stand-alone machine learn-
ing techniques are highly dependent on available data. When following the ML panels
in recent conferences, such as the recent Discovery on Target (Boston, October 2022), for
example, we find growing doubts about the (possibly oversold) potential of such techniques
in today’s real prospective implementations. As an alternative, researchers might focus
on using MM as a data augmentation tool and combine its outcomes with data-intensive
algorithms and frameworks, such as generative models or big data management systems.
Docking techniques, MC simulations, or MD are powerful tools to generate affinity predic-
tions and quickly create large datasets of information on protein–ligand complexes, thus,
the synergy between MM methodologies and paradigms that benefit from large amounts
of data is obvious, which led the field to provide many examples in the literature of the
application of MM combined with ML to perform specific tasks. In 2017, Ash and Fourches
applied descriptors from MD simulations to find binders on ERK2 [33]. In the same year,
Ding et al. employed molecular dynamics fingerprints (MDFP) [34] to predict toxicity for
the hERG channel [35]. Jumping to docking, some groups trained ML scoring functions
on docked complexes to improve the accuracy of their predictions [36,37], and, following
a similar trend, Sanner et al. applied ML to classify peptide affinities by using docking
complexes [38].

When using such an approach, one should consider the computational cost associated.
MD is a powerful tool to augment data, but its high computational cost would restrict its
use to a limited amount of compounds, which is not ideal for complex analysis or when
aiming for an iterative self-learning implementation. In the latter scenario, cheaper methods
such as docking or MC simulations are more adequate options. The following subsections
describe three different approaches where we use such cheaper methods involving, in
addition, different ML categories.

3.1. MM Data Augmentation Enhances ML Downstream Tasks

We have implemented new approaches to mix MM with ML methods to optimize the
top rankings in a hierarchical virtual screening campaign. In a recent study, we ran short
induced-fit PELE simulations on top of docking results to amplify the data, analyze, and
then collect relevant (heterogeneous) binding descriptors to assess the ligand’s potency.
This information was mixed with pure ligand-based properties in a multiple-source dataset
(Figure 1) to train an ML classifier capable of differentiating high- from low-active hits.
The validation results have shown that the combination of all features in an ML model
describes the compound’s activity better than using individual descriptors (or those coming
solely from one simulation technique). The resulting technique was used in a real-world
screening collaboration with the pharmaceutical company Almirall, where we refined
785 compounds from a primary virtual screening in 6 days (using 512 computing threads
in parallel), selecting 23 for experimental testing. In the end, two hits were unearthed, one
in the nanomolar range activity [3].
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Figure 1. Heterogeneous data extraction and feature build-up in our recent prospective study for the
Almirall company. Different levels of model description and molecular modelling provided several
features for training a model with a set of experimentally validated compounds.

3.2. Directed Generation of New Chemical Entities

Turning to more recent ongoing work, one of the most promising applications that
arises from the combination of MM and ML is the generation of novel compounds starting
from an initial set of molecules of known relevance or special interest. Generative artificial
intelligence has experienced an upsurge of different techniques in the last few years,
providing several other fields with a solid ground of frameworks and enabling its use
in combination with well-established methodologies. A great example of this synergy
is the use of generative models along with MM methods to generate relevant molecules
compliant with a specific set of properties, such as drug-likeness, synthetic accessibility,
molecular weight, or solubility. This process alone does provide value to the problem
of exploring unknown instances of the chemical space but falls short when aiming for
up-to-par compounds in terms of affinity for a target of interest.

Our approach (Figure 2) consists of combining several rounds of generation within
an active learning paradigm, which ensures that the model learns not only from the initial
known set of molecules but also from the best ones ranked under the scope of the chosen
metrics. After several rounds of generation, once enough chemical diversity has been built,
generated compounds undergo docking or PELE short simulations with a chosen protocol
previously established (such as the ones defined in Borrelli et al. [28]). This last step gives a
meaningful approximation of the affinity, a parameter utilized as a threshold for enriching
again the initial set of compounds, which serves again as an input set for the model as a
new initial set.
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Figure 2. Active learning schema depicting the process used for iterative generation and enhancement
of potential inhibitors.

Iteratively, QED, SA, and affinity distributions shift towards better scores or, in a
worst-case scenario, remain stagnant at initial distribution values, but the process enhances
chemical diversity.

3.3. Screening of Ultra-Large Databases

An analogous approach, iterating between ML and MM methodologies, is also be-
ing used to screen ultra-large databases. The ENAMINE Real database is one of the
largest collections of commercially available compounds and also one of the most used for
screening campaigns. With 4.5B compounds, its use changes the paradigm under which
common search and retrieval algorithms work efficiently and under reasonable time and
computational resources.

We enable fast searches of molecules in ultra-large libraries of compounds by com-
puting MinHash fingerprints [39] for the whole set in an HPC regime along with due
compressed storage of such data. To target those regions of the space populated with
potential inhibitors, an evenly distributed sampling of the database is performed upon
a clusterized version of the collections. Although pre-computation of all the necessary
descriptions and clusterization of the totality of the set is computationally consuming
and technically challenging, it is necessary to provide a faithful representation of the
chemical matter.

With clustering as a starting point, a certain number of molecules on the verge of
a few million are selected as the initial batch. Those undergo HTVS followed by more
refined protocols such as Glide docking [40–42] and PELE. The scoring power of molecular
mechanics algorithms sets the ground for focusing the search on relevant parts of the space
by using the best-ranked compounds and searching back to the library converting retrieved
interesting molecules into subjects of the queries. Iteratively executing this process, the
queries retrieve compounds more potent as more relevant regions of the chemical extent
are explored exhaustively.

4. Combining fragPELE and aquaPELE

The fragPELE method, as well as docking techniques in general, is highly dependent
on the hydration conditions of the protein’s binding site [8]; simulations in hydrated
binding sites have poorer structural and energetic predictions than in hydrophobic ones.
We also presented the aquaPELE method [11], aimed at addressing the role of explicit
waters. These two developments made us hypothesize that the combination of fragPELE
and aquaPELE could significantly improve the structural and energetic predictions when
growing ligands in hydrophilic active sites. In this section, we present the results of such
a combination. We organized our study in (1) structural analysis, where the aim was to
predict the location of crystal water molecules both before and after the fragment growing;
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(2) energetic analysis, where we focused on the prediction of the free binding energy
changes of a series of congeneric ligands.

In the structural validation, we assembled a benchmark of eight ligand scaffolds [43–47]
where we grew fragments to obtain ten final fully grown ligands (Supplementary Figure S1).
For each of them, we performed two simulations: (1) a simulation of the ligand scaf-
fold alone with a few explicit and fixed water molecules while the rest were perturbable
(Supplementary Table S1), and (2) a second simulation where we made the fragment grow-
ing with the same configuration of waters. The system preparation and the protocol used
for all the simulations can be found in Supplementary Methods 1 and 2. The objective
of this study was to see whether the hydration sites of the crystal were predicted before
and after the fragment growth. To assess it, we applied a clustering strategy to the water
positions reached throughout the simulation (Supplementary Method 3) . We tracked the
perturbable water’s oxygen distance to the crystallographic position and evaluated the
cluster’s density. These results are summarized in Table 1. In general, the water molecules
were properly located, both in the scaffold simulation with aquaPELE and in the growing
one using the aqua + fragPELE combination. In aquaPELE simulations with the scaffold,
the distances from the predicted hydration sites to the crystal remained below 1 Å in ten
out of eighteen and below 2.5 Å in all of them. The growth of the fragment caused the water
migration only in the expected cases. For all the systems where the fragment displaced a
water molecule, our simulations predicted the decrease in density (or displacement) for that
water cluster. This indicates that the water reduces the frequency of the location due to the
effect of the corresponding fragment. A clear example is the results obtained in BRD4 (PDB
file 5I80), where both waters completely disappear after adding the fragment (Figure 3).
Finally, the control cases where the fragment growing did not displace the water also met
our expectations, having either nearly zero or positive values in the density change.

W1

CL1

CL2

W3CL3

W2 W4

CL4

W5

CL5

CL2

W9

CL9

W2
W6

CL6

W4 CL4

W7

CL7

W6

W7

W8
W8

W1

Figure 3. Demonstration of the fragment growing effect in BRD4. In both images, the solid and
the transparent spheres are crystallographic and water clusters, respectively. On the left-hand side,
we have the results of the aquaPELE simulation. Highlighted we can see W3, CL3 and W5, CL5
almost overlapping. These waters correspond to A319 and A336, respectively, which according to
Supplementary Figure S1 are the waters to be displaced upon fragment growth. On the right-hand
side, we can see that the water clusters from the frag + aquaPELE simulation disappear, as we show
in Table 1.
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Table 1. Structural information of the results obtained for all the important water clusters in the
simulated systems. The checkmark indicates that the distance between the detected water cluster’s
oxygen and the crystallographic position of the water’s oxygen (rcc) is less than 1 Å. When one
density extends over two different water IDs (i.e., HSP90(1), A249 and A286: ρ = 1.0) means that
only one cluster was detected between the crystallographic positions of the original waters.

Systems
Scaffold Growing

PDB Scaffold Water ID ρ ∆rcc < 1Å PDB Grown ∆ρ

HSP90 (1) 3RLQ
A249

1.0
1.84

3RLR
−0.45

A286 1.25 -

HSP90 (2) 2XAB
A2246 1.0 X

2XJG
−1.0

A2115 0.60 X +0.05

BRD4 5I80
A319 0.85 X

5I88
−0.85

A336 0.29 X −0.29

TAF1 5I29
A1891 0.16 X 5I1Q

A1891: −0.13

A1860: −0.79

A1860 0.84 X 6BQD
A1891: −0.16

A1860: −0.71

SiaP WT 2V4C A2346 0.07 X 3B50 −0.07

CHK1 2C3L

A2056 0.02 X

2C3K

−0.02

A2127 1.0 1.44 −0.91

A2052 0.07 1.52 −0.07

A2043 0.02 1.98 −0.02

Control
HSP90 (1) 3RLQ

A249
1.0

1.84
-

+0.03

A286 1.25 0.0

HSP90 (2) -
A1 1.0 X

3RLP
−0.03

A3 0.8 X +0.20

For the energetic benchmark, we used three series of congeneric ligands [43,44]
(Supplementary Figure S2). In each series, we had an initial scaffold from which we
grew some fragments to obtain a series of fully grown ligands with their respective associ-
ated binding free energy (Supplementary Tables S2–S4). The objective was to see how the
presence of explicit water molecules affected the energetic result. That is why we came up
with three different conditions: (1) the water condition, with perturbable and fixed explicit
water molecules (abbreviation: W); (2) the fixed waters condition, only with fixed water
molecules (abbreviation: FW); and (3) the no-waters condition, without explicit waters and
only featured the implicit solvent (abbreviation: NW).

We computed six different scoring criteria based on PELE’s interaction energies
(Supplementary Methods 4) and applied all of them to all the complexes. In addition,
for each congeneric series, the correlation analysis between the predicted and the experi-
mentally determined affinities were obtained for each of the three different water protocols
previously noted (NW, F, and W). Thus, for the three series and three water conditions,
we calculated the average and the standard deviation for each of the six scoring func-
tions. We then did the average correlations between the three congeneric series to generate
Figure 4. As expected, we observed that the best correlations involve the W protocol
followed by FW and NW (Supplementary Tables S5–S7). The protocol with fixed and
perturbable water molecules had the best results across all scoring methods. It is also
the more stable protocol, as the average standard deviation of the averaged points was
σW = 0.03 (σFW = 0.06 > σNW = 0.04). As for the different scoring methods, we do not see
any clear trend when comparing the three different water models. In any case, for the W
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protocol, all scoring methods give correlations in the 0.72–0.76 range, indicating its high
predictive power.

P5 P25 MBE POP5 POP25 POPMBE
Scoring method

0.50

0.55

0.60

0.65

0.70

0.75
r

 0.67± 0.13
 0.67± 0.06

Best scoring method

W
FW
NW
Average

Figure 4. Average r of the three values obtained for each series of ligands for every scoring method. In
the case of the fifth percentile and the mean binding energy (P5, MBE), the average with its standard
deviation is indicated. No error bars are shown to simplify the visualization of the diagram.

5. Conclusions

We have summarized in this work our recent contributions on developing and ap-
plying computational techniques in the early screening and optimization phases of drug
design. From an early emphasis on molecular modelling, we are quickly moving to pri-
oritize the combination of ML and MM techniques. Such a combination might be the
best approach for the coming years until data and technology allow ML-alone methods
to become predominant. Still, the complexity of a robust modelling prediction, such as
shown here when comparing implicit and explicit solvent predictions, might delay such an
overthrown point.

Supplementary Materials: The supporting information can be downloaded at: https://www.mdpi.
com/article/10.3390/ijms232416090/s1. References [48–51] are cited in the supplementary materials.
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Abbreviations
The following abbreviations are used in this manuscript:
CADD Computer-Aided Drug Design
RNA Ribonucleic Acid
DNA Deoxyribunocleic Acid
ADMET Chemical absorption, distribution, metabolism, excretion, and toxicity
MM Molecular Modelling
ML Machine Learning
MC Monte Carlo
FEP Free Energy Perturbation
PELE Protein Energy Landscape Exploration
CSAR Community Structure-Activity Resource
BSC Barcelona Supercomputing Center
MD Molecular Dynamics
MDFP Molecular Dynamic Finger Prints
QED Quantitative Estimate of Druglikeness
SA Synthesis Accessibility
B Billion
HPC High Performance Computing
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