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Abstract: Novel sulfur and selenium substituted 5′,5′-linked dinucleoside pyrophate analogues were
prepared in a vibration ball mill from the corresponding persilylated monophosphate. The chemical
hydrolysis of pyrophosphorochalcogenolate-linked dimers was studied over a wide pH-range. The ef-
fect of the chalcogeno-substitution on the reactivity of dinucleoside pyrophosphates was surprisingly
modest, and the chemical stability is promising considering the potential therapeutic or diagnostic
applications. The chemical stability of the precursor phosphorochalcogenolate monoesters was also
investigated. Hydrolytic desilylation of these materials was effected in aqueous buffer at pH 3, 7 or 11
and resulted in phosphorus-chalcogen bond scission which was monitored using 31P NMR. The rate
of dephosphorylation was dependent upon both the nature of the chalcogen and the pH. The integrity
of the P-S bond in the corresponding phosphorothiolate was maintained at high pH but rapidly
degraded at pH 3. In contrast, P-Se bond cleavage of the phosphoroselenolate monoester was rapid
and the rate increased with alkalinity. The results obtained in kinetic experiments provide insight
on the reactivity of the novel pyrophosphates studied as well as of other types of thiosubstituted
biological phosphates. At the same time, these results also provide evidence for possible formation of
unexpectedly reactive intermediates as the chalcogen-substituted analogues are metabolised.

Keywords: hydrolysis; kinetics; nucleotide analogues; pyrophosphate; capillary zone electrophoresis;
mechanochemistry; Michaelis-Arbuzov; 31P NMR

1. Introduction

Stimuli-responsive drug delivery systems are well established in the treatment of
cancer following the observation that selective uptake of haematoporphyrin (via LDL-
derived nanoparticles) into malignant tissue subsequently enabled effective photodynamic
therapy in the early 20th century [1]. Side effects associated with the cytotoxicity of such
drugs can be ameliorated by covalently linking the API to a tumour-selective targeting
moiety such as an antibody [2], aptamer [3], oligopeptides [4] or small molecules [5–7].

The nature of the linkages will often be engineered both to alter the solubility of
the conjugate and to enable highly localised release of the payload upon interaction with
the special pathophysiological conditions of the tumour microenvironment [8]. Recently,
enzyme-sensitive conjugates have been described in which phosphate, pyrophosphate or
triphosphate moieties (Figure 1A) have been employed as linkers between tumour-specific
antibodies and glucocorticoid receptor agonists [9,10] or a proteolysis targeting chimera [11]
which enhance their aqueous solubility and liberate their cargo following the action of
intracellular, endosomal pyrophosphatases. In contrast, differences between extracellular
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enzymatic phosphate monoesterase activities in neoplastic and healthy tissue has also been
exploited in the application of the well-established adjuvant amifostine as a radioprotec-
tant [12]. More recently, organoselenium compounds such as 3,3′-diselenodipropionic acid
(DSePA) have also been reported to act as radioprotectants [13]. However, both the phospho-
rothiolate monoester group in amifostine and the diselenide function in DSePA can be sen-
sitive towards chemical modification outside of that desired for their therapeutic activities.
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have the potential to provide a method for delivering therapeutic thiol and selenol func-
tions which could be metabolically unmasked following pyrophosphatase cleavage. 

Understanding the scope for biochemical unmasking of nucleoside chalcogen phar-
macophores either following endocytosis or via the action of extracellular enzymes such 
as tissue non-specific alkaline phosphatase (TNAP) or ecto-nucleotide pyrophosphatase 
/phosphodiesterases (ENPP’s) [19] is limited by the lack of data relating to the chemical 
hydrolysis rates of sulfur- or selenium-substituted pyrophosphates or phosphate monoes-
ters at different pH values. Despite their ubiquity during enzymatic selenisation of bio-
molecules [20,21], phosphoroselenolate monoesters are challenging targets for chemical 
synthesis with very limited precedent [22,23]. In contrast, the corresponding silyl ethers 
are known to be relatively stable [23,24]. Likewise, we demonstrated that persilylated 
phosphorothiolate monoester derivatives of nucleosides were found to be stable for a 
week at ambient temperature under anhydrous conditions and could be efficiently ac-
cessed via Michael-Arbuzov chemistry [14]. Such chemistry therefore provides access to 
relatively stable and pure materials which can readily be hydrolysed to the labile corre-
sponding chalcogenate monoesters under controlled conditions and in the current report 
we have exploited this reactivity to examine the labilities of 5′-thionucleoside and 5′-de-
oxy-5′-selenonucleoside monophosphate analogues under different pH conditions. Fur-
thermore, in the presence of sub-stoichiometric quantities of water, these intermediates 
undergo phosphate coupling in a ball mill and have thereby enabled the preparation of 
unprecedented pyrophosphorothiolate or pyrophosphoroselonolate-linked dinucleo-
sides. We show that these have considerably higher chemical resilience towards acid pH 
than the corresponding monoesters and may thereby provide a mechanism for delivering 
water-soluble masked chalcogenonucleosides.  

The reactivity of nucleoside 5′-monophosphorochalcogenolates and pyrophosphoro-
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It is well known that while phosphorothioate-linked RNA model compounds are chemi-
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Recently, we [14,15] and others [16] have described the synthesis of pyrophosphorothiolate-
linked dinucleotide cap analogues which are considerably more resilient towards chemical
hydrolysis than the corresponding monoesters, especially at acidic or neutral pH [14,17,18].
Such linkages (and the related pyrophosphoroselenolates) thus have the potential to provide
a method for delivering therapeutic thiol and selenol functions which could be metabolically
unmasked following pyrophosphatase cleavage.

Understanding the scope for biochemical unmasking of nucleoside chalcogen phar-
macophores either following endocytosis or via the action of extracellular enzymes such
as tissue non-specific alkaline phosphatase (TNAP) or ecto-nucleotide pyrophosphatase
/phosphodiesterases (ENPP’s) [19] is limited by the lack of data relating to the chemical
hydrolysis rates of sulfur- or selenium-substituted pyrophosphates or phosphate mo-
noesters at different pH values. Despite their ubiquity during enzymatic selenisation of
biomolecules [20,21], phosphoroselenolate monoesters are challenging targets for chemical
synthesis with very limited precedent [22,23]. In contrast, the corresponding silyl ethers
are known to be relatively stable [23,24]. Likewise, we demonstrated that persilylated
phosphorothiolate monoester derivatives of nucleosides were found to be stable for a week
at ambient temperature under anhydrous conditions and could be efficiently accessed via
Michael-Arbuzov chemistry [14]. Such chemistry therefore provides access to relatively
stable and pure materials which can readily be hydrolysed to the labile corresponding
chalcogenate monoesters under controlled conditions and in the current report we have
exploited this reactivity to examine the labilities of 5′-thionucleoside and 5′-deoxy-5′-
selenonucleoside monophosphate analogues under different pH conditions. Furthermore,
in the presence of sub-stoichiometric quantities of water, these intermediates undergo phos-
phate coupling in a ball mill and have thereby enabled the preparation of unprecedented
pyrophosphorothiolate or pyrophosphoroselonolate-linked dinucleosides. We show that
these have considerably higher chemical resilience towards acid pH than the corresponding
monoesters and may thereby provide a mechanism for delivering water-soluble masked
chalcogenonucleosides.

The reactivity of nucleoside 5′-monophosphorochalcogenolates and pyrophosphorochalcogenolate-
linked dinucleosides is interesting also from a mechanistic point of view. It is well known
that while phosphorothioate-linked RNA model compounds are chemically approximately
as reactive as corresponding phosphate linked compounds [25,26], a phosphorothiolate
linkage is significantly more reactive [27–31]. Substitution of bridging oxygen atoms in
RNA model dimers results in up to a 105-fold rate enhancement following substitution of
the leaving group 5′-oxygen [27,28]. The effect of substituting a 3′-oxygen is more modest,
but not insignificant [29–31]. The magnitude of the effects depends on the conditions
and the properties of the nucleophile and leaving group. Studies on the reactivity of
pyrophosphates such as 1a–b, 2a–b and 3 (Figure 2), their decomposition products and
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monophosphates 4a–b offer the possibility to further evaluate the factors that influence the
reactivity of different types of chalcogen-substituted nucleotide analogues.
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2. Results
2.1. Synthesis of Pyrophosphorochalcogenolate-Linked Dinucleosides

Previously, we described the application of liquid assisted grinding (LAG) in a vibra-
tion ball-mill for the construction of 5′,5′- (1a) and 3′,5′- (3) pyrophosphorothiolate linked
dinucleosides from the corresponding persilylated 5′- or 3′-thionucleoside phosphoroth-
iolate monoesters, respectively [14]. This procedure was adapted to the synthesis of the
novel 5′,5′-pyrophosphoroselenolate linked dimers dASeppA (1b) and dTSeppA (2b) as
well the corresponding sulfur-substituted analogue dTSppA (2a)—Scheme 1.
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Scheme 1. Synthesis of 5′,5′-pyrophosphorochalcogenolate-linked dinucleosides dASeppA (1b), dTSppA
(2a) and dTSeppA (2b). Reagents and conditions. (i) (TMSO)3P, N,O-bis(trimethylsilyl)acetamide,
CDCl3; (ii) (a) 8, tetrazole, MgCl2.6H2O, H2O, LAG, 30 Hz. 90 min, (b) H2O, CH3OH. Key.
Base’: Ade; Y′: OTMS (from 6) or Base’: ThyO4TMS; Y′: H (from 7a, 7b). MDCC = N,N′-
dicyclohexylcarboxamidinium; NPyS = 5-nitropyridine-2-sulfenyl.

In a typical reaction, a solution of 5′-deoxythymidine-5′-selenocyanate (7b) [32] in
4:1 chloroform:N,O-bis(trimethylsilyl)acetamide (BSA) was treated with a solution of
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tris(trimethylsilyl)phosphite (1.1 equiv) in the same solvent. This Michaelis-Arbuzov (MA)
reaction mixture was stored overnight at room temperature following which 31P NMR
analysis showed complete reaction to essentially a single peak at δ −7.8 ppm accompanied
by satellite peaks associated with 77Se coupling (1JPSe = 439 Hz) (Figure 3). These values are
consistent with those reported by Borecka et al., for (TMSO)2P(O)SeMe (δP −7 ppm; 1JPSe
= 472 Hz) [23] and follows the trend observed with silylation of phosphorothiolate esters
which results in upfield chemical shifts of ca. 12–15 ppm compared with the corresponding
unsilylated congener. As observed with the phosphorothiolate monoesters, the presence
of excess BSA in solutions of nucleoside phosphoroselenolate monoesters enabled these
materials to be stored under anhydrous conditions with minimal degradation over 24 h.
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Figure 3. 31P{1H} NMR spectra of crude reaction mixture of 1.1 equiv. (TMSO)3P (δP 113.5 ppm)
with 5′-deoxythymidine-5′-selenocyanate (7b) in 4:1 CHCl3:BSA after 18 h at room temperature (for
conditions, see Supplementary Materials).

The MA reaction mixtures were subsequently transferred to zirconia-lined vessels, the
volatiles removed in vacuo and argon was used to equilibrate to atmospheric pressure. In
quick succession, acid promoters, water and adenosine 5′-phosphoromorpholidate were
added followed by a single zirconia ball to each vessel which was sealed. The vessels
were vibrated at 30 Hz for 90 min and allowed to cool to room temperature. Silyl ether
functions were cleaved and crude reaction mixtures removed from the vessel as suspensions
following washing with water and methanol. The solutions were filtered and immediately
analysed by 31P NMR (e.g., Figure 4A). Gratifyingly, we observed a new doublet with
77Se satellites at δ~−3 ppm accompanied by a doublet at δ~−12 ppm corresponding to
the β- and α-phosphoryl groups (of dTSeppA), respectively. A minor peak at δ~7.5 ppm
assigned to unconsumed 5′-dTSeMP (4b) was found to rapidly disappear upon storage
and no related resonance associated with 5′-dASeMP was observed during the synthesis
of dASeppA. As found during coupling of the phosphoromorpholidate 8 (AMP-M) with
phosphorothiolate monoesters [14], several side products were evident including unreacted
8 (δ 7.0 ppm), AMP (δ~0 ppm), Ap2A (δ −11.7 ppm) and the two diastereoisomers of a
homocoupled pyrophosphoromorpholidate product Ap(M)pA (δ~−2 ppm and δ~−12 ppm).
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Figure 4. (A) 31P{1H} NMR of crude ball mill reaction mixture of dTSeppA (2b); and (B) 31P{1H} and
(inset) 77Se NMR of 2b following purification and desalting.

The solutions were reduced in vacuo and then purified using reversed-phase chro-
matography. The selenium analogues were found to be more hydrophobic than the cor-
responding thiolates and in order to separate 1b or 2b from Ap(M)pA, a gradient using
ion pair buffers was employed. During subsequent desalting, the pure materials remained
stable during multiple rounds of coevaporation using water. 31P NMR analysis of dTSeppA
(Figure 4B) showed two doublets (2JPP 32 Hz) at δ −3.3 ppm (Pβ) and −12.1 ppm (Pα).
The 77Se satellites derived from Pα-Se coupling (1JPSe 415 Hz) appears intermediate be-
tween that observed for internucleotide phosphoroselenolate diesters (ca. 390 Hz) and that
observed with triesters (ca. 490 Hz).

2.2. Stability of Pyrophorophorochalcogenate-Linked Dinucleosides

Reactions of pyrophosphates dASppA (1a) and 3′,5′-dTSppA (3) were studied at 90 ◦C.
Samples taken from reaction solutions were analysed by two methods: capillary zone
electrophores (CZE) and reversed-phase HPLC (RP-HPLC), for detection of polar and
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neutral reaction components, respectively. The results in Figure 5 show that the thiolate
substitution does not significantly enhance the reactivity of pyrophosphates studied under
any conditions: Rate constants obtained for 1a and 3 are of the same order as those reported
earlier for diadenosine-5′,5′-di (1c) and triphosphate (5) [33]. In general, the reactivity of
1a and 3 is low; the half-lives under neutral conditions are measured in tens of days even
at 90 ◦C. The rate of the total disappearance of thiopyrophosphates 1a and 3 is practically
pH-independent between pH 6 to 9. The reactivity increases at a lower pH; under alkaline
conditions, the rate-enhancement is more modest.
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The reactivity of the selenopyrophosphate 1b is not significantly different from that
of 1a and 3 under acidic and slightly alkaline conditions. As will be discussed later,
comparable rate constants for the disappearance of 1b could be obtained only under these
conditions since between pH 3 and 9, the reaction did not follow first-order kinetics.

At pH 2.0 both thiopyrophosphates 1a and 3 decompose by the hydrolysis of the
phosphate bridge (Scheme 2 (dASppA) and 3 (3′,5′-dTSppA), Routes 1 and 2) and of the
N-glycosidic bond in adenosine or 5′-thioadenosine (Scheme 2 (Routes 3a,b) and Scheme 3
(Route 3)). Route 1 in Scheme 2 describes a symmetric cleavage between the two phosphate
groups to yield two monophosphates 5′-AMP (9) and 5′-dASMP (10). Asymmetric cleavage
(Route 2) has not been observed with the oxygen analogue Ap2A (1c) [33], but considering
the better leaving group properties of thionucleoside 11 in comparison to nucleosides, and
appearance of ADP (12) as a minor reaction product, it is plausible in this case. According
to the product analysis with RP-HPLC, the predominant neutral product is adenine (14),
which shows that under these conditions, deadenylation (Routes 3a and 3b) significantly
contributes to the total reactivity.
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Polar products observed by CZE in the reaction of 1a were 5′-AMP (9), ADP (12),
and a product that was tentatively assigned as the depurinated compound 13. As will be
discussed later, only the O-linked sugar nucleotide 18 was observed with 3 at pH 3 and
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above, where two such products (18 and 19) could have been expected. 5′-dASMP (10)
which is initially formed as the other product in the symmetric cleavage, is not observed,
as it is rapidly hydrolysed to the corresponding thionucleoside 11. As is shown by the
results collected in Table 1, phosphorothiolate monoester 4a is hydrolysed within hours
under acidic conditions even at 25 ◦C. Taking the temperature difference into account, up
to 105-fold rate difference between dinucleoside pyrophosphates and nucleoside thiolate
monophosphates can be estimated.

Table 1. Rate constant for the hydrolysis of nucleotides under acidic, neutral and alkaline conditions.

Substrate Conditions k/10−6 s−1

5′-dTSMP (4a) pH 3, 298 K 152
pH 7, 298 K 5.19
pH 7, 308 K 17.1
pH 7, 318 K 58.4

pH 11, 298 K 0.34
5′-dTSeMP (4b) pH 3, 298 K 53.1

pH 7, 298 K 16.8
pH 7, 303 K 75.1
pH 7, 313 K 297

pH 11, 298 K 14.4
5′-TMP (4c) pH 3, 363 K 2.60

The rates observed for the hydrolysis of sulfur and selenium-substituted phosphate
monoesters follow the trend described by previous workers [34,35] for O-acyl and O-aryl
phosphate monoester dianions. In these earlier studies, a linear relationship between the
log(k) values and pKa of the leaving group was observed and consistant with the more
acidic nucleoside selenol, a forty-fold rate enhancement in P-Se cleavage rate is observed
compared with P-S cleavage.

Evidence for a dissociative transition state can be seen in the Eyring parameters
derived from variable temperature NMR analysis of the phosphorus-chalcogen bond
cleavage kinetics at 29 8K, 308 K and 318 K under neutral pH conditions. Thus, positive
∆S‡ values of 79 and 35 J mol−1 K−1 were determined for 5′-dTSMP (4a) and 5′-dTSeMP
(4b), respectively. Reflecting the relative strengths of the P-Ch bond, a higher ∆H‡ was
observed in 5′-dTSMP (126.5kJ mol−1) than that in 5′-dTSeMP (110.6 kJ mol−1).

It was surprising that the S-linked sugar nucleotides 15 and 19 were not observed.
Results obtained with other phosphorothiolate compounds offer, however, a potential
explanation. Products 15 and 19 can be contrasted with the reactivity of model thiolate
phosphodiesters, such as Iyer and Hengge’s 3S phosphorothiolate analogue of HPpNP
(Scheme 4A), with a flexible nucleophile and a good leaving group [36]. The model 3S-
HPpNP (21a) undergoes rapid isomerisation to the corresponding 2O phosphate diester 21b
followed by a nucleophilic attack of the thiol on the vicinal carbon resulting in a formation
of a thiirane ring and the loss of the phosphate group [36]. S-Linked sugar nucleotides
15 and 19 contain the same structural elements, and a similar reaction route, depicted in
Scheme 4B, would result in the rapid decomposition of these products. In the case of 15 or
19, the reaction would result in the release of ADP that is subsequently hydrolysed to 5′-
AMP. Thus, ADP observed as a reaction product may be formed also by the decomposition
of intermediates 15 and 19, and is not conclusive evidence of the asymmetric cleavage of
the pyrophosphate bridge.
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dASppr (13).

The absence of S-linked sugar nucleotides could, in principle, result also from an ex-
ceptional stability of an N-glycosidic bond in 5′-thionucleoside derivatives. This alternative
does not, however, seem likely as deadenylation of 5′-thioadenosine has been observed
under mildly acidic conditions [37].

The O-linked deadenylation product 13 is a thioanalogue of a reducing sugar nu-
cleotide ADP-ribose, which we have studied previously [38]. ADP-ribose and related sugar
nucleotides react by intramolecular substitution at the α-phosphate to form a 4,5-cyclic
ribose phosphate (22 in Scheme 4C) and a nucleoside monophosphate [38,39]. In the case of
1a the deadenylated product 13 decomposes to yield 5′-dASMP (10) as an initial product as
is shown in Scheme 4C. With 3, the corresponding reaction gives 3′-dTSMP (16 in Scheme 3).
As mentioned above, 10 and 16 are rapidly hydrolysed to corresponding thionucleosides
11 and 17, respectively.

The reaction systems are kinetically complicated, and the only product that accumu-
lates in the reaction of 1a and can confidently be assumed to be formed by one route only,
is deadenylation product 13. Kinetics of parallel and consecutive reactions were applied to
its formation, and rate constants of 1.9 × 10−5 and 3.1 × 10−5 s−1 were obtained for the
formation and decomposition, respectively. These values are consistent with those reported
for the deadenylation of Ap3A [33] and decomposition of ADP-ribose [38]. Assuming
that the two deadenylation reactions (Routes 3a and 3b) are equally fast, the rate constant
of the total disappearance (9.3 × 10−5 s−1) can be divided into those of deadenylation
and phosphate hydrolysis. The value of 5.5 × 10−5 s−1 obtained for the latter reaction is
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only six times larger than that reported for the hydrolysis of Ap2A (1c) under the same
conditions [33]. Since it is possible that ADP is formed through the pathway described in
Scheme 4B, it is not possible to evaluate to what extent the pyrophosphate bridge is cleaved
by the asymmetric route (Scheme 2, Route 2).

Reactions of 3′,5′-dTSppA (3) are shown in Scheme 3. Similarly to dASppA, 3 decom-
poses at pH 2 by the hydrolytic cleavage of the pyrophosphate bridge and the N-glycosidic
bond. Adenine was the most abundant product observed in the HPLC analysis suggesting
that deadenylation is the predominant reaction pathway. CZE-analysis shows the formation
of two polar products, one of which was identified as 5′-AMP. The other polar product
most probably is the deadenylation product 18. The migration time in CZE analysis was
consistent with a diphosphate containing product, and a UV-maximum of 270 nm indicated
that the UV-absorbing moiety is thymine. Applying the kinetics of parallel and consecutive
reactions gave rate constants of 2.3 × 10−5 s−1 and 2.0 × 10−5 s−1 for the formation and
decomposition of the alleged depurination product. These values are consistent with those
obtained for the corresponding product on the reaction of 1a, which lends further support
to the product assignment.

The other significant reaction pathway is most probably the symmetric phosphate
hydrolysis producing 5′-AMP and 3′-dTSMP (Route 3 in Scheme 3). 3′-dTSMP was not
directly observed, because of its rapid hydrolysis to the corresponding thionucleoside
3′dTSH 17 which undergoes oxidation to the corresponding symmetrical disulfide (3′-dTS)2.
Consistent with this, a thymine-containing product is observed at a clearly longer retention
time. The identity of products assumed to be 17 and its oxidised dimer was confirmed with
HPLC-MS-analysis. ADP is not observed among the reaction products, but the possibility of
asymmetric phosphate hydrolysis as a minor reaction route cannot be strictly excluded, as
the hydrolysis of ADP under acidic conditions is faster than that of 2 [40].

As the pH increases the rate of total disappearance of both dASppA (1a) and 3′,5′-dTSppA
(3) decrease. At pH 3, deadenylation is still the predominant reaction pathway with both
substrates. However, a slow dethyminylation (Scheme 3, Route 3b) is also observed with 3;
thymine was identified by spiking with authentic compound in RP-HPLC analysis. At pH 4,
dethyminylation and deadenylation (Scheme 3, Routes 3b and 3a) are equally fast processes,
based on the concentrations of adenine and thymine formed. Only one sugar nucleotide
product was observed under these conditions, and the UV-spectrum was consistent with the
thymine containing O-linked product 18.

The reactivity minimum is reached under neutral conditions, where the half-life
of the total disappearance of 1a and 3 is measured in tens of days at 90 ◦C. The rate
constant for the disappearance of 1a is approximately the same as that obtained for 5
before [33], showing that the effect of thiosubstitution is very modest. The only polar
product significantly accumulating in either reaction is 5′-AMP. The decomposition of
sugar nucleotides is base-catalysed at neutral pH [38], and O-linked sugar nucleotides
13 and 18 are likely to be approximately 100 times more reactive than 1a or 3 under
neutral or slightly alkaline conditions. The RP-HPLC analysis shows also that a significant
amount of thymine is formed in the reaction of 3. A rate constant of (2.2 ± 0.2) × 10−7 s−1

was obtained for dethyminylation by a non-linear regression applied to the formation
of thymine. Thymine may be released at different stages of the reaction, and, hence,
this method is not theoretically fully correct, and the value obtained is, therefore, rather
approximate. It is, however, consistent with that reported by Ora et al. [41] under the same
conditions. The value obtained suggests that dethyminylation is the predominant reaction
of 3 at neutral pH.

In addition to thymine, the only neutral products observed under neutral conditions
were adenosine, thionucleosides 11 and 17, and their oxidized dimers. The product distri-
butions thus give little information on the reaction routes. In the absence of any evidence
for other processes, it can be proposed that 1a decomposes by the symmetric cleavage of
the pyrophosphate bridge (Scheme 2, Route 1). In the case of 3, the symmetric phosphate
cleavage is accompanied by dethyminylation that is the predominant reaction pathway.
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The rate of the total disappearance of 1a and 3 increases only modestly as the pH
increases from 7 to 10. However, a number of additional polar products at a low concen-
tration were observed. These products can be attributed to two reactions that have been
observed previously with Ap3A (5) under slightly alkaline conditions [33]: intramolecular
nucleophilic attack by 3’-OH on the phosphate group resulting in a formation of adenosine
3′,5′-cyclic monophosphate [42], and a base-catalysed opening of the imidazole ring [43] in
the adenine base that eventually leads to the release of adenine.

The seleno analogue dASeppA (1b) was studied less thoroughly because it appeared
that the reaction system was much more complicated than in the case of 1a and 3. Under
acidic conditions the decomposition of 1b followed first-order kinetics and the rate constant
of the total disappearance (1.55± 0.04)× 10−4 s−1 at pH 2 was obtained for 1b. This value is
only slightly higher than that obtained for the thioanalogue 1a under the same conditions.

As the pH increased, the total disappearance of 1b no longer followed first-order
kinetics, but the rate of disappearance increased as the reaction proceeded. The ln x1b) vs.
time plots were typically linear in the beginning of the reaction, but after a short period
the reaction rate began to increase. The phenomenon was most pronounced under neutral
conditions. The initial linear plot gave rate constants that were 5 to 20 times larger than
those obtained for 1a. The difference was largest under neutral conditions. The behaviour
was tentatively attributed to a formation of a reactive seleno species. It is known that
compared to sulfur, the chemistry of selenium is much more diverse. Selenols are good
leaving groups, and also good nucleophiles, particularly under neutral conditions [44]. In
additions to selenols, other selenium compounds are nucleophilic, as well, and can induce
phosphate diester cleavage [45].

However, we failed to detect any reactive intermediates or reaction products resulting
from their reactions. The product analysis offered little information to explain the unex-
pected behaviour. 5′-AMP, adenosine, selenonucleoside 24 (in Figure 6) and adenine were
the predominant products observed under slightly acidic and neutral conditions. Under
slightly basic conditions a new peak, that was identified as a seleninonucleoside 25 by
HPLC-MS analysis, was observed as one of the products. At pH 11, 5′-AMP and 25 were
the main products observed.
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2.3. pKa Titrations and SVPDE Cleavage of Pyrophosphorochalcogenolate-Linked Dinucleosides

In order to further assess the potential for chalcogen-substituted pyrophosphate link-
ages to enable targeted drug delivery, the pKa values of the phosphoryl moieties were
assessed using 31P NMR titration. Upon acidification of aqueous solutions of dASppA and
dASeppA, upfield shifts of ca. 0.4 ppm were apparent in the Pβ resonances (Supplementary
Materials) from which the pKa ‘s were calculated as 3.0 (1a) and 3.3 (1b). Similar values
were determined for dTChppA (3.2 for 2a; 3.4 for 2b) although maximal shifts of 0.2 ppm
were observed and a second inflection at ca. pH 8.5 may indicate that the shifts reflect
nucleobase ionisation [46] as significant intramolecular base stacking occurs in AppA and
other dinucleoside pyrophosphates [47]. However, the titrations’ inflections represent a
maximum pKa value and therefore indicate that these moieties will be fully charged at
physiological pH. We therefore briefly compared the cleavage of these pyrophosphates
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using snake venom [48] monitoring the reactions of NADH, dTSppA (2a) and dTSeppA
(2b) by 31P NMR. Over 95% consumption of the native pyrophosphate substrate was
observed consumed within one hour. In contrast, ca. 25% and 20% of the sulfur- and
selenium-substituted analogues were cleaved during this timeframe. Continued diver-
gence between the substrate behaviours of 2a and 2b was found over the subsequent 14 h
during which time, complete consumption of dTSppA occurred. In contrast, digestion of
dTSeppA plateaued at ca. 45% which may result from denaturation of the protein following
release of 5′-dTSeMP and subsequent spontaneous hydrolysis to the corresponding selenol
and its subsequent interaction with the active site zinc dyad and disulfide linkages [49].

3. Discussion

The results provide insight on the reactivity of the novel pyrophosphates studied
and on other types of thiosubstituted biological phosphates. It is clear that the reactivity
of dinucleoside pyrophosphates is influenced only modestly when the bridging 5′- or 3′-
oxygen is substituted by sulfur. The modest effect is somewhat surprising considering that
with phosphodiester substrates a substitution of sulfur for the remnant group oxygen (e.g.,
3′-oxygen in RNA model dISpU), may significantly enhance the nucleophilic substitution
at phosphorus, particularly under neutral conditions [29–31]. In those cases the rate
enhancement has been attributed to enhanced nucleophilic attack on the phosphorus,
or to the properties cyclic thiophosphorane intermediate. The fact that significant rate
enhancement is not observed in this work, when an intermolecular nucleophilic attack
takes place, and the reaction proceeds through an acyclic phosphorane, is consistent with
the latter alternative. Thiosubstitution as such does not, hence, significantly enhance the
nucleophilic attack on a phosphate group.

Hydrolysis of the N-glycosidic bond of 1a and 3 yields products that are thioanalogs
of reducing nucleotide sugars, such as ADP-ribose. As can be expected, thiosubstitution
at the leaving nucleotide does not affect the reactivity as is shown by the rate constant for
the decomposition of 13. In contrast to that, the thiolinked sugar nucleotides 15 and 19
are apparently significantly more reactive than their natural counterparts. The reaction
most likely involves a phosphate migration from sulfur to oxygen and a nucleophilic attack
by a thiol group on the carbon resulting in a formation of a thiirane ring and release of a
phosphate group as shown in Scheme 4A. Such a reaction seems to be possible only when
the nucleophile is flexible and there is a good leaving group in the molecule. Ribonucleoside
derivatives [29–31] or compounds with a poor leaving group [36] do not react similarly.

Similarly to other phosphorylated thiols [50,51], thionucleoside monophosphates
are several orders of magnitude more reactive than their natural counterparts. The re-
activity difference between 5′-dTSMP (4a) and 5′-TMP (4c) at pH 3 was estimated to be
approximately 700,000-fold on the basis of results in Table 1. The pH-dependence of the
reactions are similar: the reactivity decreases as the pH increases. It is commonly accepted,
that the dephosphorylation is a unimolecular process that results in the release of a res-
onance stabilised metaphosphate anion [52–54]. The large reactivity difference between
µ-monothiopyrophosphate and pyrophosphate has been attributed to the weakness of a
P-S bond that allows the release of a metaphosphate anion [53,55]. The stability of the
metaphosphate monoanion apparently plays a significant role; dinucleoside pyrophos-
phates studied in the present work do not react, to any significant extent, by the cleavage
of a P-S bond.

The inherent reactivity of the selenium substituted pyrophosphate dASeppA (1b) or
nucleotide 5′-dTSeMP (4b) are not markedly different from that of their thioanalogues. The
irregular kinetics observed with 1b between pH 3 and 9 most likely result from a reaction
between an intact pyrophosphate and a reactive selenium species formed as a secondary
product. The hydrolysis of selenonucleoside monophosphate 4b is faster by several orders
of magnitude than that of 1b and, hence, similar behaviour was not observed. However,
the pH-dependence of the hydrolysis of the selenonucleotide 4b is different from that of the
thio (4a) and oxo (4c) analogues suggests, however, that the metaphosphate ion release is
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not the only reaction route with the selenonucleotide. The less positive activation entropy
may well reflect this difference, as well.

4. Materials and Methods

Kinetic experiments with dinucleoside pyrophosphates 1a,b and 3 have been carried
out using methods that have been reported previously [33,38], and are only briefly described
below. Other experimental methods are described in detail in the Supplementary Materials
(Figures S1 and S2, Tables S1 and S2).

Capillary zone electrophoretic (CZE) analysis was carried on an HP 3DCE or on a
Beckman Coulter P/ACE MDQA equipment. A fused silica capillary (57 cm effective length,
75 µm i.d.) was used. The background electrolyte was a 25 mM potassium phosphate
buffer (pH 7.2). A voltage of 25–30 kV was applied and the compounds were detected at
260 nM (HP) or 254 nm (Beckman).

RP-HPLC analysis was carried on an Agilent 1100 HPLC equipped with a DAD-
detector. A Supelcosil LC-18 column (25 × 0.4 cm, particle size 5 µm) was used to separate
reaction components. Eluents were mixtures of acetonitrile (MeCN) (Honeywell, Germany)
and acetate buffer (0.05 M, pH 4.3) containing 0.1 M ammonium chloride (Sigma-Aldrich,
Seelze, Germany). The gradient program used in routine analysis was as follows: 0–10 min
isocratic 5% MeCN, 10–20 min a linear gradient to 33% MeCN, 20–30 min isocratic 33%
MeCN, 30–35% a linear gradient to 5% MeCN. Flow rate was 1 mL/ min. UV-active
compounds were detected at 260 nm.

HPLC-MS –analysis was carried out on an Agilent 1260 Infinity HPLC coupled with
6120 Quadrupole mass analyzer. The column was Supelcosil C18 (25 × 0.4 cm, particle size
5 µm), and the eluents mixtures of 5 mM ammonium acetate and acetonitrile.

Rate constants were calculated by applying the integrated first-order rate law to the
disappearance of the starting material. Rate constants for the formation and decompo-
sitions of products were calculated by applying the rate law of parallel and consecutive
reactions [33,38]. In the case of 2, the concentration of the starting material and products
were determined using calibration curves based on authentic samples. Diphenyl phosphate
was used as an internal standard in reactions.

5. Conclusions

The results obtained in the present study show that the effect of substitution of sul-
fur for a phosphate oxygen depends significantly on the structure of a biological phos-
phate compound, and consequently, on the reaction mechanism. While the hydrolysis
of thionucleoside monophosphates, that involves a cleavage of a P-S bond and a release
of a metaphosphate anion, is several orders of magnitude faster than that of nucleoside
monophosphates, the reactivity difference between corresponding dinucleoside pyrophos-
phates is very modest. In addition to the known reactivity of phosphorothiolate diesters,
structures with a flexible intramolecular nucleophile and a good leaving group decom-
pose rapidly as a result of a phosphate migration and a nucleophilic attack of thiol on the
neighbouring carbon.

The reactivity of selenium substituted analogues does not seem to be inherently sig-
nificantly different from that of corresponding sulfur compounds, but it seems that in the
former case, reactive intermediates that react with intact substrates, may be formed, con-
tributing to their overall reactivity. In considering the potential for biochemical unmasking
of pharmacologically active selenols following the action of extracellular pyrophosphatases
and phosphatases, the observed attenuation of SVPD activity may point to the potential for
inhibiting ENPP—recently identified as a target in treating relapsing breast cancer [56].

The chemical stability of the pyrophosphate substrates studied is promising consider-
ing the potential therapeutic or diagnostic applications. However, the results show also
that the chemistry of thiosubstituted biomolecules is more diverse than that of their natural
counterparts, and unexpected reactivity may be encountered with new types of compounds.
The effects of selenium substitution seem to be much more drastic in this respect but we



Int. J. Mol. Sci. 2022, 23, 15582 14 of 16

anticipate that by identifying the products of chemical hydrolysis of these materials in the
current study, we will be able to better understand the metabolism of from related materials
currently under investigation in ongoing studies in vivo.
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