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Abstract: Excess melanin in skin is known to be the main cause of hyper-pigmentary skin diseases
such as freckles and lentigo. This study aimed to evaluate the depigmenting efficacy of an extract
from the marine microorganism strain, Streptomyces sp. SNA077. To determine the anti-melanogenic
efficacy of SNA077, we assessed the melanin contents of SNA077-treated B16, Melan-a, and MNT-1
cells. We observed the expression of key enzymes in melanogenesis via qRT-PCR and Western blot
analyses. We further estimated the skin-whitening effect of SNA077 using a skin-equivalent model.
SNA077 dramatically decreased the melanin production of B16 cells, Melan-a, and MNT-1 cells. In
B16 cells treated with SNA077, the activity of cellular tyrosinase was clearly inhibited. In addition, the
mRNA and protein expression levels of melanogenic genes were suppressed by SNA077 treatment in
B16 and MNT-1 cells. Upstream of tyrosinase, the expression levels of phospho-CREB, phospho-p38,
PKA activity, cyclic AMP production, and MC1R gene expression were inhibited by SNA077. Finally,
SNA077 clearly showed a skin-brightening effect with a reduced melanin content in the skin tissue
model. Collectively, our results suggest for the first time that an extract of marine Streptomyces sp.
SNA077 could be a novel anti-melanogenic material for skin whitening.

Keywords: marine bacteria; Streptomyces sp.; melanogenesis; melanogenic genes

1. Introduction

To improve hyper-pigmentary disorders, such as freckles and lentigo, many re-
searchers have performed the isolation of depigmenting agents from plants. The develop-
ment of raw materials with strong biological action but few side effects is a challenge for
researchers, because a biologically active substance will typically have corresponding toxic-
ity. Thus, there have been numerous studies have examined bioactive materials isolated
from natural plants. Natural substances, which typically have relatively low toxicity, have
recently gained favor as novel agents in the cosmetics industry. However, there have been
very few reports on bioactive materials from microorganisms, and bioactive compounds
produced by marine microorganisms are particularly unexploited. Therefore, from among
the many natural substances known to have biological activity, we focus on whole extracts
and secondary metabolites produced by marine microorganisms, which are known to have
many pharmacologically active molecules [1]. Here, we report new results revealing that a
crude extract from the marine Streptomyces sp., SNA077, has anti-melanogenic effects and
might offer potential as a new functional pharmaceutical ingredient.

Abnormal skin pigmentations, such as melasma and freckles, represent skin pigmen-
tary disorders that are caused by sun exposure and stress conditions, including hormone
changes. One of the main hormones known to cause melanogenesis is alpha-melanocyte
stimulating hormone (α-MSH) which is released from keratinocytes under stress condi-
tions or exposure to ultraviolet (UV) radiation [2–5]. The released α-MSH binds to the

Int. J. Mol. Sci. 2022, 23, 14922. https://doi.org/10.3390/ijms232314922 https://www.mdpi.com/journal/ijms

https://doi.org/10.3390/ijms232314922
https://doi.org/10.3390/ijms232314922
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/ijms
https://www.mdpi.com
https://orcid.org/0000-0002-4814-5685
https://doi.org/10.3390/ijms232314922
https://www.mdpi.com/journal/ijms
https://www.mdpi.com/article/10.3390/ijms232314922?type=check_update&version=1


Int. J. Mol. Sci. 2022, 23, 14922 2 of 17

melanocortin 1 receptor (MC1R) and stimulates intracellular cAMP in melanocytes. The
stimulated intracellular cAMP activates transcription factors, such as microphthalmia-
associated transcription factor (MITF) and its transcription factor, cAMP response element-
binding protein (CREB), via the cAMP-dependent phosphokinase A (PKA) and p38 MAPK
signaling pathways [6–8]. These transcription factors, especially MITF, trigger melano-
genesis by binding to the promoter regions of the genes encoding melanogenesis-related
proteins, tyrosinase, Tyrp-1, and Tyrp-2. Tyrosinase is the main enzyme of melanin pro-
duction; it acts to hydroxylate l-tyrosine to l-3,4-dihydroxyphenylalanine (L-DOPA), and
subsequently oxidizes L-DOPA to DOPA quinone. Tyrp-2 catalyzes the tautomerization
of dopachrome to produce 5,6-dihydroxyindole-2-carboxylic acid (DHICA) and also oxi-
dizes DHICA to produce carboxylate indole-quinone [9–12]. As these melanogenic factors
mainly act to regulate melanogenesis, they have been targeted for the development of novel
whitening agents [13].

In the present study, we measured melanin content to clearly show that SNA077
has anti-melanogenic effects in the human melanoma cell line, MNT-1, and the mouse
melanocyte cell lines, Melan-a and B16. To define the relevant upstream molecular signaling
pathway (s), we tested the ability of SNA077 to suppress the mRNA and/or protein
expression levels of melanogenic factors, as well as its effects on the cAMP/PKA/CREB
and p38 MAPK signaling pathways, which mediate melanogenesis. Finally, we checked the
whitening efficacy of SNA077 using a three-dimensional (3D) skin-equivalent tissue model.

2. Results
2.1. Secondary Metabolite Profiling of SNA077 Extract

By comparing the UV and MS spectra of peaks from the SNA077 extract to those of
an in-house spectral library (Figure 1), we identified the presence of several secondary
metabolites, including the β-lactam antibiotic cephalosporin C, the cyclic decapeptide
tyrocidine, the macrolide rapamycin, precingulid compounds, and members of the germi-
cidin group. Two compounds with unique UV spectra (with retention times of 6.892 and
9.059 min) were also respectively observed. All the compounds indicated in the in-house
UV spectral library were not isolated from the crude extract of SNA077. However, two
compounds with the purity above 95% were isolated from the crude extract, and were iden-
tified as germicidin A (retention times of 8.939, m/z = 197.2 [M + H]+) and isogermicidin A
(retention times of 9.333, m/z = 197.2 [M + H]+) by comparing the NMR spectral with the
literature (Figures S2–S7) [14,15]. Streptomyces sp. strain SNA077 was also expected to
produce a red-colored pigment, given the red color of the extract. To identify the pigments
within the SNA077 extract, fractionation was conducted. Seven fractions were obtained,
and the seventh-fraction peak, with a retention time of 12.543 min, was identified as a
member of the prodigiosin alkaloid family of natural products based on comparison to
an in-house spectral library (match score = 998, Figure S1) [16] along with the compari-
son of its 1H NMR spectral with the literature (Figures S8 and S9). Prodigiosin, which is
characterized by a deep, blood-red color [16], is reportedly produced by Serratia marcescens,
Pseudomonas magneslorubra, Alteromonas rubra, and Gram-positive actinomycetes, such as
Streptomyces longisporus ruber and Streptoverticillium rubrireticuli.
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Figure 1. UV, ELSD, and mass spectra for compounds in culture extracts of SNA077 (blue) in comparison with known in-house compounds (red). (A) cephalo-
sporin C, match score = 958; (B) tyrocidine, match score = 946; (C,D) Rapamycin, match score = 948, 961; (E) preechinulin, match score = 977; (F,G) germicidin A, 
match score = 971, 951; (H,I) staurosporin, match score 842, 870. Match scores higher than 900 were considered positive identification for that compound class. 

 

Figure 1. UV, ELSD, and mass spectra for compounds in culture extracts of SNA077 (blue) in comparison with known in-house compounds (red). (A) cephalosporin C,
match score = 958; (B) tyrocidine, match score = 946; (C,D) Rapamycin, match score = 948, 961; (E) preechinulin, match score = 977; (F,G) germicidin A,
match score = 971, 951; (H,I) staurosporin, match score 842, 870. Match scores higher than 900 were considered positive identification for that compound class.
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2.2. Inhibitory Effect of SNA077 on Melanin Content and Cellular Tyrosinase Activity in B16,
Melan-a, and MNT-1 Cells

Prior to assessing the whitening efficacy of SNA077, we tested its cytotoxicity in
melanocytes. In B16 cells, SNA077 at doses between 6.25 and 12.5 µg/mL did not show
cytotoxicity, and only mild cytotoxicity was observed following treatment with 25 µg/mL
(Figure 2A). Based on these results, non-cytotoxic doses of 2.5 to 10 µg/mL were subse-
quently used to determine the inhibitory effect of SNA077 on melanogenesis. In order to
compensate for cellular amounts, melanin content was normalized with respect to the total
protein content by performing a protein assay. Our results revealed that the application of
2.5 to 10 µg/mL SNA077 dose-dependently suppressed the extracellular and intracellular
productions of melanin in α-MSH-stimulated B16 cells (Figure 2B,C). Kojic acid was used
as a positive control for anti-melanogenic activity. To assess the effect of SNA077 in Melan-a
melanocytes, cells were treated with SNA077 at doses ranging between 6.25 and 25 µg/mL.
As seen for B16 cells, SNA077 did not affect cytotoxicity up to 12.5 µg/mL in Melan-a cells
(Figure 2D), and the application of 2.5 to 10 µg/mL SNA077 dose-dependently inhibited
the intracellular melanin content in Melan-a cells (Figure 2E). Similarly, we treated MNT-1
cells with SNA077 at doses ranging between 6.25 and 25 µg/mL. Unlike B16 cells, SNA077
showed cytotoxicity at 12.5 µg/mL in MNT-1 cells (Figure 2F); thus, we used SNA077 below
10 µg/mL concentration. The application of 2.5 to 10 µg/mL SNA077 dose-dependently in-
hibited the intracellular melanin content in MNT-1 cells (Figure 2G). Interestingly, SNA077
showed a stronger inhibitory effect on melanogenesis than kojic acid under the tested
conditions. When viewed under a microscope, the SNA077-treated B16 and MNT-1 cells
were brighter in color than the corresponding control groups (Figure 2H,I). To begin explor-
ing the anti-melanogenic mechanism of SNA077, we measured direct tyrosinase activity
using mushroom tyrosinase and also measured intracellular tyrosinase activity by using
cellular tyrosinase extracted from B16 cells, depending on the degree of L-DOPA oxidation.
Treatment with 2.5 to 10 µg/mL SNA077 had no inhibitory effect on mushroom tyrosinase
activity, suggesting that SNA077 does not directly affect tyrosinase activity (Figure 2J). We
then measured cellular tyrosinase activity using an α-MSH-treated B16 cell lysate that had
been treated with SNA077 for 48 h. Interestingly, 10 µg/mL SNA077 inhibited cellular ty-
rosinase activity in α-MSH-treated B16 cells (Figure 2K). These results collectively revealed
that SNA077 has an inhibitory effect on melanin synthesis in melanocytes and further
suggested that the anti-melanogenic mechanism of SNA077 is derived from decreasing the
gene expression level of tyrosinase (because it decreased the activity of cellular tyrosinase
but not that of mushroom tyrosinase).
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Figure 2. Anti-melanogenic efficacy of non-toxic concentrations of SNA077 in melanocytes. (A) Ef-
fect of SNA077 on B16 cell viability. B16 cells were treated with the indicated concentrations of 
SNA077 for 72 h, and cell viability was estimated using a CCK-8 assay kit. (B,C) Effects of a 72 h 
incubation with the indicated concentrations of SNA077 or kojic acid on the intracellular and 

Figure 2. Anti-melanogenic efficacy of non-toxic concentrations of SNA077 in melanocytes. (A) Effect
of SNA077 on B16 cell viability. B16 cells were treated with the indicated concentrations of SNA077 for
72 h, and cell viability was estimated using a CCK-8 assay kit. (B,C) Effects of a 72 h incubation with
the indicated concentrations of SNA077 or kojic acid on the intracellular and extracellular melanin
contents in α-MSH-stimulated B16 cells. (B) Extracellular melanin content was colorimetrically
determined. Photographs show the color of the medium in each well following treatment with
α-MSH and SNA077. (C) Intracellular melanin content was determined by measuring the absorbance
of B16 cell lysates at 405 nm and normalizing the obtained values to the protein quantity, which was
determined using a protein assay kit. Results are presented as means± SD, expressed as a percentage
relative to the control group. (D,F) Viability of Melan-a cells (D) and MNT-1 human melanoma cells
(F) after treatment with SNA077 for 72 h. (E,G) Representative results show melanin contents in
Melan-a cells (E) and MNT-1 cells (G) treated with SNA077 or kojic acid for 72 h. (H,I) Microscopy
of B16 cells (H) and MNT-1 cells (I). (J,K) Mushroom (J) and cellular (K) tyrosinase activities were
spectrophotometrically measured at 475 nm, as described in Materials and Methods. Figures depict
results representative of at least three replicate experiments. Results are presented as means ± SD,
expressed as a percentage relative to the control group (* p < 0.05, ** p < 0.01, *** p < 0.001 vs. control
group). “-” means non-treated or without any treatment and “+” means treated with the indicated
compound along with α-MSH at 0.1 µM where indicated. ### p < 0.001.
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2.3. Inhibitory Effect of SNA077 on mRNA and Protein Expression Levels of
Melanogenesis-Related Genes in B16 and MNT-1 Cells

To evaluate the hypothesis that SNA077 could affect the gene expression of tyrosinase,
the expression levels of three main enzymes known to affect melanogenesis, namely tyrosi-
nase, Typr-1, and Tyrp-2, were analyzed. SNA077 was applied to α-MSH-stimulated B16
or MNT-1 cells at 2.5 to 10 µg/mL for 24 h, and the mRNA expression levels of tyrosinase,
Tyrp-1, and Tyrp-2 were detected with real-time PCR. The results showed that SNA077 dose-
dependently suppressed the mRNA expression levels of tyrosinase, Tyrp-1, and Tyrp-2 in
B16 cells (Figure 3A) and MNT-1 cells (Figure 3B). Next, the protein expression levels of these
melanogenesis-related factors in α-MSH-stimulated B16 and MNT-1 cells treated with the
indicated concentrations of SNA077 for 48 h were detected using Western blot analysis. The
results revealed that the protein expression levels of tyrosinase, Tyrp-1, and Tyrp-2 were
dose-dependently decreased in B16 cells (Figure 3C–F) and MNT-1 cells (Figure 3G,H).
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tor, MITF, using real-time PCR and Western blot analysis. The application of SNA077 at 
the indicated concentration decreased the mRNA expression level of MITF after 24 h in 
B16 and MNT-1 cells (Figure 4A,B) and decreased the protein expression level of MITF 
after 36 h in B16 cells (Figure 4C,D) and after 48 h in MNT-1 cells (Figure 4E,F). These 
results collectively revealed that SNA077 has inhibitory effects on the expression levels of 
three main melanogenic enzymes and their transcription factor, MITF, in melanocytes. We 
observed correlations between the levels of intracellular tyrosinase activity and melano-
genic gene expression, indicating that SNA077 decreased the melanin content by down-
regulating expression levels of tyrosinase genes, and thereby inhibiting intracellular tyro-
sinase activity. 

Figure 3. Inhibitory effect of SNA077 on the expression of melanogenic enzymes. (A,B) mRNA levels
of melanogenic enzyme-encoding genes were determined by real-time qPCR analysis in B16 cells (A)
and MNT-1 cells (B). Cells were treated with SNA077 for 24 h. The mRNA levels of the genes
encoding tyrosinase, Tyrp-1, and Tyrp-2 were normalized to that of β-actin. (C,E,G) The protein
levels of melanogenic enzymes were determined by Western blot analysis in B16 cells (C,E) and
MNT-1 cells (G). Cells were treated with SNA077 for 72 h. Equal amounts of proteins were resolved
by 10% SDS-PAGE and detected using specific antibodies. β-Actin was detected as a loading control.
(D,F,H) Protein bands were densitometrically quantified and analyzed using ImageJ software. Results
for B16 cells (D,F) and MNT-1 cells (H) are presented as means ± SD, expressed as a percentage
relative to controls (* p < 0.05, ** p < 0.01, *** p < 0.001 vs. control group; ### p < 0.001 vs. the
α-MSH-untreated control group).
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To further investigate the regulatory mechanism governing gene expression levels
of these melanogenic enzymes, we assessed the expression of their major transcription
factor, MITF, using real-time PCR and Western blot analysis. The application of SNA077
at the indicated concentration decreased the mRNA expression level of MITF after 24 h
in B16 and MNT-1 cells (Figure 4A,B) and decreased the protein expression level of MITF
after 36 h in B16 cells (Figure 4C,D) and after 48 h in MNT-1 cells (Figure 4E,F). These
results collectively revealed that SNA077 has inhibitory effects on the expression levels of
three main melanogenic enzymes and their transcription factor, MITF, in melanocytes. We
observed correlations between the levels of intracellular tyrosinase activity and melanogenic
gene expression, indicating that SNA077 decreased the melanin content by down-regulating
expression levels of tyrosinase genes, and thereby inhibiting intracellular tyrosinase activity.
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Figure 4. Inhibitory effect of SNA077 on the gene expression of MITF in melanocytes. (A,B) The
mRNA level of MITF was determined by real-time qPCR in B16 cells (A) and MNT-1 cells (B).
Cells were treated with SNA077 for 24 h. The mRNA level of MITF was normalized to that of
β-actin. (C,E) The protein level of MITF was determined by Western blot analysis in B16 cells (C) and
MNT-1 cells (E). Cells were treated with SNA077 for 36 h or 48 h. Equal amounts of proteins were
resolved by 10% SDS-PAGE and detected using specific antibodies; β-actin was detected as a loading
control. (D,F) Protein bands were densitometrically quantified and analyzed using ImageJ software.
Results for B16 cells (D) and MNT-1 cells (F) are presented as means ± SD, expressed as a percentage
relative to controls (** p < 0.01, *** p < 0.001 vs. control group; ### p < 0.001 vs. the α-MSH-untreated
control group).

2.4. Anti-Melanogenic Effect of SNA077 Involves Down-Regulating the Phosphorylation of
cAMP/PKA/CREB and MAPK in α-MSH-Stimulated B16 Cells

To explore the upstream signaling pathway involved in the down-regulation of MITF
and tyrosinase in SNA077-treated melanocytes, we focused on the PKA/CREB and MAPK
signaling pathways. The protein expression levels of CREB and MAPK were examined
by Western blot analysis. The results showed that the ratio of phosphorylated CREB
(p-CREB)/to total CREB (t-CREB) was significantly and dose-dependently decreased in
α-MSH-stimulated B16 cells treated with 2.5 to 10 µg/mL SNA077 for 24 h (Figure 5A,B).
To assess PKA activity in SNA077-treated melanocytes, the protein expression level of
phospho-PKA substrate was investigated. α-MSH-stimulated B16 cells were treated with
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SNA077 for 8 h, and the protein level of phospho-PKA substrate was determined by
Western blot assay. The results showed that expression level of phospho-PKA substrate was
dose-dependently decreased by SNA077 (Figure 5C), indicating that PKA is inactivated
by SNA077 treatment in melanocytes. Since PKA activity mainly depends on cAMP [4],
we next measured intracellular cAMP levels using a commercial assay kit. We found that
intracellular cAMP levels were significantly and dose-dependently decreased by SNA077 in
α-MSH-stimulated B16 cells (Figure 5D), indicating that the anti-melanogenic mechanism
of SNA077 could reflect inactivation of cAMP/PKA/CREB signaling. To further assess this
potential anti-melanogenic signaling, we used real-time qPCR to assess the expression of
MC1R, which is both the receptor of α-MSH and an upstream component of cAMP/PKA
signaling. As expected, SNA077 treatment of α-MSH-stimulated B16 cells dose-dependently
repressed the mRNA expression of MC1R (Figure 5E). We also investigated the protein
expression levels of the MAPKs (ERK, p38, and JNK) in α-MSH-stimulated B16 cells treated
with 2.5 to 10 µg/mL SNA077 for 24 h. The results showed that the ratio of p-JNK/t-JNK
was not significantly affected, whereas the p-ERK/t-ERK and p-p38/t-p38 ratios were
dose-dependently decreased by SNA077 in α-MSH-stimulated B16 cells (Figure 5F,G).
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Figure 5. Inhibitory effect of SNA077 on α-MSH-induced cAMP/PKA/CREB and MAPK signaling in
B16 cells. (A,C) Protein levels of phospho-CREB (A) and phospho-PKA substrate (C) were determined
by Western blot analysis in B16 cells. Cells were treated with SNA077 for the indicated times. Equal
amounts of proteins from B16 cells were resolved by 10% SDS-PAGE and detected using specific
antibodies. β-Actin was detected as a loading control. (B) Protein bands were densitometrically
quantified and analyzed using ImageJ software. To study upstream signaling, B16 cells were treated
with SNA077 for 15 min and the intracellular cAMP levels in lysates were estimated using a cAMP
Parameter assay kit (D). (E) Based on the cAMP test results, B16 cells were treated with SNA077 for
10 min and mRNA level of MC1R was determined by real-time qPCR analysis. (F) Protein levels
of phospho-MAPKs were determined by Western blot analysis in B16 cells. Cells were treated with
SNA077 for 24 h. Equal amounts of proteins were resolved by 10% SDS-PAGE and detected using
specific antibodies; the ratio of each phospho-MAPK to total-MAPK was calculated to control for
equal loading. (G) Protein bands were densitometrically quantified and analyzed using ImageJ
software. Results are presented as means ± SD, expressed as a percentage relative to controls
(* p < 0.05, ** p < 0.01, *** p < 0.001 vs. control group; # p < 0.05, ### p < 0.001 vs. the α-MSH-untreated
control group).

2.5. Inhibitory Effect of SNA077 on Melanogenesis in a 3D Human Skin Equivalent

To assess whitening effects in an in vivo-like condition, 3D human skin models have
been widely used. To estimate whether SNA077 could decrease the degree of pigmentation,
MelanoDerm was used. The MelanoDerm was topically treated with 0.03% SNA077 for
14 days and the color alteration was photographed. We found that SNA077 brightened the
color of MelanoDerm compared to that of the non-treated control MelanoDerm (Figure 6A).
Moreover, Fontana Masson’s staining showed that SNA077 decreased the level of intracellu-
lar melanin in this system (Figure 6B). These results showed that SNA077 could potentially
decrease epidermal pigmentation.
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Figure 6. Inhibitory effect of SNA077 on the pigmented human skin model, MelanoDerm. (A,B) Skin
whitening effects of SNA077 on a 3D pigmented epidermis skin model. MelanoDerm was treated
with different concentrations of SNA077 for 14 days, and epidermal pigmentation was assessed by
optical evaluation (A) and histological analysis using a Fontana Masson’s staining kit (B).

3. Discussion

Many researchers have sought to discover novel active compounds for the treatment of
hyperpigmentation-associated disorders. Many candidates have been assessed as potential
anti-melanogenic agents. However, although many active compounds have whitening
effects, their use in humans has been limited by side effects, such as cytotoxicity. Re-
cently, natural substances have emerged as promising anti-whitening candidates because
they have relatively few side effects compared to synthetic chemicals. However, most
natural plant extracts are difficult to use in practice because raw materials are obtained
in relatively limited quantities. One potential key to solving these problems is the use
of microorganisms. Although microorganisms also face limitations, their natural prod-
ucts can be mass produced under optimized culture and extraction conditions. To date,
various microorganisms, ranging from plant-derived microbial extracts to soil-harvested
Cyanobacteria have been reported for their whitening efficacy and developed for cosmetic
applications [17–19]. Recently, marine substances have been broadly researched for poten-
tial cosmetic applications, because marine resources are abundant and offer many effective
ingredients. For example, seaweeds have been shown to have anti-aging, antioxidant,
and anti-melanogenic effects [20]. The present study was conducted with a special focus
on marine microorganisms as sources of skin-whitening agents. Relatively few specific
experimental and mechanistic studies have examined the anti-melanogenic efficacy of
marine microorganism extracts. Therefore, we studied both the anti-melanogenic effect
and underlying mechanism of an extract from the marine microorganism, SNA077.

Melanogenesis occurs to protect the skin against external factors, such as UV light.
Melanocytes produce melanin via the oxidative reactions of melanogenic proteins, includ-
ing tyrosinase, Tyrp-1, and Tyrp-2 [9,10]. The expression of these melanogenic proteins
is regulated by MITF, whose expression is mainly influenced by the cAMP-PKA-CREB
pathway under stimulation by α-MSH [4–6]. α-MSH acts as a ligand for MC1R and
stimulates adenylyl cyclase, thereby activating the cAMP-PKA-CREB pathway for potent
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melanogenesis [21,22]. Here, we reported that SNA077 can decrease the intracellular cAMP
level in melanocytes (Figure 3D), suppressing PKA and CREB activity and thereby de-
creasing melanogenesis via inactivation of cAMP-PKA-CREB signaling. Interestingly, we
found that the MC1R mRNA level was decreased after only 5 min of SNA077 treatment.
Although this decrease in MC1R expression had a direct effect on the cAMP level in our
system, representing an experimental limitation of the present study, we propose that
SNA077 is likely to suppress the cAMP level at least partly via inhibiting MC1R expression
while melanin is synthesized in melanocytes. In addition, we suggest the possibility that
SNA077 could inhibit adenylate cyclase or some intracellular signal needed to activate
adenylate cyclase, although the additional experiments such as adenylate cyclase activity
will be needed.

In addition to the cAMP-PKA-CREB signaling pathway, α-MSH-induced melanogene-
sis also depends on MAPK signaling [23,24]. Among the MAPK family members, it is well
known that inhibition of p38 can decrease MITF [25]. In addition, phospho-ERK has two
different impacts on MITF: ERK is reportedly related to both upregulation of MITF gene
expression and MITF degradation [26–30]. In our experiments, the melanin content was
not decreased by the ERK inhibitor, PD98059, and similar inhibitions of melanin content
were seen in cells treated with SNA077 plus PD98059, and with SNA077 alone. These data
indicate that SNA077 decreased melanogenesis independent of the ERK pathway.

In the previous report, the treatment of cells with alpha-MSH led to the time-dependent
phosphorylation of both ERK and p38 MAP kinases. However, only inhibition of p38 MAP
kinase activity blocked the alpha-MSH-induced melanogenesis, indicating that activation
of the p38 pathway can potently promote melanogenesis [6]. In the current study, we ob-
served that SNA077 strongly suppressed p38 phosphorylation in melanocytes (Figure 4F).
Therefore, our findings suggest that SNA077 appears to inhibit melanogenesis via inacti-
vation of the p38 signaling pathway, but not the ERK pathway. Finally, beyond demon-
strating the anti-melanogenic effect of SNA077 in vitro, we also observed this effect in a
human skin equivalent. The maximum non-cytotoxic concentration of SNA077 in vitro
was 10 µg/mL (0.001%), whereas that used in the skin equivalent system was 0.03%. For
cosmetic application as a whitening material, the safe and effective concentration of a
material is generally higher than that tolerated in culture, due to issues with skin per-
meability and material stability. As shown in Figure 5, 0.03% SNA077 appeared to effec-
tively whiten human artificial skin, suggesting that it could be effective in a clinical test
for depigmentation.

Collectively, our present study provides preliminary evidence suggesting that SNA077
could be a potent and effective whitening agent for use in cosmetics and medicinal formula-
tions. In future studies, we will seek to identify and characterize the effective compound (s)
in SNA077 extracts.

4. Materials and Methods
4.1. General Experiments

Low-resolution LC/MS measurements were performed using an Agilent Technolo-
gies 1260 quadrupole (Agilent Technologies, Santa Clara, CA, USA) and a Waters micro
mass ZQ LC/MS system (Waters Corp, Milford, MA, USA) with a reverse-phase column
(Phenomenex Luna C18 (2) 100 Å, 50 mm × 4.6 mm, 5 µm, Torrance, CA, USA). The flow
rate was 1.0 mL/min, the duration was 18.0 min, and the solvent gradient ranged from
5% to 100% acetonitrile (CH3CN, Samchun, Seoul, Republic of Korea) in water. LC/MS
was performed at the National Research Facilities and Equipment Center (NanoBioEnergy
Materials Center) at Ewha Womans University (Seodaemun, Seoul, Republic of Korea).

4.2. Collection, Phylogenetic Analysis, Cultivation, Extraction, and Fractionation

Strain SNA077 was isolated from Yeosu Manseongni Black Beach in South Korea, and iden-
tified as a Streptomyces sp. based on 16S rRNA gene sequence analysis (accession no. EU841563.1).
Marine-derived Streptomyces sp. strain SNA077 was cultured in 2.8 L Fernbach flasks con-
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taining 1 L of seawater-based medium (10 g starch, 2 g yeast extract, 4 g peptone, and
34.74 g artificial sea salt dissolved in distilled water) and shaken at 27 ◦C at 120 rpm. After
7 days of cultivation, the culture broth was extracted using ethyl acetate (EtOAc) and the
solvent was removed in vacuo to obtain SNA077 extract. The crude extract of SNA077 was
fractionated by reverse-phase medium-pressure liquid chromatography on C-18 resin with
a step gradient of water and methanol (MeOH; Samchun, Seoul, Republic of Korea), using
a solvent gradient of 10% to 100% MeOH.

4.3. Secondary Metabolite Profiling Analysis

The crude extracts of strain SNA077 were analyzed by liquid chromatography (LC)-mass
spectrometry (MS). LC traces were generated at 210, 254, 280, and 310 nm, and the UV
absorbance spectra associated with each peak were evaluated by comparing the peaks to an
in-house spectral library (Figure S1). Peaks were assigned to a particular compound class if
they had a UV matching score of 900 or greater, as reported using the software provided
with the Agilent Technologies ChemStation (Santa Clara, CA, USA). The obtained positive
scores ranged from 903 to 999.

4.4. Cell Culture

The B16 mouse melanoma cell line was cultured in Dulbecco’s modified Eagle’s
medium (DMEM; Welgene, Gyeongsan-si, Republic of Korea) supplemented with 5% fetal
bovine serum (FBS; ATCC, Manassas, VA, USA) and 1% Penicillin-Streptomycin Mixture
(PS; Lonza, Basel, Switzerland) and used at passages 5–30. The Melan-a murine melanocyte
cell line was cultured in RPMI 1640 medium (RPMI 1640; Lonza, Walkersville, MD, USA)
containing 10% fetal bovine serum (FBS; Gibco, Grand Island, NY, USA), 1% PS, and
200 nM phorbol 12-myristate 13-acetate (PMA; Sigma-Aldrich, St. Louis, MO, USA) and
used at passages 1–10. MNT-1 cells, representing a highly pigmented human melanoma cell
line, were cultured in minimum essential medium (MEM; Gibco) containing 10% DMEM,
20% FBS (FBS; Gibco, Grand Island, NY, USA), 1% PS, and 1% N-(2-hydroxyethyl)piperazine-
N′-(2-ethanesulfonic acid) (HEPES, 1M; Gibco), and used at passages 5–30. All cells were
cultured at 37 ◦C in a humidified environment with 5% CO2 and 95% air.

4.5. Cell Viability Assay

Cell viability was determined using Quanti-MAX™ WST-8 Cell Viability Assay Kit
(Biomax, Seoul, Republic of Korea) according to the manufacturer’s protocols. Cells
were seeded in a 96-well plate at an appropriate concentration for 24 h, and then the
culture medium was replaced with fresh culture medium containing SNA077 diluted to
the indicated concentrations. Following exposure for 72 h, cell viability was assessed
by replacing the medium with the appropriate medium containing 10% WST-8 solu-
tion. The plate was incubated for 1 h and the absorbance was measured at 450 nm
using a Microplate Reader (BioTek, Winooski, VT, USA). Cell viability was computed
with the general formula: cell viability (%) = optical density (450 nm) of the experimental
group/optical density of the control group × 100.

4.6. Measurement of Melanin Content

For melanin quantification, B16 cells (2 × 104 cells/well in 48-well plates), Melan-a
cells (10 × 104 cells/well in 24-well plates), and MNT-1 cells (10 × 104 cells/well in 24-well
plates) were cultured for 24 h. B16 cells were treated with increasing concentrations of
SNA077 in the presence of α-MSH (0.1 µM) to induce melanin production in phenol red-free
cell culture medium because phenol red would interfere with observation of secreted extra-
cellular melanin. After 72 h, the extracellular melanin content in the phenol red-free cell
culture medium of B16 cells was measured at 405 nm using a Synergy™ HTX Multi-Mode
Microplate Reader (Winooski, VT, USA). For measurement of intracellular melanin contents,
1N NaOH was added to each well, the plate was heated to 60 ◦C for 30 min, the resulting
lysate was aliquoted to a 96-well plate, and absorbance was determined at 405 nm. The
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protein concentration of each lysate was determined with a Pierce BCA Protein Assay Kit
(Thermo Fisher Scientific, Waltham, MA, USA). The intracellular melanin content was
normalized with respect to the total protein amount. Melanin levels were calculated by
comparison to those in the corresponding controls and are shown as percentages.

4.7. Mushroom Tyrosinase Activity Assay

Mushroom tyrosinase activity was estimated by measuring oxidase activity. The
reaction mixture consisted of 5 µL of sodium phosphate buffer (0.1 M), pH 6.8, 40 µL of
distilled water, and 5 µL of enzyme solution (mushroom tyrosinase, 2000 units in 0.1 M
PBS; Sigma Aldrich, T3824). SNA077 was dispensed to a 96-well plate at 5 µL/well, and the
prepared reaction mixture plus 50 µL of 20 mM L-DOPA or 0.03% L-tyrosine (tyrosinase
substrate) was added. The level of dopachrome in the mixture was determined at 475 nm
in the spectrophotometer at least 5 times over 10 at an incubation temperature of 37 ◦C.

4.8. Cellular Tyrosinase Activity Assay

B16 cells (20 × 104 cells/well in 6-well plates) were seeded and incubated at 37 ◦C
in a humidified environment with 5% CO2 for 24 h. Next, kojic acid (100 µg/mL, posi-
tive control) or SNA077 (10 µg/mL) were added and the plates were incubated for 48 h.
After 48 h incubation, the cells were washed with cold PBS and lysed in 1 mL of sodium
phosphate buffer (0.1 M, pH 6.8) containing 1% Triton X-100 for 20 min. The lysates were
centrifuged at 13,000 RPM at 4 ◦C for 20 min. Except debris, the supernatant and the
substrate solution (L-DOPA, 10 mM) in equal volume were dispensed to a 96-well plate.
To determine intracellular tyrosinase activity in the supernatant (i.e., the reaction with
L-DOPA), absorbance was measured at 490 nm every 10 min for at least 1 h at 37 ◦C, using
a spectrophotometer.

4.9. Western Blot Analysis

B16 or MNT-1 cells were cultured in 6-well plates and treated with SNA077 as de-
scribed in the corresponding figure legend. The following day, cells were washed twice
with cold PBS and total intracellular proteins were extracted in RIPA buffer 1X (Cell
Signaling Technology, Danvers, MA, USA) supplemented with a 1:200 dilution of protease
inhibitor cocktail III and phosphatase inhibitor cocktail set III (Calbiochem Biosciences,
La Jolla, CA, USA) for 20 min on ice. After centrifugation at 13,000 RPM at 4 ◦C, the
supernatant was collected. A Pierce BCA Protein Assay Kit was used to estimate the
protein quantity of extracts. Equal amounts of soluble proteins were resolved by 10%
SDS-PAGE and transferred to a nitrocellulose membrane (BioRad, Hercules, CA, USA) in
cold transfer buffer (25 mM Tris, 192 mM glycine, and 20% (w/v) MeOH) for 90 min at
280 mA. Membranes were blocked for at least 1 h with TBS 1X supplemented with 5%
Blotting-Grade Blocker (BioRad) and incubated overnight at 4 ◦C with primary antibodies
diluted to the proper concentration (per the provided data sheet) in 1X TBS. Following an
overnight incubation, the membranes were further incubated with secondary antibodies
and enhanced using a Clarity™ Western ECL substrate (ECL solution; BioRad). Images of
the blotted membranes were captured with an iBright™ CL750 Imaging System (Invitrogen,
Carlsbad, CA, USA). Equal loading was assessed by comparison to the endogenous actin
protein. Densitometric analysis was performed using ImageJ program (National Institutes
of Health, Bethesda, MD, USA).

4.10. Real-Time PCR

To determine the expression levels of mRNAs encoding melanogenesis-related fac-
tors, B16 or MNT-1 cells were cultured in 6-well plates and treated with SNA077 as de-
scribed in the corresponding figure legends. The following day, cells were washed twice
with cold PBS and total RNA was extracted from cell lysates using the TRIzol reagent
(Thermo-Fisher Scientific) according to the manufacturer’s instructions. Complimentary
DNA was synthesized from total mRNA using the GoScript™ Reverse Transcription System
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(Promega, Madison, WI, USA) and a thermal cycler (T-100; BioRad). The relative expres-
sion level of target cDNA was detected using the CFX Connect Optics Module (BioRad)
and iQ SYBR® Green Supermix (BioRad). All results were normalized with respect to the
mRNA level of β-actin. The specific primers were purchased from BioRad.

4.11. Cyclic AMP Assay

The cAMP levels in cell lysates were estimated using a cAMP Parameter assay kit
(R&D Systems, Minneapolis, MN, USA). B16 cells (20 × 104 cells/well in 24-well plates)
were seeded and allowed to incubate at 37 ◦C in a humidified environment with 5% CO2
for 24 h. The B16 cells were then pretreated with SNA077 (2.5–10 µg/mL) for 4 h, co-treated
with SNA077 (2.5–10 µg/mL) and α-MSH (0.1 µM) for 10 min, and then washed three times
in cold PBS. The cells were resuspended in Cell Lysis Buffer 5 in cAMP parameter assay
kit (diluted 1:5), the freeze/thaw cycle was repeated, and the lysates were centrifuged at
13,000 RPM for 10 min. Supernatants were collected and directly used for the cAMP assay
procedure according to the manufacturer’s protocol.

4.12. Skin Whitening Test Using a MelanoDerm Skin Equivalent

MelanoDerm (MEL-300-B; MatTek Corp., Ashland, MA, USA), which was used for
the skin-lightening study, was cultured in EPI-100-NMM-113-PRF medium (MatTek Corp.)
at 37 ◦C in a humidified environment with 5% CO2. SNA077 was topically applied to
the MelanoDerm once every 3 days for 14 days. Thereafter, the degree of epidermal
pigmentation was examined by optical estimates and histological analyses. Melanin was
subjected to Fontana Masson’s (FM) staining and histologically examined.

4.13. Statistical Analysis

Data are expressed as the mean ± standard deviations (SDs), and statistical signif-
icance was analyzed by the Student’s t-test. p-values less than 0.05 were considered
statistically significant.

5. Conclusions

Collectively, the data from this study provide preliminary evidence supporting the
possibility that SNA077 may represent a potent and effective whitening agent that could be
used in cosmetics and medicinal formulations.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/ijms232314922/s1, Figure S1: UV spectra of prodigiosin in SNA077 frac-
tion (blue) in comparison with in-house known compound (red). (A) prodigiosin, match score = 998;
Figure S2: LRMS Data of germicidin A; Figure S3: 1H NMR Spectrum of germicidin A in CD3OD;
Figure S4: 13C NMR Spectrum of germicidin A in CD3OD; Figure S5: LRMS Data of Isogermicidin A;
Figure S6: 1H NMR Spectrum of Isogermicidin A in CD3OD; Figure S7: 13C NMR Spectrum of
Isogermicidin A in CD3OD; Figure S8: LRMS Data of Prodigiosin; Figure S9: 1H NMR Spectrum of
Prodigiosin in CDCl3.
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Abbreviations

a-MSH a-melanocyte-stimulating hormone
MC1R melanocortin 1 receptor
CREB cAMP response element-binding protein
Tyrp-1 tyrosinase-related protein 1
MITF microphthalmia-associated transcription factor
MAPL mitogen-activated protein kinase
F&M Fontana-Masson
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