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Abstract: The incidence of renal disease is gradually increasing worldwide, and this condition has
become a major public health problem because it is a trigger for many other chronic diseases. Cell
therapies using multipotent mesenchymal stromal cells, hematopoietic stem cells, macrophages, and
other cell types have been used to induce regeneration and provide a cure for acute and chronic kidney
disease in experimental models. This review describes the advances in cell therapy protocols applied
to acute and chronic kidney injuries and the attempts to apply these treatments in a clinical setting.
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1. Introduction

Currently, the number of patients with a kidney injury, including an acute kidney
injury (AKI) and chronic kidney disease (CKD), is increasing every day, and this condition
is becoming a major public health problem due to its subsequent complications [1,2]. The
main characteristic of AKI is a decreased renal function, which is linked to the progression
of CKD, resulting in collagen accumulation caused by inflammation and fibrosis [3,4].

Millions of people die from chronic or end-stage renal failure, which develops from
untreated kidney failure. Many of these patients are currently treated with a renal re-
placement treatment (RRT) that consists of a kidney transplantation, hemodialysis, or
peritoneal dialysis [1,5,6]. Furthermore, according to several studies, an acute kidney injury
is considered to be a risk factor for developing one or more types of carcinomas. Thus,
AKI is associated with the formation of tumors from local tissue progenitor cells [7,8]. The
prevalence of kidney disease in the United States is ~14%, with more than 600,000 patients
with kidney failure [5,9]. CKD affects 1 in 7 adults in Spain, a higher prevalence than
estimated in previous studies and similar to the prevalence observed in the United States.
The prevalence of CKD was 15.1% [10].

Although it is recognized that the kidney has a capacity for regeneration after AKI,
regeneration and recovery following a chronic injury is much more difficult. Thus, this
process is often irreversible, leading to end-stage renal collapse, a situation that requires
dialysis or renal transplantation [11]. Human-to-human kidney transplantation was pio-
neered in the 1950s [12]. Unfortunately, a negative reaction of the immune system in the
body can complicate solid organ transplantation by causing a graft rejection [13]. Willem
Kolff is credited with developing hemodialysis, first successfully applied in 1945 [14].
Nowadays, dialysis is the only alternative treatment for CKD.

However, transplantation and dialysis continue to be associated with considerable
morbidity and mortality [11,15]. Thus, there is a growing need to develop new therapies
to treat renal disease. In several disease states, various invading leukocytes and reactive
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parenchymal cell states further complicate the cellular landscape, making attempts to
understand renal pathophysiology and identify therapeutic targets difficult [16,17].

The present review describe current and novel approaches to the development of
cellular therapies used with the aim of repairing and/or regenerating damaged renal tissue.

2. Cell Therapies in an Acute Kidney Injury (AKI)

As AKI involves inflammatory processes in the kidney that can lead to a complete loss
of kidney function and no therapies are available to treat them, cell therapy has proved to
be a promising clinical approach and might represent a novel therapeutic strategy to slow
the progression of kidney disease [18].

A cell-based regenerative therapy has been studied in animal models of AKI and
there have been a few reports of beneficial effects. The cells investigated so far include
granulocyte colony-stimulating factor-mobilized peripheral blood CD34 cells [19] and
mesenchymal stem cells (MSCs) [20]. In addition, renal progenitor cells generated from
human-induced pluripotent stem (iPS) cells have been found to ameliorate an acute kidney
injury induced by an ischemia/reperfusion injury (IRI) in mice [21]. The pluripotent
nature of iPSs raises concerns of a high risk of tumor development when these cells are
administered without pre-differentiation. Although the differentiation of iPSs has been
achieved and a renal recovery observed after an injection in AKI models, this occurred
without being integrated into the host kidney tissues, indicating that the paracrine effects of
the renotrophic factors secreted from the hiPS-derived renal progenitors were the primary
cause of the therapeutic benefits. Thus, the iPSCs, although capable of differentiating into
almost any cell type, acted by indirect mechanisms and not by substituting specific cells in
a direct manner. Other authors [22] have found improvements in renal injuries after the
administration of human-induced pluripotent stem cell-derived mesenchymal stromal cells
(hiPS-MSCs), and the effect was mediated by extracellular vesicles.

It has been found that MSC and mononuclear cell therapies have a potent immunomod-
ulatory effect. During an ischemia-reperfusion injury, T-regulatory cells exhibit a protective
role in ischemia and reperfusion by secreting IL-10 to reduce the ischemia-reperfusion
injury [23]. On top of that, plenty of innate immune cells—including mast cells, neu-
trophils, macrophages, myeloid-derived suppressor cells, dendritic cells, and natural killer
cells—are engaged in an ischemia-reperfusion injury [24,25]. These cell therapies have
been shown to gradually ameliorate the renal function in animals with AKI. However, no
human clinical studies based on a regenerative therapy have succeeded in counteracting
the damage caused by AKI. When conducting translational research to apply these novel
clinical treatments, we must consider certain aspects such as the accessibility to the cell
source, protocol complexity, and cost.

The first problem to be addressed when developing a cell therapy against AKI in
clinics relates to the exact timing of the cell administration. Ideally, the administration of
a cell therapy should be conducted soon after the renal ischemia when AKI presumably
occurs. Unfortunately, an acute kidney dysfunction does not cause any typical symptoms,
nor is there any marker molecule available that would allow the rapid and early detection
of AKI. From a clinical point of view, it is impossible to define the exact moment at which
AKI evolves. Even if it was possible to predict the timing, the cells for the therapeutic
administration should be available as soon as possible. Obtaining proangiogenic cells, for
example, usually requires 5–7 days. Therefore, AKI should be diagnosed almost a week in
advance for this reason. The ideal cell therapy would be one of a rapid preparation to be
administered immediately when renal failure is detected. In Figure 1, we summarize the
different candidates for cell therapies for kidney disease treatments.
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2.1. Multipotent Mesenchymal Stromal Stem Cell Therapies

Multipotent mesenchymal stromal stem cells (MSCs) have been widely investigated
for use as a cell therapy. They have shown promise for several diseases, with the goal
of restoring homeostasis to inflamed or injured organs [26]. Human mesenchymal stem
cells isolated from certain types of tissues, including adipose and bone marrow, have
important features such as multilineage differentiation, self-renewal, and a proliferative
potential [27,28].

In general, MSCs differ from other cell therapies as their therapeutic effect is not only
dictated by cell–cell contact, but may also include the so-called “hit-and-run” mechanism.
This process is accompanied by a set of hormones, growth factors, or soluble cytokines
that are transferred to the target cells (damaged tissue) through secretion, phagocytosis,
or vesicle uptake [29,30]. MSCs migrate to the injury site through the circulation (blood
and lymphatics) or through the tissue stroma as a response to suppress the inflammatory
process caused by a tissue injury. Such a response also participates in tissue repair and
regeneration by secreting local factors that modulate the host immune responses by pro-
moting angiogenesis and regulating both the extracellular matrix and connective tissue
deposition [31,32]. Therefore, novel preclinical studies using MSCs have been developed
with the aim of ameliorating a kidney injury.

In a preclinical study with the use of an intravenous MSC administration as a treatment
for AKI, a reduction in the reactive oxygen species through the signaling of the antiox-
idant response element/factor 2 related to nuclear factor E2 was detected. In addition,
the upregulation of antioxidant enzymes, the decreased expression of proinflammatory
cytokines, and reduced evidence of renal apoptosis have been detected [33,34]. Therefore,
these studies demonstrated beneficial effects by reducing tissue injuries in AKI. In an
in vivo canine acute kidney injury model, MSCs were also shown to improve the renal
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function, decreasing blood urea nitrogen (BUN) and creatinine as well as recovering renal
lesions [35].

In another study, Rodrigues et al., suggested that an MSC therapy improved the
glomerular filtration rate and decreased oxidative stress-induced cell senescence and
inflammation, promoting cell proliferation after IRI [36]. Thus, MSCs protected against
AKI in animal models.

Despite these potential therapeutic effects, the engraftment of cells onto injured tissues
has not been systematically demonstrated. Therefore, the protective effects have been
attributed only to paracrine mechanisms [37].

On the other hand, clinical studies with MSCs have been reported. Of the three clinical
trials of MSC therapies conducted on AKI patients since 2008, only one study (NCT00733876,
phase 1) was completed, showing the protective effect of MSC administration on an acute
kidney injury. The other two trials (NCT01275612, phase 1; NCT01602328, phase 2) were
withdrawn and terminated, respectively. In the full study (NCT00733876), bone marrow-
derived mesenchymal stem cells (BM-MSCs) were administered intra-arterially through the
adrenal aorta to avoid lung entrapment. The results indicated that the therapy prevented a
postoperative and late deterioration of the renal function. In contrast, in the completed ACT-
AKI multicenter trial (NCT01602328) in postcardiac surgery AKI patients, the intra-aortic
administration of MSCs was not successful. It also did not find a significant difference in
the renal function measures (30 day all-cause mortality; the need for dialysis) and, therefore,
the trial was terminated due to its uselessness [18,38]. Swaminathan et al., used allogeneic
mesenchymal stem cells to treat 156 patients with AKI after cardiac surgery in a multicenter
study. The results were not positive, probably because the patients already had established
AKI; the aim of the therapy was to shorten the time to recover the baseline renal function,
which the cell therapy did not demonstrate [39].

In addition, MSCs have been investigated as a treatment for kidney disorders such as
renal transplantations, which started in 2008 (NCT00658073), or kidney/liver failure, which
started in 2011 (NCT01429038); both clinical trials used autologous and allogeneic bone
marrow, respectively, such as the cell source. In 2013, a treatment for diabetic nephropathy
(NCT01843387) began; the cell source was allogeneic mesenchymal precursor cells and
bone marrow. All of these were completed [29]; although there were no side effects and the
safety of therapy was demonstrated, no conclusive results were reported.

2.2. Mononuclear and Macrophage Cell Therapies

Unlike MSCs, which require in vitro expansion prior to use (due to their low frequency
in the tissue of origin) and a substantial volume of MSCs, peripheral blood mononuclear
cells (PBMNCs) can easily be fractionated by apheresis and density centrifugation. Further-
more, after isolation, mononuclear cells (MNCs) can also easily be purified to obtain specific
cell types. Studies have also reported on their ability to differentiate into other cell types as
well as their extensive involvement in the regeneration and repair of damaged tissue [40].
Thus, PBMNCs have been used in clinical studies for the treatment of different diseases,
showing the effectiveness and safety for the patient (NCT00524784 [41]; NCT01503749 [42];
NCT01833585 [43,44]).

Other studies have indicated that human PBMNC cultures in a vasculogenic condition-
ing medium dramatically improved IRI induced in an AKI mouse model [45]. Although
there is much scientific evidence, there have been no completed clinical trials of mononu-
clear cells for the treatment of AKI.

Recently, in our lab, we described a new autologous cell therapy with polarized
PBMNCs administrated intravenously that protected against AKI and AKI-derived fibro-
sis [46] by reducing inflammation and enhancing kidney regeneration. In this case, the
PBMNCs were subjected to a repetitive anoxia/reoxygenation process to promote the anti-
inflammatory-specific phenotype of the cells. Cell isolation and the production of a desired
phenotype are effective, easy to prepare, and do not require genetic manipulation because
PBMNCs subjected to an anoxia/reoxygenation protocol promote a healing phenotype



Int. J. Mol. Sci. 2022, 23, 15943 5 of 13

of the cells. Thus, we obtained a safer regenerative product to be applied in a clinical
setting. The relevance of macrophages is due to their broad participation in the immune
system [47,48]; when activated, macrophages tend to polarize into different phenotypes. We
highlight M1 as a proinflammatory and M2 as a promoter of tissue repair in Figure 2 [49].
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Figure 2. Macrophages in homeostasis, injury, and repair. During the repair phase, M2 macrophages
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or phenotype changes from M1 macrophages. M1 macrophages specifically predominate during the
injury and inflammation phase.

When IRI occurs, there is an abundance of immune cells—including mast cells, neu-
trophils, macrophages, myeloid-derived suppressor cells, dendritic cells, and natural killer
cells—that are regulated by MSCs. MSCs [23] can secrete prostaglandin E2 [50], quinurenic
acid [51], and TNF-stimulated gene-6 [52] that promote macrophage polarization from the
M1 phenotype to the M2 phenotype to alleviate inflammation [24]. Distinct macrophage
subtypes are involved across different stages of AKI, and, as M2 macrophages have been
found to be protective against AKI, there is growing interest in using M2 macrophages and
macrophage-modulating agents as therapeutics tools to treat patients with AKI [53]. Inter-
estingly, in a mouse AKI-induced model, the protective role of M2 phenotype peritoneal
macrophage transplantation and its possible mechanism of action were evaluated. For
this, C57BL/6 mouse macrophages were taken and M2 polarization was induced by IL-4
and IL-13 and injected into the renal cortex of the mouse. A relief of the kidney damage
and inflammatory response was observed and the treatment promoted the proliferation of
proximal tubular epithelial cells [54].

Resident macrophages in renal tissues are composed of a range of different cells. A
few are derived from the yolk sac and others are derived from monocytes [55], and have
been shown to actively participate in the resolution of infections and the progression to
fibrosis [56,57].

When the kidney is injured or inflamed, macrophages differentiated from monocytes
migrate and infiltrate the injured area, eliciting a proinflammatory response. Recently, in
a single RNA-seq study, Yao et al., identified a specific inflammatory monocyte-derived
infiltrated macrophage as an early responder to AKI and proposed it as a potential therapy.
The infiltrated S100A8/A9 macrophage was identified as a mediator of kidney inflamma-
tion in an animal model and human AKI. Silencing these macrophages improved the renal
function in a bilateral IRI model and decreased the inflammatory response, converting it
into a feasible therapy for human AKI [58].

Macrophages can be engineered into an M2 phenotype for the treatment of kidney
disease. A few methods have used an ex vivo modification followed by an in vivo modi-
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fication (the administration of modified macrophages); other methods only used in vivo
modifications with genetically modified models. These are explained in Table 1. One of
the main concerns about the use of these manipulated M2 macrophages is the possibility
of their phenotype changing to M1 during the disease in vivo [53]. Thus, one of the main
requirements in macrophage therapies is the maintenance of the healing phenotype and
the time needed for tissue recovery. In this sense, the results in our lab showed that when
we infused cells with a specific M2 gene expression profile, isolated renal macrophages
maintained the anti-inflammatory and proliferative phenotype during the time needed for
tissue recovery [46], confirming again its feasibility to be used in a clinical setting.

Table 1. Cell therapies with M2-induced macrophages.

Animal Model Machophage
Genetic
Modific

(Y/N)
Treatment Effects Year Ref

BALB/c mice
CD11b+cells
isolated from

spleen
N IL-10 1/TGF-β 2

modification

Significantly attenuated
renal inflammation,

structural injury
and functional

2010 [59]

FVB/nj mice (Harlan) Bone marrow Y Overexpress
HO-1 3

Preserved renal function
and reduced microvascular

platelet deposition
2010 [60]

Sprague–Dawley rat Bone marrow Y Overexpress
IL-10

Decreased the local
inflammatory profile and
improve renal function

2012 [61]

Netrin-1 transgenic
mice/ C57BL/6J mice Bone marrow N Netrin-1

treated Mac
Suppressed inflammation

and kidney injury 2013 [62]

C57BL/6 mice Raw 264.7 N MSCs 4

modification

Supports the transition
from tubule injury to

tubule repair
2014 [63]

C57BL/6J mice Bone marrow N IL-4 5/IL-13 6

stimulated

Protected against
renal injury and

decreased proteinuria
2016 [64]

C57BL/6J wild-
type mice Bone marrow N

IL-4/M-CSF 7

stimulated
IL-4/IL-13
injection

Suppressed renal
crystal formation 2016 [65]

Brown Norway
rat/Sprague-Dawley rat Bone marrow Y Overexpress

LCN-2 8
Lower susceptibility to

ischemic injury 2016 [66]

1 IL-10: interleukin-10; 2 TGF-β tumor growth factor-beta; 3 HO-I: heme oxygenase; 4 MSC: mesenchymal stem
cell; 5 IL-4: interleukin-4; 6 IL-13: interleukin-13; 7 M-CSF: macrophage colony-stimulating factor; 8 LCN-2:
lipocalin-2.

In addition to understanding the molecular mechanism of therapies using macrophages
(which induce renal repairs), new therapeutic strategies have been developed. Several stud-
ies have focused on trying to enhance certain healing functions of endogenous macrophages;
one of which is based on stimulation by pharmacological agents, as shown in Table 1.

Autophagy has been shown to be closely related to immunity and inflammation. It
contributes to the regulation and function of human immunological responses [67].

Macrophages are part of the innate leukocytes that accumulate in the kidney and
promote inflammation in acute kidney inflammations [68]. Several studies have shown
that a treatment with ursolic acid increases macrophage autophagy. In addition, to enhance
macrophage autophagy, it alters the macrophage function and inhibits the secretion of
inflammatory factors such as tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), and
interleukin-1-beta (IL-1β). This indicates the vital role of autophagy in the regulation of
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kidney inflammation [69,70] and the possibility of using ursolic acid as an alternative to a
cell therapy.

Rapamycin induces autophagy by inhibiting the mTOR signaling pathway, reducing
the levels of proinflammatory cytokines such as TNF-α, IL-1β, monocyte chemoattractant
protein-1 (MCP-1), and gamma interferon (IFN-γ) as well as enhancing the expansion
of renal regulatory T cells (Tregs). It has been found that the adoptive transfer of Tregs
with a rapamycin treatment can transform endogenous renal macrophages from M1 to M2
phenotypes and inhibit the expression of proinflammatory cytokines on integrin alpha-
M (CD11b+) cells in the kidney whilst increasing the expression of anti-inflammatory
cytokines from the kidney [71].

Thus, novel therapeutic interventions designed to enhance autophagy could represent
a new approach to overcome the inadequacies of autophagy associated with inflammatory
dysregulation [72,73].

3. Cell Therapies in Chronic Kidney Disease (CKD)

There is a broad agreement that fibrosis is associated with a decline in the renal func-
tion. Despite an initial evolution that may be related to a variety of etiologies, acute renal
disease may progress to the development of renal fibrosis and eventually renal failure [74].
However, there are currently no effective treatments for preventing the progression of renal
fibrosis [75,76]. Nowadays, macrophage or MSC therapies are being studied.

Adult mesenchymal stromal cells (MSCs) are mesenchymal-derived cells that reside in
the tissue stroma and perivascular niche, contributing to the generation of the extracellular
matrix (ECM) and/or connective tissue cells in tissue homeostasis, injuries, and chronic
disease. From the characterization and identification studies of various tissue-resident MSC
populations, it was concluded that when talking about MSCs, we are also talking about
multiple cell populations with distinct lineage capabilities [77].

Studies conducted with AD-MSC or BM-MSC ameliorated renal fibrosis in animal
models [78,79]. On the other hand, it is known that during nephrogenesis, MSCs give rise
to adult interstitial pericytes, which expand and differentiate into smooth muscle actin
myofibroblasts during fibrosis, representing the vast majority of myofibroblasts. Fibrosis is
characterized by the abnormal production and accumulation of myofibroblasts at the site
of injuries. These data demonstrate that the therapeutic strategies that are being developed
to alleviate the effects of fibrosis are related to avoiding the differentiation of pericytes by
means of in vivo techniques to avoid the development of fibrosis [80–82].

Monocyte-derived cells (macrophages and dendritic cells) are involved in inflamma-
tion and the subsequent development of fibrosis. These cells can dynamically control the
fibrotic process through direct effects on matrix remodeling and indirect effects on the
regulation of myofibroblasts and their precursor populations [75,83,84].

The different functional subsets of macrophages (M1, inflammatory; M2a-like, profi-
brotic; Mreg/M2c-like, regulatory) and their concentrations during an injury may de-
termine whether the response leads to a productive re-epithelialization and healing or
pathological scarring [85,86].

Macrophages of the Mreg/M2c type contribute to the resolution of inflammation and fi-
brosis. The transfer of macrophages from healthy mice (without fibrosis) to pathologic mice
(with fibrosis) was shown to reduce fibrosis in both renal and lung injury models [87,88].

In accordance with the fact that IL-10 secretion is a marker of the regulatory macrophage
function, studies have shown that IL-10 administration, the adoptive transfer of IL-10-
stimulated macrophages, and the in vivo induction of the IL-10 expression in macrophages
ameliorate fibrosis and inflammation in the kidney [75,84,89]. Thus, monocytes can foster
the resolution of a fibrotic process by differentiating into regulatory macrophages that
produce local suppressive cytokines such as IL-10 [76].

On the other hand, carnitine palmitoyl transferase 1-a (CPT1a) is a gene encoding an
enzyme that facilitates the oxidation of fatty acids and is, therefore, associated with the
lipid content. Lipid accumulation in macrophages plays a role in cellular phagocytosis and
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inflammatory processes. One study by our group demonstrated that the downregulation
of CPT1a in response to the cellular lipid content led to a modulatory effect on macrophage
phagocytosis and inflammation [90]. Moreover, it has been shown that in fibrotic conditions,
the number of macrophages with a high phagocytic capacity decreases during the fibrosis
progression whereas the macrophages with a lower phagocytic capacity, on the other hand,
increased. Therefore, a cell therapy with macrophages overexpressing CPT1a with an
increased phagocytic capacity administrated intravenously could counteract the decrease
in phagocytic macrophages in the kidney, thus providing a therapeutic advantage against
renal fibrosis [91].

In experimental models of kidney fibrosis comparing different M2 therapies, it has
also been found that not all M2 therapies were effective; only therapies able to maintain a
stable M2 phenotype were able to prevent fibrosis. Thus, the macrophages were genetically
modified to overexpress neutrophil gelatinase associated lipocalin (NGAL) and were
genetically stable and able to preserve their anti-inflammatory and antifibrotic phenotypes
even when placed in a proinflammatory and profibrotic environment [92].

Among the large population of cells and their different types that are implicated
in the pathogenesis of renal fibrosis, macrophages have gained attention due to their
potential therapeutic approaches, but again no clinical studies have been performed with
macrophage/monocyte therapies to prevent fibrosis.

4. Cell-Derived Extracellular Vesicles (EVs) as a Novel Therapeutic Strategy for
Kidney Disease

There are a few studies that have demonstrated the therapeutic effects of extracellular
vesicles in animal models of AKI and CKD [25]. Extracellular vesicles (EVs) such as
exosomes (30 to 160 nm in size) and micro-vesicles (100 to 1000 nm in size) are small
membrane particles constitutively or inducibly secreted by cells, including MSCs and
macrophages. Released EVs naturally function as intercellular messengers [93,94].

According to several studies that developed treatments against kidney injuries, MSCs
were found to release micro-vesicles in response to a tissue injury. These micro-vesicles may
have the ability to regulate the protective effects of MSCs in models of an ischemic kidney
injury. In an AKI mouse model, human MSC-derived exosomes inhibited an AKI-CKD
transition, modulating the transcription factor SOX9 that it was related to the development
of AKI [95]. Other studies have revealed that MSC-derived EVs decreased the epithe-
lial tubular cell damage and enhanced the kidney cell proliferation and function [96,97].
Cantaluppi et al., demonstrated that micro-vesicles received from human endothelial pro-
genitor cells (EPCs) generated a protective effect against an ischemic kidney injury and
prevented the progression to a chronic kidney injury in murine models [96]. In addition, in
a glycerol-induced AKI model, MSC-derived EVs promoted AKI recovery [98]. Despite
increasing evidence from preclinical studies on the therapeutic properties of micro-vesicles
in AKI, no clinical studies have been conducted with MSCs in human AKI.

In the case of CKD, a few studies with MSC-derived EVs have been conducted [99].
Recently, studies have shown that MSC-derived EVs promote angiogenesis and vascular
recovery [100] and that EVs can also ameliorate renal fibrosis in a ureteral obstruction
(UUO) model [101–103]. Interestingly, one clinical trial was conducted with umbilical cord
(UC)-MSC-derived exosomes that ameliorated the inflammatory immune reaction and
improved the kidney function in CKD patients [104].

Internalized EVs from macrophages could be a target with therapeutics effects against
kidney disease because it is known that macrophages are involved in kidney injuries [105,106].
Li et al., showed that when macrophages internalized the tubular epithelial cell (TEC)-
derived EV-miR-19b-3p, they polarized to the M1 phenotype and targeted the SOCS1/NF-
kB pathway. Consequently, this promoted the secretion of many inflammatory factors
leading to kidney disease [107]. The EV-miR-19b-3p/SOCS1/NF-kB axis could provide
new molecular targets in further studies against kidney injuries.
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On the other hand, macrophages have been used as a vehicle of IL-10 extracellular
vesicles for renal injury treatments [108]. IL-10 is a potent immune modulator with a strong
anti-inflammatory and tissue-regenerative capacity. Studies of AKI have shown that IL-10
can protect against ischemia, cisplatin, or ureteral obstruction-induced renal injuries by lim-
iting the inflammatory cytokine production and immune cell infiltration [109]. Tang et al.,
presented a method to fabricate interleukin-10-loaded (IL-10+) EVs for the treatment of an
acute kidney injury. They used RAW 264.7 macrophages, which were transfected with a
plasmid coding for murine IL-10 and were stimulated with dexamethasone to induce an
M2 macrophage phenotype. They then isolated the EVs from the supernatants and verified
them by their protein markers, size, morphology, and IL-10 amount. Finally, adhesive
components were added to the surfaces of the EVs to effectively target the vesicles to the
injured area and were administered intravenously to mice with a renal injury. A treatment
with interleukin-10-loaded (IL-10+) EVs significantly ameliorated renal tubular injuries
and inflammation caused by an ischemia/reperfusion injury, and powerfully prevented the
transition to chronic kidney disease. Furthermore, IL-10+ EVs enhanced M2 macrophage
polarization [108].

5. Conclusions

Cellular therapies are among the most exciting innovations in medicine over the last
decade and have the potential to offer curative solutions to kidney disease. Overall, there
are various preclinical studies that demonstrate the efficacy of different cell therapies, but
fewer clinical trials have demonstrated the efficacy of the different cell therapies. The
greatest challenge is to understand how to adapt the experimental innovations to a clinical
setting and to use appropriate models that link the preclinical assays with the clinical reality
in order to apply these therapies to AKI patients. Future directions point to clinical tests
with cellular therapies previously proved in preclinical assays and in models near to clinics
with no side effects such the described PBMNC therapy [46] or MSC therapies.
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