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Abstract: Red blood cell (RBC) aggregation and deformation are governed by the molecular processes
occurring on the membrane. Since several social important diseases are accompanied by alterations
in RBC aggregation and deformability, it is important to develop a diagnostic parameter of RBC
membrane structural integrity and stability. In this work, we propose membrane microviscosity
assessed by time-resolved fluorescence anisotropy of the lipophilic PKH26 fluorescent probe as a
diagnostic parameter. We measured the fluorescence decay curves of the PKH26 probe in the RBC
membrane to establish the optimal parameters of the developed fluorescence assay. We observed
a complex biphasic profile of the fluorescence anisotropy decay characterized by two correlation
times corresponding to the rotational diffusion of free PKH26, and membrane-bounded molecules of
the probe. The developed assay allowed us to estimate membrane microviscosity ηm in the range
of 100–500 cP depending on the temperature, which paves the way for assessing RBC membrane
properties in clinical applications as predictors of blood microrheological abnormalities.

Keywords: red blood cells membrane microviscosity; PKH26 lipophilic probe; time-resolved fluores-
cence anisotropy

1. Introduction

Red blood cells (RBCs, erythrocytes) possess unique biomechanical properties that de-
termine the microrheological behavior of blood. Reversible aggregation of RBC determines
blood viscosity at low shear stress, and RBC deformability allows changing the cellular
shape and squeezing into capillaries [1]. These intrinsic features of RBC govern the blood
microcirculation in organs and tissues and partly define the efficiency of the transport
function performed by blood [2]. Several pathologies are accompanied by disturbances
in RBC aggregation and deformability. It was reported that diabetes mellitus types I and
II [3–6], cardiovascular diseases, which include arterial hypertension [7,8], coronary heart
decease [9], and particular cases of acute coronary syndrome [10] are all accompanied by
alterations in blood rheology caused by deviations in RBC aggregation and deformability.
Hemorheological abnormalities observed during chronic kidney disease [11] and specific
cases of nephropathy [12] are suggested as manifestations of pathological increases in
RBC aggregation and decreases in RBC deformability. In recent papers, it was demon-
strated [13,14] that, in COVID-19 patients, RBC aggregation increased at both stasis and low
shear rates, indicating subsequent disturbances in blood microcirculation and tissue perfu-
sion, which serve as primary complication factors during rehabilitation and post-COVID
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syndrome. In [15], the authors, using contrast-enhanced ultrasound sonography (CEUS), re-
vealed that arterial and venous organ perfusion of the liver, kidneys, spleen, and mesentery
is affected due to abnormalities in the vascularization processes. In another recent paper, it
was demonstrated [16] that COVID-19 significantly reduces the axial blood velocity in the
capillary of the microcirculation system of the eye. Authors connected such pathology with
massive microthrombosis, which can be related to erythrocytes microrheology disruptions,
or possibly due to some unknown coagulation factor.

Knowledge of the molecular mechanisms of RBC aggregation and deformability is
required to implement a proper and effective correction of deviations in RBC microrhe-
ological parameters. At present, these mechanisms are not understood completely due
to the complexity of RBC interactions with each other, other blood cells, and vascular
endothelium. Nowadays, both aggregation and deformability of RBCs are considered to be
regulated by the molecular processes taking place on the cellular membrane [17]. There
are different models of RBC aggregation. One of them suggests that the clustering of RBCs
into aggregates is driven by the aggregation forces originating from the intermolecular
interaction between residues of pro-aggregate macromolecules adsorbed on the cells’ mem-
brane surfaces. This “bridging model” is actively used to describe RBC aggregation in
environments containing various macromolecules, such as fibrinogen, immunoglobulins,
and high-molecular-weight dextrans [18,19]. Different macromolecules, including blood
plasma protein fibrinogen and serum albumin, are capable of adsorption onto the RBC
membrane [20]. Usage of fluorescence microscopy combined with optical tweezers and
microfluidics allowed visualizing the membrane adsorption of dextran 70 kDa [21] and
fibrinogen [22], pointing out that the adsorption is partially specific and is implemented by
glycoprotein receptor complexes. This fact is of particular interest for clinical hemorheology
as it suggests novel tools for the correction of increased fibrinogen-induced RBC aggrega-
tion by inhibiting the sites of macromolecule-specific recognition. However, such actions
demand keeping the state of the membrane of the RBC intact as changes in membrane
properties may significantly affect the erythrocytes’ transport function. Therefore, the
parameter characterizing the membrane state is required to establish the proper treatment.

The striking flexibility of RBCs is realized by the unique structure of its cytoskeleton
and the complexes of the membrane proteins responsible for the connection of the cytoskele-
ton to the inner surface of the membrane. The RBC cytoskeleton consists mostly of actin
and spectrin microfilaments, which form a mash-alike net with its joints associated with the
membrane via specific anchoring protein complexes, such as “band 3–p4.2–ankyrin” and
“glycophorin C–p4.1–p55” [23]. Residues of the proteins comprising these complexes can
be phosphorylated upon G-protein coupled receptors signaling, and the activation of ionic
channels or membrane enzymes [24]. After phosphorylation, the protein molecules change
the conformation, leading to the reversible disintegration of the whole complex, and the re-
lease of cytoskeleton joints from the membrane with subsequent support for deformability.
The adenylyl cyclase signaling cascade utilizes protein kinase A phosphorylation upon the
G-coupled receptor activation and serves as a potent target for a selective increase in the
RBC deformability in the cases when it is impaired [25].

The interrelation between RBC aggregation and deformability has been studied for
some time. In [26], the authors measured different parameters of both RBC deformation
and aggregation in a variety of physiological and pathological conditions. They observed
a weak yet clear correlation between aggregation and deformability in healthy donor
erythrocytes. The analogous result was observed in the recent study [27] when the RBC
deformability was impaired artificially using glutaraldehyde and/or osmolarity changes.
Interestingly, the interrelation between aggregation and deformation of RBCs almost disap-
pears in the case of membranopathies of erythrocytes occurring in some severe hereditary
diseases. Yet, there is no complete understanding of the underlying mechanism. One
mechanism supposes eruptions of membrane proteins associated with junctional cytoskele-
ton complexes with consequent influence on RBC membrane fluidity and viscoelasticity.
For example, in [28], in the McLeod syndrome, the absence of the XK-protein, which is
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associated with the “spectrin–actin–band 4.1” complex, leads to the abnormal phospho-
rylation of the joint proteins with consequent destabilization of the cytoskeletal network
resulting in the generation of acanthocytes. In [29], a similar result was supported by the
experimental data on the observed eruptions in the phosphorylation of several proteins,
including band 3, which takes place in neuroacanthocytosis. In [26], D. Lazari et al. sug-
gested that described disturbances in the association between cytoskeleton and membrane
affect deformation more than aggregation, thereby reducing the correlation between both
processes. It is unknown whether the membrane phospholipids are affected directly during
these complicated processes, and how the membrane fluidity and its viscoelastic properties
are affected. Several computational studies of the RBC membrane, such as J. Gounley and Y.
Peng, 2015 [30] and D.A. Fedosov et al. 2018 [31] propose that corresponding interrelation
mechanisms are possible. From this viewpoint, experimental techniques for measuring
membrane fluidity are required to study these processes in detail.

Many new methods, especially utilizing rapidly developing microfluidic technologies,
are being presented nowadays to assess the parameters of RBC aggregation and defor-
mation [32–34]. However, the problem of characterizing the RBC membrane during the
measurements is out of scope in most modern techniques. Membrane microscopic viscosity
(microviscosity) can be proposed as a diagnostic parameter of RBC membrane stability and
integrity. Cellular membrane microviscosity was found to be sensitive to the early stages
of several pathologies. Microviscosity was used as a parameter in modern oncology to
predict possible malignization of the tumor cells [35] or to characterize the response and
resistance of cancer cells to chemical therapy [36]. Changes in membrane microviscosity
were used to track the effects of oxidative stress and assess neuroprotection activity in
neuronal cells [37]. Several techniques allow measuring membrane microviscosity: Raman
spectroscopy, which quantifies the gauche/trans conformational ratio of fatty acids [38];
electron spin resonance spectroscopy, which utilizes reporter molecules sensitive to the
microenvironment (spin probes) [39]; fluorescence recovery after photobleaching [40]. The
aim of the present study was to assess RBC membrane fluidity microviscosity by measur-
ing the time-resolved fluorescence anisotropy of the non-specific lipophilic probe PKH26
bounded by the erythrocyte membrane. To verify the obtained results, we performed the
measurements of temperature-dependence of microviscosity of model egg yolk lecithin
liposomes, labeled with the same fluorescent probe. The obtained results allowed us to
propose the developed fluorescence assay as a novel tool for measuring membrane phys-
iological intactness, which can be used in clinical applications to study RBC membrane
properties at hemorheological disorders.

2. Results
2.1. Laser Confocal Microscopy Measurements of RBC, Stained with PKH26 Fluorescent Probe

In the present work, we used PKH26, which is a highly fluorescent, non-specific
lipophilic long-chain carbocyanine dye used to stain artificial and biological membranes [41].
Aliphatic tails of PKH26 molecules (the chemical structure is presented in Figure 1) allow
to rapidly incorporate into the exposed lipid bilayer, establishing non-covalent interac-
tions [42].

First, we implemented conventional confocal microscopy of the RBCs, stained with
PKH26, to prove the binding of PKH26 by the RBC membrane. Staining of RBCs for the
confocal microscopy was performed using the protocol implemented in [43]. The total
concentration of PKH26 during the staining was 2 µM. The representative transmitted light
microscopic image and corresponding laser confocal microscopy image of the RBCs stained
with PKH26 are presented in Figure 2.
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Figure 2. Transmission and confocal fluorescent microscopy imaging of RBCs stained by lipophilic
fluorescence dye PKH26; (A) transmitted light image; (B) laser confocal image (λexc = 532 nm;
λdet = 567 nm).

2.2. Measurements of Time-Resolved Fluorescence of PKH26 Probe Bounded by RBC

PKH26 absorption and emission spectra are shown in Figure 1. One can observe the
significant overlap between the absorption and emission spectra of PKH26. It means that
in the case of the close proximity of probe molecules, which can be achieved at a high
concentration of PKH26, numerous non-radiative transfers driven by the FRET mechanism
would take place affecting anisotropy decay. Aggregation and oligomerization of PKH26
molecules, which is also possible at a high concentration of the probe, may result in static
quenching of the detected fluorescence. In this case, it would require longer exposition or
higher irradiation power to observe comparable levels of fluorescence intensity. Thus, the
choice of PKH26 concentration should be thoroughly adjusted.

Time-resolved fluorescence measurements required for the fluorescence anisotropy
assessment were performed using a custom-built set-up utilizing an experimental cuvette
containing 1 mL of blood suspension in PBS at 0.1% hematocrit. In accordance with
the time-resolved fluorescence anisotropy measuring technique (details are provided in
Section 4.5), total fluorescence intensity decay curves I(t) of PKH26-labeled RBC samples
were measured at different PKH26 concentrations. The obtained fluorescence decay curves
I(t) were approximated with the double-exponential decay function. The mean amplitude-
weighted lifetime (τmean) was calculated as follows:

τmean =
A1τ1 + A2τ2

A1 + A2
. (1)
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A1, τ1, A2, τ2 are the corresponding parameters of the double-exponential function approxi-
mation of the total fluorescence intensity.

The results of the measurements of the time-resolved total fluorescence intensity of the
PKH26 concentration in the range of 10 to 50 nM are presented in Figure 3. The analysis
of fluorescence decays at 20 nM and 40 nM PKH26 concentrations (Figure 3A) revealed a
significant redistribution between the amplitudes of fast and slow decay components with
the decay becoming faster at higher PKH26 concentrations. The role of the concentration-
dependent effect on τmean is demonstrated in Figure 3B: the PKH26 concentration in RBC
suspension increased, τmean monotonously decreased from 486 ± 12 ps (at [PKH26] = 10 nM)
to 445± 11 ps (at [PKH26] = 25 nM) with a rapid reduction to 360± 20 ps at [PKH26] = 30 nM.
Therefore, the usage of a high PKH26 concentration would lead to inevitable alterations in the
corresponding anisotropy decay. Considering this, we proposed 20 nM as the optimum for the
PKH26 concentration for fluorescence anisotropy measurements. Since concentration-driven
effects influence fluorescence anisotropy as well, regardless of the membrane type, we suggest
using the same PKH26 concentration for studying either RBC samples or liposomes.
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Figure 3. Time-resolved fluorescence measurements of RBC, labeled with PKH26 lipophilic dye at
different concentrations: (A)—normalized on the maximum total fluorescence intensity decay curves;
(B)—mean amplitude-weighted fluorescence lifetime (τmean) values. Amplitudes A1 and A2 were
obtained by approximation of the curves with a double-exponential decay function. Dashed line
represents approximation with a sigmoid function.

Additionally, at a 20 nM concentration of PKH26, fluorescence in the sample of the
stained RBCs significantly exceeds the signal of non-labeled intact RBCs, which are consid-
ered to originate from hemoglobin photoproducts [44]. Supplementary Figure S1 demon-
strates the fluorescence decay curves of PKH26-stained RBCs (black curve) and non-labeled
intact RBCs (green curve) showing the difference between intrinsic RBC fluorescence and
PKH26 fluorescence bounded by the cellular membrane.

2.3. Anisotropy Decay of PKH26 Fluorescent Probe within the Membranes of RBCs and Egg Yolk
Lecithin Liposomes at Different Temperatures

Figure 4 demonstrates anisotropy decay curves r(t) of PKH26 in membranes of RBCs
(Figure 4A) and egg yolk lecithin liposomes (Figure 4B) at different temperatures measured at
a PKH26 concentration of 20 nM. One can observe complex biphasic kinetics of anisotropy
decay. A qualitative analysis of these curves allowed us to distinguish two regions on the time
scale: the initial region (<1 ns) and the remaining one (>1 ns). The initial region was very fast
and almost did not change with the temperature. In the case of PKH26-labeled RBCs, at high
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temperatures (42 ◦C), during the first 500 ps, anisotropy decreased to a lesser degree than at
lower temperatures. Such behavior might be explained by the fact that the permeability of the
RBC membranes with PKH26 molecules was more effective at higher temperatures. Whereas,
anisotropy of the PKH26 probe embedded into egg yolk lecithin liposome membranes in this
initial region was not temperature-dependent to the same extent.
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Figure 4. Anisotropy decay curves r(t) of lipophilic fluorescence dye PKH26 in membranes of
(A) red blood cells; (B) egg yolk lecithin liposomes, measured at different temperatures.
[PKH26] = 20 nM. Black and orange lines represent the applications of associated decay approaches for
anisotropy decay fitting.

The behavior of anisotropy decay in the remaining region (>1 ns) was temperature-
dependent for both RBCs and egg yolk lecithin liposomes. It is clearly seen that as the
temperature increased, the relaxation time of the anisotropy decay in this region decreased.
It means that the rotational diffusions of the PKH26 molecules were significantly affected
since the membrane microviscosity decreased. The changes in the >1 ns region were more
pronounced in the RBCs than in the egg yolk lecithin liposomes.

The associated decay approach (Equation (5)) was implemented to fit anisotropy
decay curves of PKH26 in the membranes of RBCs and egg yolk lecithin liposomes at
different temperatures (Figure 4) to characterize the curves. As a result, we obtained
values of multiple correlation times, θ1 and θ2 (Table 1), which correspond to the bipha-
sic profile of measured anisotropy decay curves, and originated from the occurrence of
two fractions of PKH26 molecules during the measurements, θ1 << θ2, and, thus, can be
related to the rotational diffusion of the free unbounded PKH26 molecules fraction. The
anisotropy decay in the initial region was fast because the rotational movements of free
PKH26 molecules in the solution were fast enough even at low temperatures. That is the
reason why the temperature dependence of θ1 was not observed. The correlation time
θ2 corresponded to the fitting of anisotropy curves in the >1 ns region, and the temper-
ature dependence was clearly pronounced (the corresponding graphs are presented in
Supplementary Figure S2A). Based on these results, we can suggest that θ2 corresponds to
the rotational diffusion of the membrane-bounded PKH26 molecule fraction and, thus, can



Int. J. Mol. Sci. 2022, 23, 15767 7 of 14

be used to determine RBC membrane microviscosity. Assuming the PKH26 fluorescent
probe rotation size of approximately 2–3 Å from the estimations of the distance between the
heterocycles in carbocyanine dyes [45], and inserting the experimentally obtained values
of θ2 considered as the membrane-bounded fraction correlation time into Equation (2),
the membrane microviscosity (ηm) was estimated for membranes of RBCs and egg yolk
lecithin liposomes at different temperatures. The values are presented in Table 1, and are
also illustrated in Supplementary Figure S2B.

Table 1. Correlation times θ1 and θ2, and membrane microviscosity (ηm) of RBCs and egg yolk lecithin
liposomes assessed at different temperatures by studying the anisotropy of PKH26 fluorescence.
Anisotropy curves were analyzed by the associated decay approach; θ1 corresponds to the rotational
diffusion of free unbound PKH26, θ2 corresponds to the rotational diffusion of membrane-bounded
PKH26 molecules.

Temperature °C 5 10 24 30 36 42

RBC
θ1 (ns) 0.13 ± 0.03 0.14 ± 0.04 0.14 ± 0.03 0.11 ± 0.03 0.11 ± 0.04 0.16 ± 0.04
θ2 (ns) 8.5 ± 1.3 6.0 ± 0.8 4.3 ± 0.5 1.7 ± 0.4 1.5 ± 0.4 1.7 ± 0.3
ηm (cP) 490 ± 140 350 ± 110 310 ± 90 110 ± 30 97 ± 29 94 ± 28

Egg lecithin liposome
θ1 (ns) 0.15 ± 0.02 0.16 ± 0.02 0.16 ± 0.03 0.17 ± 0.02 0.16 ± 0.02 0.17 ± 0.05
θ2 (ns) 46 ± 7 35 ± 5 25 ± 3 11 ± 3 8 ± 2 6 ± 2
ηm (cP) 2740 ± 420 2110 ± 290 1610 ± 180 690 ± 190 560 ± 150 450 ± 150

3. Discussion

The non-specific nature of PKH26 interaction with membranes governed the consti-
tution of two populations of PKH26 probes with different rotational diffusion properties
resulting in the complex biphasic profile of anisotropy decay curves (Figure 4). The oc-
currence of these two populations of the same single probe can be generally driven by
several mechanisms. One possible mechanism suggests that different PKH26 molecules
are bounded by different sites on the membrane. Another mechanism suggests that these
fractions can be described as free-unbounded, and membrane-bounded PKH26 molecules.
This case seems preferable since the initial region time θ1 is very short and, thus, reflects
the fast rotation of the free unbound molecule in the solution.

The usage of liposomes in the present study confirmed this mechanism of multi-
ple correlation times, θ1 and θ2. The membrane microviscosity of fresh egg yolk lecithin
liposomes was higher than the microviscosity of RBC membranes and slightly higher
(Table 1 and Supplementary Figure S2) than the membrane fluidity microviscosity of typ-
ical lecithin liposomes [46]. We previously obtained similar results of high membrane
microviscosity of fresh egg yolk lecithin-made liposomes in comparison with liposomes
prepared from different phospholipids [47]. Such a result can be explained by the abun-
dance of additional components, which, along with phosphatidylcholine (80.5%) and
phosphatidylethanolamine (11.7%) as main constituents, are presented in fresh egg yolk
lecithin, and include cholesterol, lysophosphatidylcholine, sphingomyelin, and several
minor neutral lipids [48]. Moreover, membrane microviscosity, which is measured by the
rotational diffusion parameters of the probe, significantly depends on the depth of the
localization of the probe within the bilipid layer, and generally needs to be determined [49].
It means that, in the case of a non-specific fluorescent probe, molecular dynamics simula-
tions are required to characterize its localization within the membrane in order to increase
the precision of the microviscosity assessment. The ratio between fractions of free (char-
acterized with θ1) and membrane-bounded (characterized with θ2) PKH26 molecules is
defined by the quality of the staining procedure. The staining should be more stable at high
concentrations of PKH26 in the range of 2–4 µM, as postulated in the staining protocols,
and is suitable for conventional fluorescence confocal microscopy. However, such large
concentrations would lead to inevitable alterations in the fluorescence parameters due to
possible self-quenching mechanisms, significantly complicating the correct interpretation of
the experimental data on anisotropy decay. Overpassing this obstacle would demand either
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higher irradiation power or longer irradiation exposition during the measurements, which,
in the cases of living cell studies, can be unacceptable due to possible phototoxic manifesta-
tions. Another limitation of the study is that it greatly depends on the optimal conditions
for the fluorescent measurements of a particular fluorescent probe. PKH26, which was at
our disposal, is a very common fluorescent probe that finds its application in many areas,
including labeling RBCs for hematological studies. However, its application for measuring
membrane fluidity by fluorescent anisotropy is complicated with the difficulties in the
definition of its sizes and peculiarities of its interactions with the phospholipid membrane.
More studies involving different probes, including molecular rotors, are needed to establish
criteria for an optimal choice of the fluorescent probe.

The data presented in Table 1 correspond to the RBC membrane microviscosity re-
lated to the fluidity of membrane phospholipids. Considering the instrumental error, the
obtained values of RBC membrane microviscosity were found to be of the same order of
magnitude according to the data available in the literature. In [50], it was demonstrated
that the enrichment of RBC membrane with cholesterol affects phospholipid fluidity, re-
sulting in a significant increase in the RBC membrane microviscosity in the range from
100 to 600 cP, depending on the temperature. This result was achieved by assessing the
rotational diffusion of the diphenylhexatriene (DPH) probe, and our experimental results,
obtained by measuring time-resolved fluorescence anisotropy of the PKH26 probe, are
in good agreement. RBC membrane fluidity viscosity was also measured using electron
paramagnetic resonance (EPR) spectroscopy [51,52].

Membrane microviscosity may significantly vary for different cells depending on
their physiology and functionality. For example, the microviscosity of the membranes
of epithelium cells or human colorectal carcinoma cells was assessed by FLIM using the
molecular BODIPY-based rotor and was estimated in the range of 400–500 cP, depending
on the type of the implemented chemotherapy [53]. The fluidity of phospholipids of RBC
membranes was found to be higher, which can be related to the necessity of erythrocytes in
supporting the optimal rheological conditions for the blood flow.

4. Materials and Methods
4.1. Blood Sampling and RBC Extraction

A volume of 10 µL of blood from a single healthy male donor was sampled by the
finger-prick method using a sterile lancet and placed into 1 mL of phosphate-buffered saline
(PBS, pH 7.4 1×, Gibco). The obtained suspension was centrifuged (Eppendorf MiniSpin,
Hamburg, Germany) at 3000 rpm for 1.5 min to sediment RBC. After the sedimentation,
RBCs were extracted and washed three times in PBS (3000 rpm, 3 min). All manipulations
with blood were performed in accordance with the general guidelines for hemorheological
laboratory techniques [54].

4.2. Liposomes Synthesis

Liposomes were synthesized from fresh egg yolk lecithin (20 mg of lecithin was dis-
solved in 1 mL of chloroform) using the protocol described in [55] with minor modifications
using the freeze–thaw extrusion method. The obtained suspension contained liposomes
with a mean diameter of 100 ± 10 nm (as assessed by dynamic light scattering technique
using Zetasizer Nano ZS (Malvern Instruments, Ltd., Malvern, Great Britain)).

Egg yolk lecithin liposomes were used as the model membrane object to establish the
mechanisms of the complex shape of anisotropic decay r(t) curves (Figure 4). Liposomes
were studied under exactly the same conditions as RBCs, except that their concentrations were
10 times higher since the liposomal mean diameter was significantly less than that of RBCs.

4.3. Confocal Microscopy

The confocal microscopy imaging was performed using an Eclipse Ti-E microscope
with confocal module A1 (Nikon Corporation, Tokyo, Japan) with a 532 nm excitation and
detection at 567 nm.
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4.4. Time-Resolved Fluorescence Anisotropy, Absorption, and Emission
Spectroscopy Measurements

To assess fluorescence anisotropy, the corresponding fluorescence decay curves with
picosecond time resolutions were collected by a time-correlated single photon counting
(TCSPC) custom-built set-up comprised of a single photon counting module SPC-130EM
paired with a hybrid detector HMP-100-40, with the power supply controlled by DCC-
100 (all made by Becker&Hickl, Berlin, Germany). The sample excitation was performed
with vertically polarized light at 510 nm using a picosecond laser (InTop, St.-Petersburg,
Russia) with a 26 ps pulse duration driven at a repetition rate of up to 25 MHz. A long-
pass filter with a 550 nm wavelength (FEL0550, Thorlabs, Newton, NJ, USA) was used
to cut off the excitation signal. We thoroughly adjusted all optomechanical blocks in our
experimental set-up to avoid the impact of light scattering on the detection. Detection
was performed at 590 nm using monochromator ML-44 (Solar Laser Systems, Minks,
Belarus). The polarization was adjusted by ultra-broadband wire-grid polarizers (WP25M-
UB, Thorlabs, Newton, NJ, USA). The volume of the experimental sample in the cuvette
was 1 mL. All measurements were performed in a temperature-control cuvette holder Qpod
2e with magnet-based stirring (Quantum Northwest, Liberty Lake, WA, USA).

Absorption and emission spectra measurements were performed using the Flame UV-
VIS spectrometer (Ocean Insight, Orlando, FL, USA). Absorption spectra measurements
involved illumination using a fiber-coupled white light source SLS201L/M (Thorlabs,
Newton, NJ, USA).

4.5. Assessment of Microviscosity Using Time-Resolved Fluorescence Anisotropy

PKH26 (PKH26 Red Fluorescent Cell Linker Kit PKH26GL, Sigma Aldrich, Merck,
Darmstadt, Germany) was used as a fluorescent probe to measure the membrane micro-
viscosity of RBCs and egg yolk lecithin liposomes. The stock solution of the fluorescent
probe PKH26 was diluted with PBS to achieve the desired concentrations and was put into
the experimental cuvette in 1 mL volume. Prior to measurements, 1 µL of washed RBCs
(to achieve 0.1% hematocrit) or 30 µL of egg yolk lecithin liposome solution (to achieve
0.6 mg/mL lipid-based concentration) were added directly to the experimental cuvette
with PKH26-solution, incubated for 15 min at 20 ◦C and then measured.

Membrane microviscosity ηm was measured by assessing time-resolved anisotropy of the
fluorescence of PKH26, docked in membranes of RBC or liposomes, using equations [56–58]:

ηm =
θ × 3KBT

4πR3 , (2)

where θ—rotational correlation time, KB—Boltzmann constant, T—temperature, and R—
size of the fluorescent probe.

The rotational correlation time θ can be obtained from the analysis of the anisotropy
decay curve r(t). The physical principle describing the connections between θ and ηm is
illustrated in Supplementary Figure S3. When the sample in the cuvette is irradiated with
polarized light (in our set-up vertical polarization was used), the occurring fluorescence
includes light originating from photo-selected chromophores (which dipoles coincide
(correlate) with the polarization plane of the incident light and, thus, the emission is
also vertically polarized) and non-polarized emission, originating from chromophores,
in which the dipole is not correlated with the polarization of the incident light due to
rotational diffusion. Fluorescence originating from photo-selected oriented chromophores
I||(t) is detected by the vertically positioned polarizer located in front of the detector. The
fluorescence originating from non-photo-selected chromophores I⊥(t) is detected by the
horizontally positioned polarizer in front of the detector. Anisotropy decay r(t) is calculated
by confronting fluorescence decay curves I||(t) and I⊥(t) is in accordance with the formula:

r(t) =
I||(t)− GI⊥(t)

I||(t) + 2GI⊥(t)
, (3)
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and describes the process of the depolarization of the emitted fluorescence, i.e., the tran-
sition of photo-selected chromophores from the ordered to the randomized state due to
rotational diffusion, G—the factor of the difference in the detection sensitivity to vertical
and horizontal light polarization. Total fluorescence intensity is calculated as a sum of I||(t)
and I⊥(t):

I(t) = I||(t) + 2GI⊥(t). (4)

The characteristic time of anisotropy decay r(t) is called the rotational correlation
time θ. Since rotational diffusion depends on the microviscosity, the anisotropy decay
strongly depends on the viscosity of the environment, in which the chromophores are
located. It means that the characteristic time of anisotropy decay describes how fast the
process of depolarization is, or, in other words, the velocity of the rotational movements of
the molecule.

Estimation of the rotational correlation time is performed by fitting r(t) with the
multi-exponent decay function. In the case of a complex configuration of chromophores
fractions (observed in our study (Figure 4) when a single chromophore was in a different
environment and, thus, performed different rotational motions), multiple correlation times
are possible. In this way, the anisotropy decay can be fitted using the associated decay
approach [59–61]. For two distant fractions of chromophores, the associated decay formula
will be:

r̃(t) =
Ã1e

− t
τ̃1 r01e−

t
θ1 + Ã2e−

t
τ̃2 r02e−

t
θ2

Ã1e
− t

τ̃1 + Ã2e−
t

τ̃2

, (5)

where the fitting parameters τ̃1, τ̃2, Ã1, Ã2 describe the fluorescent lifetime properties of each
fraction, and r01, r02 describe the steady-state anisotropy corresponding to each fraction.
The parameters of the total fluorescence intensity decay I(t) approximation, provided in
Equation (1), can be used as rough estimations of the corresponding fitting parameters
for the associated decay approach. All of these parameters are sorted to establish the best
quality of the fitting of the experimentally measured anisotropy decay. The control of the
quality of the approximation was based on the minimum of the reduced χ2 and tracking the
coefficient of determination (COD), which was controlled by the proximity of R2 to 1 during
the fitting. Thus, the obtained correlation times, θ1 and θ2, describe the rotational diffusion
of a single type of chromophore in two different environments. In order to evaluate the
microviscosity of each environment, one should use the corresponding correlation time
with subsequent calculations using Equation (2).

Figure 5 demonstrates, in detail, the implementation of the associated decay approach
to analyze anisotropy decay of the fluorescence of the PKH26 probe in the RBC membrane
(red curve) and egg yolk lecithin liposomes membrane (blue curve) at the same PKH26
concentration (20 nM), at 36 ◦C. The anisotropy decay curve of the fast freely-rotating
PKH26 in PBS (black curve) was characterized by the double-exponential decay approxi-
mation. The initial (<1 ns on the time scale) region’s correlation time, θ1, was very short
and did not change significantly between samples and, thus, corresponded to free rotations
of unbound molecules of the probe. The remaining (>1 ns) region was characterized by a
longer correlation time, θ2, which in RBC and the liposomes was in the nanoseconds range
and, thus, was considered to correspond to the rotations of membrane-bounded PKH26
molecules. Comparing RBCs and egg yolk lecithin liposomes, θ2 was higher in liposomes
than in RBC, demonstrating that egg yolk lecithin liposomal membranes were more viscous
than RBC membranes.
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5. Conclusions

Among other techniques to measure microviscosity, time-resolved fluorescence anisotropy
has its own advantages, such as an opportunity to study samples dissolved in an aqueous
environment. Since blood is a unique type of tissue, which is constantly flowing, RBCs are
the most abundant fractions of blood cells, and their biomechanical and microrheological
properties determine microcirculation, the task of assessing the microviscosity of erythrocyte
membranes is of significant interest; as our study shows, blood cell suspension can be assessed
by time-resolved anisotropy methods. Deformability and aggregation of RBCs are extremely
important integral microrheological parameters since they have high impacts on the viscosity
of the whole blood [13,16,62]. RBC deformability and aggregation depend on the properties of
the cellular membrane. It was demonstrated [63] that the fixation of RBCs with glutaraldehyde
led to a significant decrease in RBC deformability accompanied by an increase in the effective
viscosity of the lipid membrane. The authors suggested it as a dominant factor dictating
the dynamic responses of RBCs in pressure-driven flows. From this viewpoint, membrane
microviscosity can be considered an indicative parameter of RBC membrane stability and
integrity and, therefore, a novel microrheological parameter of the blood. Further studies of
RBC membrane microviscosity of various diseases and under the effects of different agents
are necessary to determine its contribution and sensitivity to the pathologies of the blood’s
rheological behavior regulation.

The time-resolved fluorescence anisotropy technique allows for measuring the mi-
croviscosity of RBC membranes labeled with a fluorescent probe. However, to support
the high quality of the obtained results, the probe should satisfy several criteria, namely,
absorption and emission properties should support the minimal probability of the ex-
cited state annihilation and self-quenching mechanisms; and the lipophilic character of
the interaction with membranes should ensure stable and sustainable labeling. Fulfilling
these conditions would allow to significantly increase the accuracy of the time-resolved
fluorescence technique, which might open up new potentialities of applications of such
methods in clinical hematology to study blood cell membrane alterations that accompany
various socially important diseases.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/ijms232415767/s1.
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