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Abstract: Direct reprogramming of cardiac fibroblasts to induced cardiomyocytes (iCMs) is a promis-
ing approach to cardiac regeneration. However, the low yield of reprogrammed cells and the
underlying epigenetic barriers limit its potential. Epigenetic control of gene regulation is a primary
factor in maintaining cellular identities. For instance, DNA methylation controls cell differentia-
tion in adults, establishing that epigenetic factors are crucial for sustaining altered gene expression
patterns with subsequent rounds of cell division. This study attempts to demonstrate that 5′AZA
and miR-133a encapsulated in PLGA-PEI nanocarriers induce direct epigenetic reprogramming of
cardiac fibroblasts to cardiomyocyte-like cells. The results present a cardiomyocyte-like phenotype
following seven days of the co-delivery of 5′AZA and miR-133a nanoformulation into human car-
diac fibroblasts. Further evaluation of the global DNA methylation showed a decreased global
5-methylcytosine (5-medCyd) levels in the 5′AZA and 5′AZA/miR-133a treatment group compared
to the untreated group and cells with void nanocarriers. These results suggest that the co-delivery of
5′AZA and miR-133a nanoformulation can induce the direct reprogramming of cardiac fibroblasts to
cardiomyocyte-like cells in-vitro, in addition to demonstrating the influence of miR-133a and 5′AZA
as epigenetic regulators in dictating cell fate.

Keywords: nanovectors; non-viral gene therapy; epigenetic reprogramming; direct reprogramming;
5′Azacytidine; MicroRNAs

1. Introduction

Myocardial infarction (MI) is the most prevalent cause of cardiovascular disorder that
prompts irreparable damage to the heart that leads to death [1]. MI progression includes
depletion of oxygen to heart muscles, which induces the death of heart muscles, and the
formation of stiff scar tissues to replace the lost tissue (cardiac remodeling) that is critical
and challenging to repair [2]. Despite advances in cellular and non-cellular therapies to
prevent cardiac remodeling due to a heart attack, the mortality in cardiovascular disease still
remains overwhelming [3]. In order to overcome this challenge; direct reprogramming is a
promising strategy that fosters the possibility of changing the somatic cells to direct patient-
specific cell bypassing stemness. This approach can eliminate the limitations of stem cells
and allow precision medicine in regenerative medicine. However, due to the constraints
of current delivery strategies and epigenetic barriers, the yield of reprogrammed new
cardiomyocytes from cardiac fibroblasts is low. Thus, to efficiently reprogram commercially
available adult cardiac fibroblast, we anticipate the global changes in epigenetic marks
such as DNA methylation is critical in cardiovascular diseases because often abnormal
methylation of CpG islands leads to gene expression modification [4,5].

Epigenetic modifications lead to the alteration of gene expression where the underlying
genetic sequence is not changed. For instance, DNA methylation is an important form of
epigenetic regulation, where the addition of a methyl group from S-adenosyl-L-methionine
(Sam) to 5′cytosine of CpG dinucleotide limits the entry of transcription machinery to the
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promoter region leading to gene silencing and chromosome inactivation [6]. Several reports
have demonstrated the key epigenetic marks in cardiovascular diseases. For instance, Zhou
et al. demonstrated that silencing of Bmi1 facilitates removing the histone H2A lysine at
the cardiac gene, increasing reprogramming efficiency [7]. Similarly, Testa et al. showed
that 24 h treatment of CFs or MEFs with Bmi1 inhibitor PTC-209 repressed inflammatory
signaling such as STAT3, IL-6, and ERK1/2 and increased reprogramming efficiency by
~25% [8]. In another study, Singh et al. reported that HDAC inhibitor alone or combined
with WNT inhibitor improved reprogramming efficiency [9]. While Hyun et al. showed
that epigenetic writers, erasers, and readers play an important role in controlling the
changes in epigenetic landscapes [10]. It was interesting to note that inhibiting EZH2
methyltransferase activity doubled the number of beating cardiomyocytes [11]. EZH2
expression could be downregulated by the overexpression of miR-1, miR-133, miR-208, and
miR-499 in neonatal CFs; however, it upregulated Kdm6a [12]. On the contrary, double
knockdown of Kdm6a and Kdm6b inhibited the upregulation of Gata4, Mef2c, and Tbx5
mRNA expression, leading to an impaired reprogramming process [13].

Several reports are available on histone modification; however, only limited reports
on DNA methylation for direct cardiac reprogramming (DCR). Thus, how these epige-
netic changes are regulated remains challenging to comprehend [14]. To overcome the
current limitation, we aim to deliver the epigenetic modifier 5′AZA and miR-133a using
different presentation strategies. 5′AZA is a DNA methylase inhibitor, and its analog
2′-deoxycytidine was first synthesized in 1964 [15]. Previous reports on 5′AZA-induced
differentiation of mesenchymal stem cells to cardiomyocytes [16–18] have made efforts to
understand how epigenetic modification affects cardiomyocyte differentiation [19]. How-
ever, the DCR of cardiac fibroblasts to cardiomyocytes using 5′AZA induction has never
been explored.

The human heart expresses more than 800 miRNAs, and among these, miR-133a is
the most abundant type in the human myocardium [20–22]. miR-133a deletion results
in impaired cardiac development at embryonic and postnatal stages. Further, the inhibi-
tion of only miR-133a led to cardiac hypertrophy in adult mice [23]. The most common
pathological remodeling in the human heart is fibrosis and hypertrophy. miR-133a is
well known to reduce the severity of both fibrosis and hypertrophy [23]. Anyway, it is
adequately described in several studies that miR-133a is cardioprotective [24–26]. It is
noteworthy that miR-133a also regulates DNA methylation by inhibiting Dnmt-1, Dnmt-3a,
and Dnmt-3b [24]. Moreover, In human mesenchymal stem cells, miR-133a promoted
cardiogenic differentiation by targeting epidermal growth factor receptors [27]. Cardiac
differentiation is crucial for repairing and regenerating the myocardium and restoring the
damaged cardiomyocytes.

Due to lack of oxygen, stiff scar tissue is produced to replace the dead myocytes with
the cardiac fibroblasts in a failing heart. This causes the accumulation of fibrosis and, in
turn, causes fibrosis. Cardiac fibroblast, which replaces the dead cardiomyocyte with stiff
scar tissue, can be reprogrammed into cardiomyocytes using a cocktail of miRs such as
miR-1, 133a, 208, 499 in mice [28]. In a damaged heart, the transdifferentiation of fibroblasts
to iCMs helps in the reversal of pathological remodeling.

In our previous study, we found that nanoparticle or scaffold-mediated delivery of
reprogramming cocktail invitro could help in DCR of cardiac fibroblast to cardiomyocyte-
like cells with a minimal dose of reprogramming miR cocktail, including miR-1 and
miR-133a [29,30]. Therefore, considering the role of miR-133a in epigenetic modifica-
tion, fibrosis, and the earlier reports on 5′AZA, we hypothesize that demethylation is an
essential epigenetic factor that could enhance DCR. Thus, we aim to co-deliver a microRNA
and a small molecule as a reprogramming cocktail using Poly (D, L-lactic-co-glycolic acid)
(PLGA) NPs. PLGA is an FDA-approved polymer that has demonstrated potential in
drug/gene delivery in nanomedicine [31]. Further, PLGA is a widely used biopolymer
due to its excellent biocompatibility, biosafety, and biodegradability [32]. In this study,
we encapsulated PEI-miR-133a and 5′AZA in a PLGA nanoparticle for epigenetic repro-
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gramming. We anticipate that the muscle-specific miRNA 133a, which has a crucial role in
cardiac development and differentiation, would enhance cardiac fibroblast reprogramming
potential with a DNA methylation inhibitor 5′AZA that would control the signature of
the cell. Thus, by combining an epigenetic regulator and a genetic regulator, we demon-
strate that DNA targeting can selectively remove the epigenetic barrier and increase the
reprogrammed cells, accentuating the role of the epigenetic barrier in reprogramming.

2. Results and Discussion
2.1. Synthesis and Characterization of PEI-miR-133a, PLGA, PLGA-AZA, PLGA-PEI-miR-133a,
PEI-miR-133a-AZA PLGA Nanoparticles

The PEI-miR-133a complex was formed by a self-assembly mechanism. A cationic
material branched polyethyleneimine PEI25k is used to complex miR-133a before encapsu-
lating it into PLGA nanoparticles. PEI25k is used in this study as it confers superior gene
complexing ability and high transfection efficiency [33]. The cationic PEI25k and miR-133a
complexes were formed at an N:P ratio of 1:10. The morphology of PEI-miR-133a poly-
plexes was evaluated using TEM (Figure 1a), which showed the spherical morphology of
the polyplexes. Further, the polyplexes with aggregated individual spheres had an average
zeta size of 124 nm (Figure 1b). The successful complexation was confirmed by the shift in
the surface zeta potential to a positive surface charge (Figure 1c). Further, the gel retarda-
tion assay (Figure S1) showed that miR-133a was present at the native position, and the
band did not migrate from the well, thus confirming the successful polyplexes formation.
Further, The PLGA nanoparticles (void, AZA drug, and PEI-miR-133a-AZA) were synthe-
sized using the double-solvent evaporation method. The matrix of PLGA NPs is formed
by the interactions between the hydrophobic polyvinyl alcohol (PVA) groups with the
PLGA chain and hydrophilic PVA groups with the water phase [34]. The scanning electron
microscopy (SEM) images showed that the PLGA nanoparticles had a smooth morphology
with an average mean size of 198 nm for void particles (Figure 2a) and 298 nm for loaded
PLGA-PEI-miR-133a-AZA (Figure 2b), respectively. PLGA-PEI-miR-133a, PLGA-AZA, and
PLGA-PEI-miR-133a-AZA particles showed a polydispersity distribution (PDI) between
0.063–0.032 (Table 1). The NPs possessed a ζ potential of−15.8 to−15.6 mV. The ζ potential
of PLGA-void (Figure 2c) and PLGA-PEI-miR-133a-AZA NPs (Figure 2d) did not change
significantly owing to the highly anionic nature of miR-133a. Hence, indicating a successful
miR encapsulation within PLGA NPs. PLGA NPs had a negative surface charge imparted
by PVA surfactant due to the physical entrapment within the surface layers of the polymer.
We used dimethyl sulfoxide (DMSO) as a cosolvent to dissolve the 5′AZA drug to ensure
high loading and encapsulation efficiency. The result shows high encapsulation of miRNA
polyplexes, the drug, and the co-encapsulation of AZA-PEI-miRNA into PLGA, as shown
in Table 1. Similarly, high encapsulation was observed with the codelivery of the drug and
miRNA using PLGA as a vector [35]. The percentage yield of the nanoparticles was 37% on
average. The encapsulation efficiency yield and loading efficiency were consistent during
the synthesis of each batch of PLGA NPs.

Table 1. Size distribution, polydispersity index, zeta potential, yield (%), encapsulation efficiency (%)
of PLGA NPs.

Sample Z-Average
Diameter (nm)

Polydispersity
Index (PDI)

Zeta Potential
(mV) Yield (%) Encapsulation

Efficiency (%)

PLGA void 186 ± 3.1 0.063 ± 0.06 −15.6 ± 0.04 37.13% -
PEI miRNA 124 ± 0.6 0.301 ± 0.04 27.35 ± 0.03 -
PLGA AZA 298 ± 2.0 0.034 ± 0.03 −15.8 ± 0.86 37.35% 96%

PLGA AZA-miRNA 298 ± 2.4 0.031 ± 0.02 −15.7 ± 0.65 38.15% 97%
PLGA-miRNA 298 ± 2.6 0.032 ± 0.02 −15.6 ± 0.34 37.35% 96%
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Figure 1. Polyplexes characterization (a) TEM micrograph showing spherical morphology of poly-
plexes (Scale bar = 50 nm). (b) polyplexes (1:10) size measurement by DLS, showing an average size of 
124 nm. (c) zeta potential measure of polyplexes (1:10), showing positive zeta potential after forming 
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Figure 1. Polyplexes characterization (a) TEM micrograph showing spherical morphology of poly-
plexes (Scale bar = 50 nm). (b) polyplexes (1:10) size measurement by DLS, showing an average
size of 124 nm. (c) zeta potential measure of polyplexes (1:10), showing positive zeta potential after
forming polyplexes.
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FTIR is a powerful analytical tool available today that can be used to analyze any
sample, from liquids and pastes to powders, thin films/fibers, gases, and surfaces [36]. In
order to verify the successful encapsulation of the target small molecule and genetic com-
ponent inside PLGA Ns, FTIR spectra were recorded. FTIR spectra confirmed characteristic
PLGA polymer peaks with no additional new peaks related to the IR spectra of either the
encapsulated drug or miRNA (Figure S2), which leads us to believe that the target cargo
is successfully encapsulated inside the NPs. Refer to Table S1 for the characteristic peak
positions and assignments for PLGA NPs that is comparable to a previous study [37].

2.2. Encapsulation and Stability of PEI-miR-133a Polyplexes

In order to evaluate the polyplexes encapsulation efficiency and stability, the super-
natant obtained during PLGA NPs synthesis was analyzed by gel electrophoresis. The
results showed that no visible miRNA bands were seen, thus confirming a high encapsu-
lation efficiency of polyplexes within the PLGA NPs (Figure 3a). To evaluate the stability
of PLGA NPs, the PLGA NPs were digested with SDS and loaded on a gel. The results
confirmed the presence of polyplexes in the lane that possessed the digested PLGA NPs.
Further, as seen in Figure 3b, miR-133a encapsulated inside the digested PLGA NPs (Lane 2)
migrated to a band position similar to that of the naked miR-133a (Lane 4). This character-
istic band confirms that the structure of nucleic acid is not damaged during synthesis and
is successfully encapsulated inside the NPs.
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Figure 3. Evaluation of encapsulation and miRNA Stability inside the PLGA nanoparticles
(a) Encapsulation of miRNA to PLGA NPs. Gel electrophoresis of the supernatant obtained during
the synthesis of PLGA nanoparticles showed no miRNA, thus ensuring a high encapsulation of
miRNA inside the PLGA. Lane 1: Marker, Lane 2–6: Supernatant. The gel image depicts that the
structure of nucleic acids was not destabilized during the synthesis of nanoparticles. (b) Stability of
miRNA in the PLGA nanoparticle. The pellet was disrupted with SDS to assess the encapsulation
of miRNA. Lane 1: Marker, Lane 2: encapsulated miRNA, Lane 3: Blank Lane (Undigested PLGA
NPs-Control) 4: Naked miRNA.

2.3. Invitro Release Studies
The release of the therapeutic factors depends on several factors, such as temperature,

type of NPs formulation, release medium, and pH [34]. Also, different events lead to the
drug release kinetics in PLGA microspheres, including diffusion of the drug through the
polymer matrix, polymer degradation, and erosion [38]. PLGA NPs displayed biphasic
release profiles (burst release and sustained release) when tested for both pH 7.4 and pH 5.0,
which mimic the pH of the extracellular and intracellular microenvironment, respectively.
The release profiles were observed for 72 h under ambient conditions at 37 ◦C using
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ribogreen assay for miR-133a and UV absorbance at 234 nm for the 5′AZA. The initial burst
release may be due to the leakage of any 5′AZA and miR-133a present near the surface
of the PLGA NPs. The subsequent release from the particles depends on diffusion via
the polymeric matrix and the water-filled pores. Initial burst release after 1 h was 9.4%
and 9.7% for miRNA and 10.5% in pH 5.0 and 12.9% for the drug in pH 7.4 and pH 5,
respectively. After the initial burst release, the sustained, steady slow release was observed.
Most of the miR-133a and 5′AZA release was observed between 24 to 48 h. The release
profile was slow after 24 h because of the polymer content and its impact on decelerating
drug/miR release as a result of the increase in the particle size and reduced surface area
available for 5′AZA and miR-133a release. In the case of pH 5.0, the release percentage of
miRNA has increased from 45–70%, whereas 40–78% was observed in the case of pH 7.4.
However, drug release was rapid, with a release percentage of 60–70% after 48 to 72 h,
followed by a steady, stationary phase, Figure 4. The accelerated drug release in the final
stages of incubation could be associated with several factors, including swelling of NPs,
the introduction of large pores or cracks on NPs surfaces due to polymer degradation, or
particle disintegration [38]. The release profiles of PLGA NPs in this study are coherent
with the previous reports on PLGA nanocarriers for biomedical applications [29,39].
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Figure 4. Invitro miRNA and drug release profiles from PLGA NPs were evaluated at pH 5.0 and
pH 7.4 using ribogreen assay. The results suggest that both pH 5.0 and 7.0 showed biphasic release of
miRNA and drug.

2.4. Cellular Uptake

FITC-labeled fluorescent PLGA NPs were added to HCF and HCM cells to determine
the intracellular internalization of nanoparticles inside the cells [40]. Similarly, the intra-
cellular internalization of cy5 labeled miR-133a was also observed after addition to HCF
and HCM cells and incubating for 4 h. As seen in Figure 5, irrespective of the cell line, an
efficient particle initialization was observed in both HCF and HCM. Similar results were
observed with Cy5 labeled miR-133a uptake (Figure S3).
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Figure 5. Cellular Uptake of FITC-loaded PLGA nanoparticles using confocal microscopy and flow
cytometry. The nanoparticles were labeled with FITC (green). The cells were incubated with PLGA-
FITC NPs (b1–b4) for 4 h to evaluate cellular internalization of the polymer into the cell compared
with the control (a1–a4). FITC particle internalization using flow cytometry (c1,c2). (c2) shows
particle uptake by HCF cells. (Scale bar = 20 and 500 µm).

The green-stained cells represent PLGA-FITC NPs, the red-stained cells represent
Cy5-miR-133a uptake, and the blue represents Nucblue. The confocal images confirmed
that NPs were seen inside the cells and not simply absorbed to the outer surface. The
efficient uptake is due to the average size of the PLGA NPs. Similar uptake was reported
previously in different cell lines using PLGA NPs [29,41]. As previous reports suggest
that the downsizing of nanoparticles results in the increment of the surface area that, in
turn, enhances the contact with the cell membrane. Thereof, the particles with smaller
size have superior interaction with the cell surface [42]. These results are suggestive that
these particles are compatible with in vivo applications by increasing blood circulation
interaction. The results clearly show that the particles were quickly endocytosed with high
particle uptake, and a high number of positive cells can be achieved upon codelivery of
miRNA and AZA. In order to further quantitatively confirm the uptake, flow cytometry
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analysis was used. In coherence with our CSLM results, we observed a high particle uptake
(Figure S3). The fluorescent signal of FITC was clearly shifted after incubation of 4h. These
results further confirm the application of PLGA NPS as a promising drug delivery system
in regenerative medicine due to its ideal size [43].

2.5. Cytocompatibility and Cell Viability of PLGA NPs

The biocompatibility assay included analyzing all the synthesized PLGA NPs, in
addition to free 5′AZA and PEI-miR-133a polyplexes. Cells treated with varying void
concentrations of nanoparticles were incubated for 3 days, where the cell viability was
observed to be >80% for all concentrations used (Figure 6). This could be attributed to
the fact that PLGA is an FDA-approved biodegradable and biocompatible polymer. These
results are consistent with the reports on the biocompatibility of PLGA polymer [44].
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Figure 6. Cytocompatibility of PLGA void NPs was evaluated to assess the compatibility with HCF at
a concentration of 1 mg/mL, 750 µg/mL, 500 µg/mL, 250 µg/mL 100 µg/mL. The ratios of PLGA NPs
at all doses and time points demonstrated that the experiment was extremely statistically significant,
with p < 0.05 (**** p ≤ 0.0001). Experiment was extremely statistically significant, with p < 0.05
**** p ≤ 0.0001).

Next, the cytotoxicity effects of the PEI-miR-133a, AZA, PEI-miR-133a-AZA loaded
PLGA, polyplexes, and free 5′AZA were tested using presto blue assay. The HCF and HCM
cells were incubated for 24, 48, and 72 h with PEI-miR-133a, AZA, PEI-miR-133a-AZA
loaded PLGA at a concentration of 100 µg/mL in comparison with miR-133a polyplexes
(50 nM was used to for complex with PEI at an N:P ratio 10) and free drug (1 mg/mL) for
evaluating the percentage cell viability. As shown in Figures 7 and S4, an average cell via-
bility percentage of 80% was observed in all the cells treated with the PEI-miR-133a, AZA,
PEI-miR-133a-AZA loaded PLGA NPs, which indicates that the designed nanoparticles
physicochemical properties have not triggered any biological response.
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Figure 7. Cell viability was evaluated to assess the compatibility of HCF treated with PLGA NPs
PLGA-PEI-miR-133a, PLGA-AZA, and PLGA-PEI-miR-133a-AZA at a concentration of 100 µg/mL
in comparison with miR-133a polyplexes (50nM was used to for complex with PEI at an N:P ratio 10),
free drug (1 mg/mL) and control for 24 h, 48 h, and 72 h. The cell viability of all PLGA NPs was 80%
viable at all time points. The ratios of PLGA NPs at all doses and time points demonstrated that the
experiment was extremely statistically significant, with p < 0.05 (**** p ≤ 0.0001). Experiment was
extremely statistically significant, with p < 0.05 (**** p ≤ 0.0001).

Although the addition of polyplexes has no significant change in cell viability in
comparison with different PLGA NPs, however, it is evident from Figures 7 and S4 that
the addition of free 5′AZA to the cells has exhibited reduced cell viability due to the high
concentration of the free drug [45]. The cell viability of the free AZA was an average
of 72% at all time points. Collectively, the cytotoxicity results confirm that PLGA NPs
exhibited minimal cytotoxicity in comparison to the control. The results demonstrate that
PLGA-mediated drug delivery system (DDS) possesses an excellent safety profile which
may gain promising grounds as an alternative for immunogenic and toxic viral vectors in
regenerative medicine.

2.6. Live/Dead Cytotoxicity Analysis

A live-dead assay was performed to affirm the quantitative results of cytotoxicity.
The HCF cells were added with 100 mg/mL of target cargo-loaded PLGA NPs (AZA,
PEI-miR-133a, PEI-miR-133a-AZA) for 72 h. Following the treatment, cells were stained
with live/dead reagents as per the manufacturer’s instructions. Figure 8 gives us visual
evidence of live/dead assay with live cells stained in green. The live-dead analysis further
manifests that PLGA formulation is less toxic to cells, in agreement with the cytotoxicity
results. In the images, Figure 8(b1–d1), most cells remain alive and adhere to the culture
plate with distinct morphology resembling the control group (Figure 8(a1)). No dead cells
were observed in all treatment groups of PLGA NPs, as evident from the respective images
for AZA, PEI-miR-133a, and PEI-miR-133a-AZA. The data of cytotoxicity and live dead
analysis supports the claim that PLGA is biocompatible, and the metabolic activity of the
cells is not affected even after 72 h treatment.
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Figure 8. Live-dead analysis to visualize the cytocompatibility of HCF cells treated with PLGA-PEI-
miR-133a (b1–b3), PLGA-AZA (c1–c3), and PLGA-PEI-miR-133a-AZA (d1–d3). The cells treated
with PLGA NPs encapsulated with PEI-miR-133a (b1–b3), AZA (c1–c3), and PEI-miR-133a-AZA
(d1–d3) show live cells similar to that of the control group (a1–a3). The green color (calcein) stained
cells represent the live cells, while the red color (EtBr) stained cells represent dead cells that are
not present. Thus, confirming that PLGA NPs exhibit minimal toxicity and are metabolically active.
(scale bar = 500 µm).

2.7. cTnT Expression and Global Methylation Analysis

To demonstrate the DCR of cardiac fibroblasts, we co-delivered miR-133a, a muscle-
specific synthetic miRNA mimic, and 5′Azacytidine, a DNA methylation inhibitor using
PLGA NPs.

The cells were analyzed using late cardiac marker cTnT on day 7. Parallelly, 5′-methyl-
2′-deoxycytidine levels were quantified using global methylation ELISA on day 3 and day 7
to prove that miR-133a and 5′AZA act as epigenetic modifiers to support the epigenetic
DCR of HCF cells to adult iCMs such as cells. Previously the role of miR-133a and 5′AZA
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in epigenetic modification is adequately explored [24,46]. More specifically, miR-133a has
been recognized to promote DCR in past investigations, including us [28,29,47].

In the present study, our results confirmed that upon treatment of encapsulated
PLGA NPs (AZA, PEI-miR-133a, and PEI-miR-133a-AZA) with HCFs, the cells were repro-
grammed to cardiomyocyte-like cells in vitro as opposed to the untreated cells. The effect of
PLGA-mediated miR-133a, Aza, and miR-133a transfection on AHCFs trans-differentiation
into iCMs was evaluated at different time points by different analyses depicted in Figure 9A.
As a negative control, AHCFs were also transfected with PLGA-Neg-mimic. The morpho-
logical analysis confirmed aggregation, orientation, and fusion of cells as early as day 3
in PLGA-AZA-treated and PLGA-PEI-miR-133a-AZA-treated cells in comparison with
PLGA-PEI-miRNA only treated cells. Therefore, we believe that 5′AZA as a demethylating
agent reduces the length of the transdifferentiation process. In addition to the morpho-
logical change, we also observed cTnT, a late cardiac marker expression following 7 days
of induction with PLGA-AZA, PLGA-PEI-miR-133a, and PLGA-PEI-miR-133a-AZA. It
was noteworthy that PEI-miR-133a alone (Figure 9B(b1–b4)) was efficient in reprogram-
ming the HCF cells. The results were similar to our previous report on dual miR for
reprogramming HCF cells in vitro [29]. Further, it is demonstrated in earlier reports that
miR in combo or miR alone could induce DCR [28]. Similarly, Li et al. showed that miR
combo reprogrammed neonatal murine cardiac fibroblast to iCMs [47]. Similarly, 5′AZA
alone had cTnT positive cells (Figure 9B(c1–c4)) similar to the miR-133a treatment group.
These results were comparable to the findings of sun et al., where they reprogrammed rat
bone marrow (BM) derived very small embryonic-like stem cells (VSELs) in differentiating
to cardiomyocyte-like cells invitro using 5′AZA treatment alone [48]. In another study,
mouse P19 embryonic carcinoma (EC) cells were differentiated into cardiomyocytes with
5′AZA treatment by epigenetic coregulation and FRK signaling [49]. However, a significant
number of cTnT-positive cells (29%) were found in the experimental group of cells treated
with a cocktail of miR-133a and 5′AZA (Figure 9C. qPCR analysis showed that miR-133a,
AZA, and miR-133a-AZA transfected cells upregulated the expression of early cardiac
transcription factors (TFs), with a significantly increased expression of GATA4 (p = 0.007),
MEF2C (p = 0.0004), TBX5 (p < 0.0001) and HAND2 (p = 0.0001) cardiac TFs, compared to
negmiR transfected cells, 3 days after transfection Figure 9D–F. Additionally, the expression
of NKX2.5 cardiac TF was increased in miRcombo transfected cells compared to controls,
although not significantly Figure 9F. These results were further supported by global methy-
lation ELISA quantification of 5′-methyl-2′-deoxycytidine. The results showed a reduced
5′-methyl-2′-deoxycytidine value compared with the control, which suggests a possible
correlation between epigenetic modification and DCR. As shown earlier, miR-133a has
regulated DNA methylation in the diabetic heart [24]. Similarly, our data demonstrated
that miR-133a and 5′AZA could enhance the reprogramming of cardiac fibroblasts by DNA
hypomethylation. The present in vitro results confirm the idea that the miR-133a and
5′AZA are key epigenetic erasers that could regulate DNA methylation to dictate cell fate.

DNA methylation occurs when a methyl group is covalently added to the 5th carbon
of the cytosine ring by DNA methyltransferases (DNMT), which results in 5-MedCyd.
DNA methylation is the major epigenetic modification. In somatic cells, 5-MedCyd is found
in the context of paired symmetrical methylation of dinucleotide CpG, while in embryonic
stem cells, the majority of 5-MedCyd is observed in the non-CpG context. Therefore, to
evaluate the reprogramming efficiency of cardiac fibroblasts using epigenetic modifiers,
ELISA-based global methylation analysis of cells treated with PLGA NPs (PEI-miR-133a,
AZA, PEI-miR-133a-AZA) was carried out on day 3 and day 7. The results showed a
reduction in DNA methylation on both selected time points Figure 10a,b. Nevertheless,
compared to day 3 (Figure 10b), a significant reduction in 5-MedCyd was observed on day 7
(Figure 10b). Further, on day 7, PLGA-5′AZA (23%) treated cells show a slightly reduced
5-MedCyd value compared to the PLGA-PEI-miR-133a (26%). While the 5-MedCyd value
of PLGA-PEI-miRNA and PLGA-5′AZA were significantly reduced, the co-delivery of
miR-133a and 5′AZA (20%) treated cells showed further hypomethylation, which could be
due to the inhibition of DNA methylation activity by both miR-133a and 5′AZA.
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Figure 9. MiR-133a, AZA, and MiR-133a-AZA-transfected AHCFs show cTnT expression and
increased cardiac transcription factor expression. (A) Representative scheme of experimental design.
AHCFs were transfected with MiR-133a, AZA, and MiR-133a-AZA or negative control (negmiR). The
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acquisition of cardiomyocyte-associated features was evaluated after 3 days (Methylation ELISA and
qpcr for cardiac transcription factors), 7 days (Immunostaining for cardiomyocyte marker and Methy-
lation ELISA). (B) Immunostaining analysis to evaluate HCF cells treated with PLGA-PEI-miR-133a
(b1–b3), PLGA-AZA (c1–c3), and PLGA-PEI-miR-133a-AZA (d1–d3). The cells treated with both
miR-133a, and AZA show relatively more cTnT-positive cells when compared with untreated cells
(control) (a1–a3), miR-133a, and AZA alone. (C) cTnT positive cell count expressed in percentage.
(D–H) Gene expression of cardiac transcription factors. The expression of GATA4, MEF2C, TBX5,
HAND2, and NKX2.5 was evaluated by qPCR 7 days post-transfection in AHCFs transfected with
MiR-133a, AZA, and MiR-133a-AZA (blue) or negmiR (red). Data are representative of three inde-
pendent experiments, each performed in triplicate. Stated p-value is versus negmiR controls. (scale
bar = 50 µm). The experiment was statistically significant, with p < 0.05 (*** p ≤ 0.001).
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Figure 10. Effect of PLGA NPs (PEI-miR-133a, AZA, and PLGA-PEI-miR-133a-AZA) treatment on
HCF cells. (a) Quantification of 5′-methyl-2′-deoxycytidine (5-MedCyd) in the DNA sample after
treatment with different PLGA NP formulations in HCF cells using ELISA on day 3 (b) Quantification
of 5′-methyl-2′-deoxycytidine (5-MedCyd) in the DNA sample after treatment with different PLGA
NP formulation in HCF cells using ELISA on day 7. ** p ≤ 0.01.

3. Materials and Methods
3.1. Materials

Branched PEI 25kDa, Acid terminated poly (D, L-lactic-co-glycolic acid) (PLGA)
(MW: 7000–17,000, 50:50), 5′Azacytidine (AZA), polyvinyl alcohol (PVA), MW 31–50 kDa,
87–89% hydrolyzed, fluorescein isothiocyanate (FITC) (Sigma Aldrich, Japan), Fibroblast
medium 3, detach kit, Adult Human Cardiomyocyte (HCM) (PromoCell), Myocyte growth
medium (Promocell), Adult Human Cardiac Fibroblasts (HCF) (PromoCell), PrestoBlue
(ThermoFisher Scientific), pre-miRTM miRNA precursors for miR-miR-133a (Ambion),
Quant-iT Ribogreen RNA Assay Kit (Thermo Scientific), 2′,7′-Dichlorofluorescin diacetate
(Sigma Aldrich, Japan), InvitrogenTM Purelink® Genomic DNA kit (K182001), InvitrogenTM

Live/Dead cytotoxicity kit, Lipofectamine 2000, mouse monoclonal anti-cardiac Troponin
T (cTnT) antibody, Donkey anti-mouse Alexa fluor 488 (ThermoFisher Scientific) and
Fixation buffer and Perm/Wash buffer (BD Bioscience). All other chemicals or reagents
were of an analytical grade acquired either from Sigma (Merck) or Wako Chemicals, Japan.
NucBlue Live Ready Probes Reagent was procured from Thermo Fisher Scientific. Applied
Biosystems TaqMan Gene Expression assays (FAM-labeled) against the genes GATA4, TBX5,
HAND2, MEF2c, NKx2.5, and GAPDH were purchased from Thermo Fisher Scientific.
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3.2. Methods
3.2.1. miRNA Polyplexes Preparation and Gel Retardation Assay

The PEI miRNA complexes were synthesized by a previously established method [29].
Briefly, PEI and miRNA were complexed by the self-assembly method. The PEI polymer
solution of concentration 1 mg/mL was added to miRNA at a concentration of 60 pmol
at nitrogen to phosphate ratio of 1:10. The mixture of polymer: miRNA was incubated at
room temperature for 30 min for the polyplexes formation. The formation of polyplexes
was confirmed by gel retardation assay. The polyplex solution of 10 µL was mixed with
4 µL of loading buffer loaded onto 1% agarose gel with gel red—Tris-acetate (TAE) running
buffer of pH 8.3 and electrophoresed at 100 V for 30 min. The presence of miRNA bands
was visualized with an ultraviolet illuminator and photographed using gel doc (Image
quant LAS 4000).

3.2.2. Synthesis and Characterization of PEI-miR-133a, PLGA AZA, and
PLGA-PEI-miRNA-AZA

The AZA drug, PEI-miR-133a, and miR-133-AZA were encapsulated in PLGA by
a double emulsion solvent evaporation method. In this method, 30 mg of PLGA was
dissolved in 1 mL of DCM. The dissolved polymer solution was kept under magnetic
stirring for complete dissolution. Briefly, 1 mg of the drug was added to 1 mL of DMSO.
The mixture was added to an aqueous solution of PVA with 5% (w/v) and emulsified using
a probe sonicator for 3 min on the ice. In order to evaporate the dichloromethane; the
emulsion was agitated using a magnetic stirrer for 3 h. Then it was centrifuged for 30 min
at 6000 rpm with subsequent washing with RNAase-free water 3 times to remove the traces
of PVA. The wash solution was collected to calculate free NPs in supernatants, which
are not encapsulated. The collected nanoparticles were lyophilized for 24 h and stored
at −20 ◦C until further use. Simultaneously, the same method was used to synthesize
miRNA-loaded particles and AZA-miRNA-loaded particles. A similar protocol was used
with 50 nM of miRNA complexed with polyethyleneimine with an N:P ratio of 1:10 and
added to PLGA polymer solution dissolved in DCM. In this case, AZA-miRNA, 1 mg of
the drug, and 50 nM of miRNA complexed with polyethyleneimine with an N:P ratio of
1:10 was added to 1 mL polymer solution. The void nanoparticles are prepared similarly
without polyplexes and FITC.

3.2.3. Physico-Chemical Characterization

The size and morphology were analyzed using transmission electron microscopy
(TEM) (JEOL JEM-2100 TEM, Tokyo, Japan). To visualize the miRNA formation previously
established negative staining method was used [29]. Polyplexes at an N/P ratio of 10
was prepared by adding the desired volume of PEI polymer solution of 1mg/mL and
incubated for 30 min. A 10 µL of the sample was dropped on the TEM carbon-coated
copper. Following the treatment, Ti blue dye was added to the polyplexes solution on the
grid, and the grid was allowed to dry at room temperature. TEM was used to characterize
the morphology of PEI-miRNA polyplexes at an accelerating voltage of 100 kV. Scanning
electron microscopy (SEM) (JEOL, JSM-7400, Tokyo, Japan). and TEM (JEOL JEM-2100
TEM, Tokyo, Japan) were used to evaluate the size and the morphology of synthesized
NPs. Briefly, the nanoparticles were suspended in RNA-free water and dried for 24 h.
The air-dried samples were platinum-coated, and the SEM images were acquired with an
accelerating voltage of 5 kV and a beam current of 20 µA. Similarly, 10 µL of the sample
was dropped on the hydrophilized Cu microgrid and air-dried at room temperature, and
TEM images were acquired with an accelerating voltage of 100 kV.

The hydrodynamic diameter and ζ-potential measurements were carried out using
Zetasizer (Malvern, Nano-ZS) in triplicates. The average size and polydispersity index (PDI)
of the nanoparticles and polyplexes were measured using disposable polystyrene cuvettes.
Zeta potential measurements were carried out using dip cells. In the case of polyplexes, the
particles were diluted with RNase-free water to 1 mL volume before measurement. Fourier
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Transform Infrared (FTIR) analysis was performed using Nicolet iS50/Raman, Thermo
Scientific Spectrometer, where the IR spectra were recorded over a region of 4000–400 cm−1

with 4 cm−1 resolution.

3.2.4. Percentage Yield and Encapsulation Efficiency

The amount of miRNA loaded into the nanoparticles (NPs) was determined by a
previously reported method [29]. The encapsulation efficiency was determined by the
number of untrapped miRNA mimics in the wash solution quantified by Quanti-iT Ri-
bogreen RNA Assay. The fluorescence intensity resulting from the miRNA binding to
ribogreen reagent was determined using a microplate reader. Similarly, In the case of the
drug, the absorbance was measured using UV spectroscopy. miRNA/drug loading in
nanoparticles was determined by subtracting the total amount of miRNA/drug recovered
in the wash solution miRNAw/drugw from the initial amount of miRNAi/drugi added.
The encapsulation efficiency was calculated using the following equation [1], the loading
efficiency was calculated using the following formula [2], and the yield of nanoparticles
was calculated using the following equation [3],

Encapsulation Efficiency =
miRNA/drug i−miRNA/drug w

miRNA/drug i
100 (1)

where miRNA/drug i is the initial amount of miRNA/drug, and miRNA/drugw is the
amount of miRNA or drug in the wash solution.

% loading =
amount of miRNA/Drug in the particle

gross weight of nanoparticles
100 (2)

% yield =
dry weight of the Nanoparticle obtained

WmiRNA/drug + WPLGA
100 (3)

where Wm is the amount of miRNA/drug, and WPLGA is the amount of PLGA used for
nanoparticle synthesis.

3.2.5. Gel Electrophoresis Assay to Confirm Encapsulation and Stability of miRNA
Polyplexes to PLGA Nanoparticles

The confirmation of encapsulation and stability of miRNA polyplexes to PLGA NPs
was confirmed by agarose gel electrophoresis. In order to confirm the encapsulation of PEI-
miRNA, supernatant obtained during the synthesis of PLGA NPs were gel electrophoresed
to confirm the high encapsulation. Further, to quantitatively analyze the stability, briefly, the
nanoparticles were centrifuged, and the pellet was ruptured with an aqueous solution of 1%
(w/v) sodium dodecyl sulfate (SDS) to determine the presence of miR-133a qualitatively. To
each 10 µL sample, 2 µL loading buffer was added, and the complexes were then loaded on
1 % agarose gel containing Gel Red immersed in Tris-acetate (TAE) running buffer (pH 8.3)
and electrophoresed at 100 V for 30 min. The presence of miRNA bands was visualized
with a UV illuminator and photographed using a gel doc imaging system (Image quant
LAS 4000). Naked miRNA was used as a control.

3.2.6. Invitro miRNA/Drug Release

Invitro miRNA and drug release profiles from PLGA NPs were assessed at pH 7.4 and
pH 5.0 to simulate extra-cellular (pH 7.4) and intra-cellular (pH 5.0) microenvironments.
Briefly, 15 mg of NPs were dispersed in 15 mL of PBS buffer, and 1 mL was aliquoted in
2 mL Eppendorf tubes with a final concentration of 1 mg/mL. Tubes were incubated with
the agitation of 120 rpm for 3 days at 37 ◦C. At predetermined intervals, the tubes were
centrifuged at 15,000 rpm for 30 min. For the drug, the absorbance was measured at 234 nm,
whereas miRNA release was estimated by Quanti-iT Ribogreen RNA, where a working
solution of 100 µL was added to each well in 96 well plates containing 100 µL of standard,
blank and unknown samples that were briefly mixed and incubated for 5 min at room
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temperature (protected from light). miRNA concentration of each sample was measured
by a microplate reader (Power scan HT microplate reader, Dainippon Sumitomo Pharma,
Japan). The release percentage was calculated using the following equation [5],

% release =
Released miRNA/drug

Total miRNA/drug
100 (4)

where ‘Released miRNA/drug’ is the concentration of the miRNA/drug released from the
NPs and ‘Total miRNA/drug’ is the amount of miRNA/drug encapsulated in the NPs.

3.2.7. Cell Culture

Human Cardiac Fibroblasts (HCF) or Human Cardiomyocytes (HCM) were cultured
at a cell density of 5 × 106 cells in a specialized Fibroblast medium 3 (Promocell) and
Myocyte growth media (Promocell) respectively at 37 ◦C in a 5% CO2 incubator. The cells
were subcultured every 6–7 days or until confluent.

3.2.8. PLGA-PEI-miR133a Transfection

HCF was seeded at a cell density of 5 × 104 cells in 6 well plates. After 24 h, cells were
transfected with pre-miRTM miRNA precursors for miR-133a using PLGA NPs encapsu-
lated with polyplexes of miR-133a. Following the transfection with miR-133a, fresh media
was added after 24 h incubation.

3.2.9. PrestoBlue Cell Viability Assay

In order to evaluate the cytocompatibility of synthesized PLGA NPs, the adult human
cardiac fibroblast (HCF) and human cardiomyocyte (HCM) cells were seeded in 96 well
plates at a density of 5 × 104 and maintained at 37 ◦C with 5% CO2. After 24 h of incubation,
fresh media was replenished, and the NPs were added to cells in different concentrations
(1 mg/mL, 750 mg/mL, 500 mg/mL, 250 mg/mL, 100 mg/mL). The cells were then incu-
bated for 24, 48, and 72 h at 37 ◦C with 5% CO2. Similarly, miR-133a polyplexes (50nM was
used for to complex with PEI at an N:P ratio 10), free drug (1 mg/mL) and PLGA void, PLGA
NPs (PLGA-AZA, PLGA-PEI-miR-133a, PLGA-PEI-miR133a-AZA) were treated at a concen-
tration of 100 mg/mL for 24, 48 and 72 h. The percentage of cell viability is estimated by the
conversion of resazurin in the dye to fluorescent resorufin by the metabolically active cells.
After the incubation, 10% of PrestoBlue reagent was added to each sample and incubated for
2 h. At the end of incubation, fluorescence intensity was measured at 530/590 nm using a
microplate reader. The cell viability was calculated using equation [4],

% cell viability =
Sample
Control

100 (5)

3.2.10. Live/Dead Cell Cytotoxicity Assay

The live/dead cytotoxicity of NPs was determined after treating the HCF cells with
PLGA NPs. The cells were seeded on 35 mm confocal dishes at a cell density of 5× 104 cells
for 72 h, and on the following day, PLGA void and PLGA NPs (AZA, PEI-miR133a, PEI-
miR-133a-AZA) were added to the cells at a concentration of 100 µg/mL. Post-treatment,
cells were washed with 1X PBS. The cells were then treated with dyes per the manufac-
turer’s instructions on the InvitrogenTM Live/Dead cytotoxicity kit (L3224). The cells were
imaged using the Confocal laser scanning microscopy (CLSM, Nikon A1+ Tokyo, Japan) at
495/515 nm for calcein and 528/617 for EthD-1.

3.2.11. Cellular Uptake

CLSM analysis (CLSM, Nikon A1+ Tokyo, Japan) was carried out to analyze the
NPs and miR-133a uptake by HCF and HCM. To assess the NPs and miR-133a uptake,
FITC-PLGA NPs and Cy5 labeled miR-133a was used. The cells were cultured on a 35 mm
glass-based culture dish at a seeding density 5 × 104 for 24 h. Subsequently, 100 µg/mL
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concentration of FITC PLGA and PEI-Cy5miR polyplexes (50nM miR-133a complexed
at an N:P ratio 10) were added to the cells and incubated for 4 h. The void PLGA was
taken as control. After incubation of 4 h, the cells were rinsed with PBS pH 7.4 to remove
the unbound nanoparticles. Then, the cells were analyzed at an excitation wavelength of
488 nm for FITC and 670 for Cy5. To further confirm the uptake of FITC update quantitively,
after the incubation, HCF cells were trypsinized and resuspended in PBS (pH 7.4). Then the
suspended cells were analyzed using a flow cytometer (Bay bioscience JSAN, Japan) and
appsan software. Ten thousand events were read at an excitation wavelength of 488 nm
(FITC) for each sample, and untreated cells were used as control.

3.2.12. cTnT Cardiac Late Marker Expression

Adult human cardiac fibroblasts were transfected using scaffold-mediated in-situ
delivery of miRNA. The transfected cells were maintained for 28 days. After day 7, the
cells were trypsinized and fixed with a wash buffer. The cells were incubated with mouse
monoclonal anti-cardiac Troponin T (cTnT) antibody at 1:200 dilution for 1 h at room
temperature. Following incubation, the secondary antibody donkey anti-mouse Alexa fluor
488 was used at 1:200 respectively. After that, cells were washed with wash buffer and
analyzed for cTnT expression using a confocal microscope.

3.2.13. RNA Isolation Quantitative Real-Time PCR (qRT-PCR)

The cells were harvested after day 7 post-transfection to isolate the total RNA by
RNeasy Micro kit, and cDNA was synthesized using Superscript-III reverse transcriptase.
The cDNA template was used for qPCR analysis. The qRT-PCR was performed using
TaqMan universal master mix, pre-designed TaqMan gene expression primer/probes
assay against the genes GATA4, MEF2C, TBX5, HAND2, NKX2.5, and GAPDH. Real-time
quantification system Applied Biosystems 7900 Fast Real-Time PCR system was used for
the experiment. The TaqMan gene expression assay IDs of the respective target genes
are GATA 4: Hs00171403_m1, MEF2C: Hs0398823_m1, TBX5: Hs00361155_m1, HAND2:
Hs00232769_m1, NKX2.5:Hs03988823_m1, GAPDH: Hs02786624_g1. The relative mRNA
expression levels were calculated and normalized relative to GAPDH mRNA as the internal
control using the ∆∆Ct method.

3.2.14. Global Methylation Analysis

Genomic DNA was extracted with InvitrogenTM Purelink® Genomic DNA kit (K182001)
according to the manufacturer’s instructions. Briefly, the DNA was converted to single-
stranded DNA by incubation at 95 ◦C for 5 min, followed by rapid chilling on ice. Samples
were then digested to nucleoside by incubating the denatured DNA with nuclease P1 for
2 h at 37 ◦C in 20 mM sodium acetate (pH 5.2). Further, Alkaline phosphate was added and
incubated for 1 h at 37 ◦C in 100 mM Tris (pH 7.5). After centrifugation, the supernatant
was used for further ELISA assay using Global DNA Methylation ELISA Kit (5′-methyl-2′-
deoxycytidine quantitation; CELL BIOLABS) according to the manufacturer’s protocol.

3.2.15. Statistical Analysis

One-way ANOVA followed by Dunnett’s multiple comparisons test was performed
using GraphPad Prism version 9.1.2.

4. Conclusions

This study shows the first evidence that co-delivery of miR-133a and DNA-methylation
inhibitor 5′AZA enhance epigenetic mediated reprogramming. The role of DNA methy-
lation in reprogramming is still poorly understood; however, it is well established that
miR, in a combo or alone, can efficiently reprogram cells both in vitro [28,29,46] and
in vivo [23,28,50]. Thus, we hypothesized that the use of non-viral DDS for the co-delivery
of the drug and miR could improve biocompatibility while providing more insight into
the regulation of epigenetic reprogramming. This study focuses on demonstrating the
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co-delivery of miR-133a and 5′AZA using PLGA NPs to promote epigenetic reprogram-
ming by DNA hypomethylation. However, we have not explored the underlying molecular
mechanism of direct epigenetic reprogramming using miR-133a and 5′AZA. Here, the
synthesized PLGA NPs had an average size of 298 nm and exhibited a high encapsulation
efficiency of 96% while showing a pH-dependent bi-phasic release of reprogramming
factors. Further, the toxicity profile of the NPs demonstrated that this nanoformulation
is highly cytocompatible on both HCF and HCM. Further, confocal microscopy results
demonstrate a high cellular uptake of PLGA NPs.

In summary, the results of this study suggest that 5′AZA can enhance the reprogram-
ming efficiency of HCF to iCMs by inhibiting DNA methylation. At the cellular level,
5′AZA inhibits the global methylation levels significantly when treated with PLGA-5′AZA;
however, when co-delivered with PEI-miR-133a and 5′AZA loaded PLGA NPs, the inhibi-
tion of DNA methylation activity is further enhanced. Although the detailed mechanisms
underlying these effects remain unclear. With the results of the proof of principle report on
induction of HCF with miR-133a and 5′AZA, we propose that miR-133a and 5′AZA will be
promising candidates for the epigenetic DCR of cardiac fibroblast to iCMs.
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