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Abstract: Cannabis sativa (Cannabis) has recently been legalized in multiple countries globally for
either its recreational or medicinal use. This, in turn, has led to a marked increase in the number of
Cannabis varieties available for use in either market. However, little information currently exists on
the genetic distinction between adopted varieties. Such fundamental knowledge is of considerable
value and underpins the accelerated development of both a nascent pharmaceutical industry and
the commercial recreational market. Therefore, in this study, we sought to assess genetic diversity
across 10 Cannabis varieties by undertaking a reduced representation shotgun sequencing approach
on 83 individual plants to identify variations which could be used to resolve the genetic structure
of the assessed population. Such an approach also allowed for the identification of the genetic
features putatively associated with the production of secondary metabolites in Cannabis. Initial
analysis identified 3608 variants across the assessed population with phylogenetic analysis of this
data subsequently enabling the confident grouping of each variety into distinct subpopulations.
Within our dataset, the most diagnostically informative single nucleotide polymorphisms (SNPs)
were determined to be associated with the long-terminal repeat (LTRs) class of retroelements, with
172 such SNPs used to fully resolve the genetic structure of the assessed population. These 172 SNPs
could be used to design a targeted resequencing panel, which we propose could be used to rapidly
screen different Cannabis plants to determine genetic relationships, as well as to provide a more
robust, scientific classification of Cannabis varieties as the field moves into the pharmaceutical sphere.

Keywords: Cannabis sativa (Cannabis); genetic diversity; genetic resolution; population structure;
reduced representation shotgun sequencing; single nucleotide polymorphism (SNP); long terminal
repeat (LTR) retroelements

1. Introduction

Cannabis sativa (Cannabis) is one of the earliest cultivated plants with evidence of
domestication dating back to the early Neolithic period, around 12,000 years ago. Recent
evidence places these early cultivation events in the south east regions of China, prior
to movement of Cannabis derived products across the globe in association with nomadic
groups, leading to the widespread cultivation of Cannabis observed today [1,2]. Cannabis
exhibits substantial versatility, with various parts of the plant providing fiber, and food, as
well as intoxicant and medicinal molecules. These medicinal compounds are secondary
metabolites, specifically the cannabinoids, produced in glandular trichomes that protrude
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from the epidermal layer, predominantly on the floral organs of female plants [3]. The most
well-known and comprehensively studied cannabinoids are ∆-9-tetrahydrocannabinol
(THC) and cannabidiol (CBD). THC is the molecule responsible for the psychoactivity or
‘high’ reported by Cannabis users when it modulates endogenous cannabinoid receptors in
the central nervous system and peripheral tissues. In mammals, CBD also binds to endoge-
nous receptors, however unlike THC, CBD receptor binding does not elicit a psychoactive
response. Instead, CBD has been reported to mediate medically beneficial outcomes, such
as its use in the prevention of epileptic seizures [4,5]. In addition to THC, CBD, cannabigerol
(CBG) and cannabichromene (CBC), more than 100 other ‘minor’ cannabinoids are pro-
duced by the Cannabis plant [6]. However, in contrast to the major cannabinoids, THC,
CBD, CBG and CBC, the medicinal properties of the minor cannabinoids produced by
the Cannabis plant remain largely unknown, and therefore, when considered together,
potentially represents a grossly underutilized natural medicinal resource.

Thousands of available Cannabis varieties have been developed from historical illicit
cultivation and which now form the basis of the developing medicinal Cannabis industry.
Typically, ‘new’ varieties are claimed following the cross breeding of two existing vari-
eties, considered as genetically distinct to one another, with subjectively superior progeny
selected for further cultivation. Selection may be based on phenotypic or chemotypic
characteristics, with high THC or CBD often preferentially selected as desirable traits.
The delineation between what is termed ‘hemp’ and ‘marijuana’ is based on the overall
percentage (%), weight by weight (w/w) content of THC in dried flowers; below 1.0% for
hemp classification in some Australian jurisdictions, though the number varies interna-
tionally. Suggestions have been made to classify Cannabis based upon geographic origin,
phenotype or secondary metabolite profile [7], yet domestication, gene flow, and strong
selection for singular attributes obscure both the scientific consensus and the utility of these
approaches pursued in isolation. Additionally, recreational Cannabis culture frequently
uses the terms ‘sativa’ and ‘indica’ to describe different varieties based on a suggestion of
distinct subspecies, or in a sense to describe user ‘high’. Plant breeding programs based
solely on these individual qualities, such as metabolite profiles, may in time drive desirable
traits to stabilization, however, little to no scientific standard or literature exists outlin-
ing the qualifiers for novelty of a Cannabis variety, and by extension, when new variety
nomenclature is appropriate.

A greater stringency applied to varietal classification would greatly strengthen the
legitimacy of the industry, particularly in a clinical context in which dried flower, THC
and/or CBD is prescribed. Metabolite analysis can be used as an effective strategy for
Cannabis variety identification as well as to provide information on cannabinoid content
through several analytical platforms, including high performance liquid chromatography
(HPLC) [8], UV coupled reverse-phase HPLC [9,10], or spectroscopy-based detection [11,12].
However, discrepancies can still arise through variation in extraction protocol and analytical
method used. Moreover, cannabinoid content from plant to plant of the same variety, or of
progeny plants cultivated by different growers may vary considerably. For example, both
the overall yield and cannabinoid content of Cannabis will be influenced by the growth
environment, with yield and cannabinoid profile reported to vary in response to light
intensity, light quality, nutrient availability, and plant density [13]. Given the variability
inherent in intra-variety production of THC/CBD and the extent to which different growth
conditions can alter cannabinoid profiles, a more robust method of classification is required.
While metabolite analysis is integral to industry regulation and variety classification,
supporting genomics could enhance regulation by identifying distinct varieties based
on polymorphisms at the DNA level, thereby reducing susceptibility to change from
environmental variation than what is observed when using a metabolite profiling approach.

Within this study, an analysis of 10 Cannabis varieties was performed using a reduced
representation shotgun sequencing approach to identify genetic variants associated with
CBD and THC levels (Figure 1). Principal component analysis (PCA) and discriminant
analysis of principal components (DAPC) was subsequently employed to determine variety
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clustering, from which a minimal set of highly diagnostics SNPs were identified as able to
effectively distinguish between the different varieties. As medicinal Cannabis moves rapidly
into a highly regulated clinical setting, these SNPs have the potential to be incorporated
into reduced cost sequencing methods alongside standardized metabolomics, to provide for
precise determination of distinct Cannabis varieties in an evolving sphere which continues
to lack detailed genomic information.

Int. J. Mol. Sci. 2022, 23, x FOR PEER REVIEW 3 of 16 
 

 

CBD and THC levels (Figure 1). Principal component analysis (PCA) and discriminant 
analysis of principal components (DAPC) was subsequently employed to determine vari-
ety clustering, from which a minimal set of highly diagnostics SNPs were identified as 
able to effectively distinguish between the different varieties. As medicinal Cannabis 
moves rapidly into a highly regulated clinical setting, these SNPs have the potential to be 
incorporated into reduced cost sequencing methods alongside standardized metabolom-
ics, to provide for precise determination of distinct Cannabis varieties in an evolving 
sphere which continues to lack detailed genomic information. 

 

Figure 1. Simplified overview of two complexity reduction approaches. (a) Genomic DNA is ex-
tracted and (b) digested with restriction endonucleases prior to (c) sequencing and (d) mapping to 
a publicly available reference assembly. The use of a reference sequence allowed assessment of frag-
ments able to be mapped to known coding sequences or genetic features. A slightly varied applica-
tion requires the (A) extraction of genomic DNA from a population which is then (B) digested prior 
to (C) sequencing, after which sequences are compared to one another to assess geneticvariation of 
isolated fragments across the population without the use of a reference assembly. Created with Bi-
oRender.com. 

2. Results and Discussion 
2.1. In-Silico Modeling and Selection of Restriction Endonuclease Combinations for Complexity 
Reduction 

To assess fragmentation profiles prior to lab-based complexity reduction and to de-
termine the best combination of restriction enzymes to use, publicly available Cannabis 
genome assemblies were digested in-silico and subsequent fragment profiles modelled. 
All possible combinations of the selected restriction endonucleases, AluI, EcoRI and PstI, 
were assessed. The resulting in-silico profiles were then compared to Cannabis Swiss 
Dream Auto genomic DNA (gDNA) samples which were physically treated using the 
same enzymes. The resulting fragment profiles were then analyzed using Labchip GX’s 
digital electropherogram. Figure 2 presents the data obtained from both approaches, with 
a specific focus on digestion fragments between 100 to 1000 base pairs (bp) which proved 
to more accurately reflect the fragment pool applicable to short-read sequencing. Of note, 
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Figure 1. Simplified overview of two complexity reduction approaches. (a) Genomic DNA is extracted
and (b) digested with restriction endonucleases prior to (c) sequencing and (d) mapping to a publicly
available reference assembly. The use of a reference sequence allowed assessment of fragments
able to be mapped to known coding sequences or genetic features. A slightly varied application
requires the (A) extraction of genomic DNA from a population which is then (B) digested prior to
(C) sequencing, after which sequences are (D) compared to one another to assess geneticvariation
of isolated fragments across the population without the use of a reference assembly. Created with
BioRender.com accessed on 17 August 2022.

2. Results and Discussion
2.1. In-Silico Modeling and Selection of Restriction Endonuclease Combinations for
Complexity Reduction

To assess fragmentation profiles prior to lab-based complexity reduction and to de-
termine the best combination of restriction enzymes to use, publicly available Cannabis
genome assemblies were digested in-silico and subsequent fragment profiles modelled. All
possible combinations of the selected restriction endonucleases, AluI, EcoRI and PstI, were
assessed. The resulting in-silico profiles were then compared to Cannabis Swiss Dream Auto
genomic DNA (gDNA) samples which were physically treated using the same enzymes.
The resulting fragment profiles were then analyzed using Labchip GX’s digital electrophero-
gram. Figure 2 presents the data obtained from both approaches, with a specific focus on
digestion fragments between 100 to 1000 base pairs (bp) which proved to more accurately
reflect the fragment pool applicable to short-read sequencing. Of note, the LabChip electro-
pherogram uses a Savitzky-Golay filter for data smoothing, also known as locally weighted
scatterplot smoothing (LOWESS), which was integrated into the developed Python script
to reduce noise, and therefore, smooth the data. The modeling presented here maintains X
and Y axis linearity, while the LabChip electropherogram exhibits a non-linear X axis that
compresses the larger sized fragments which caused the large peak of nucleic acid bulk ob-
served for fragments above 1000 bp in length, and which also reflects the gel electrophoretic
mobility of nucleic acid fragments. For whole genome digest context, 1 to 10 kilobase (kb)
fragmentation profiles were modeled separately (Figure S1).
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Figure 2. Digestion of Cannabis assemblies and Swiss Dream Auto genomic DNA. (A) Four Cannabis
assemblies, Finola (FN), Purple Kush (PK), CBDrx (CBD), and Jamaican Lion DASH (JLD), were di-
gested in silico with four restriction endonuclease combinations, including the AluI/EcoRI, AluI/PstI,
EcoRI/PstI, and AluI/EcoRI/PstI combinations. (B) Cannabis genomic DNA was digested with the
same four restriction endonuclease combinations and the fragmentation profiles were assessed; (I) up
to 40 kb; (II) between 100 and 1000 bp and; (III) between 100 and 300 bp on a LabChip Bioanalyzer to
determine the optimum combination. (C) Smear analysis was performed to compare single (left panel)
and double (right panel) digestion reactions in replicate to determine the degree of ‘completeness’ of
each restriction endonuclease combination.
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Across the assemblies, similar profile trends were evident when comparing the
different restriction endonuclease combinations. More specifically, the AluI/EcoRI and
AluI/EcoRI/PstI combinations show similarities to one another across each assembly, with
only slight separation between profile lines from 100 to around 400 bp, which reduces to
the point of overlap through to 1000 bp (Figure 2A). The relatedness of these two profiles
suggests that PstI does not contribute significantly to restriction fragment production in
this fragment size range. These two combinations also have the largest fragment mass up to
approximately 500 bp, beyond which the AluI/PstI combination largely matches their pro-
file. While the peak profiles of AluI/PstI follow that of the AluI/EcoRI and AluI/EcoRI/PstI
profiles, the modeling suggests a reduced fragment mass in the 100 to 300 bp size range, a
finding which indicates that EcoRI generates the small difference in fragment sizes between
these three combinations. The EcoRI/PstI restriction endonuclease combination was also
consistent across assemblies with similar peaks at approximately 750, 810 and 975 bp. How-
ever, this enzyme combination failed to yield a significant number of fragments across the
entire fragment size window assessed compared to the profiles generated for the other three
enzyme combinations. Taken together, this strongly suggested that the bulk of the in-silico
digest was the result of the nuclease activity of AluI, with minor contribution from EcoRI,
and negligible fragment generation by PstI in the assessed fragment size range of 100 to
1000 bp. Although the peak profile trends across assemblies were consistent, the fragment
mass showed a degree of variability. This is likely attributable to variation in assembly size
or completeness of each assembly. Similarly, assessment of the 1 to 10 kb fragment profiles
suggested that the comparison between enzyme combinations was consistent across each
assembly (Figure S1). More specifically, AluI/PstI produced slightly more fragment mass
than did the AluI/EcoRI/PstI and AluI/EcoRI combinations in the fragment size range of
1000 to 1500 bp. Beyond this fragment size range, the EcoRI/PstI digestion profile indicated
a greater amount of ‘actual’ fragments resulting from enzyme activity (Figure S1) due to
their ‘rare cutting’ activity.

With the in-silico analysis indicating that the restriction endonuclease combinations
AluI/EcoRI and AluI/EcoRI/PstI were ideal enzyme combinations for fragment generation
in the desired range of 100 to 300 bp, evaluating the implementation of either single
or double digestion reactions to determine endonuclease efficiency and the extent of
gDNA digestion was next evaluated. In the case of each enzyme combination, the double
digestion produced a greater inconsistency in fragmentation profile than did the single
digest, as indicated by larger separation of profile lines (Figure S2). With the introduction of
inconsistencies across each tested double digest combination with no discernible ‘positive’
change in profile peaks (i.e., development of new peaks within the sequencing range of
100 to 300 bp), it was concluded that a single digest with these enzyme combinations was
sufficient to fully complete the digestion of Cannabis gDNA. Moreover, smear analysis of
the 100 to 300 bp fragment size range (Figure 2C), indicated a greater concentration of
fragments within this size range from the single digest, with the observed reduction in the
concentration of 100 to 300 bp fragments in the double digests, potentially attributable to
increased sample handling.

After determining that a single reaction was optimal for gDNA digestion, each re-
striction endonuclease combination was then compared for its ability to generate gDNA
fragments ranging in length from 100 to 300 bp: the target range for fragment length for
most short read sequencing platforms. The EcoRI/PstI combination resulted in a large
portion of fragments within the 700 bp to 40 kb range (Figure S2). Given the ‘rare cutting’ 6
bp recognition sequence of both the PstI and EcoRI endonuclease for Cannabis gDNA, the
generation of a pool of larger sized digestion fragments was expected and predicted by the
in-silico modeling (Figure S1). The three remaining restriction endonuclease combinations
returned similar peak profiles despite the inclusion of either EcoRI, PstI, or both. This find-
ing indicated that AluI was largely responsible for the bulk of the observed endonuclease
activity in each combination. Confirmation via smear analysis of the 100 to 300 bp fragment
length range supports this observation, with the AluI/EcoRI combination producing the
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greatest concentration of fragments within this range at 1777 nmol/L (Figure 2C), as well
as the most consistent fragmentation concentration within this fragment length range, and
between replicates (1777 and 1774 nmol/L, respectively).

2.2. PCA and DAPC of Complete Variant Sets Can Distinguish Cannabis Varieties

To evaluate the genetic diversity, single nucleotide polymorphisms (SNPs) across all
83 plants assessed were identified, and following QC filtering, 3608 SNPs were retained. In a
preliminary assessment of genetic diversity, Nei’s pairwise Genetic Distance was employed
on the retained set of 3608 SNPs. This approach identified CBD1 and CBD2 as being the
most distant from the other eight Cannabis varieties assessed (Table 1). Furthermore, CBD1
and CBD2 returned the lowest D value (0.0095) to indicate that these two varieties had
fewer per locus allele differences than any other variety combination, and by extension,
the lowest genetic differentiation. Genetic distance between Motavation and Blue Venom
also exhibited a relatively low D value (0.0125) across the assessed varieties to similarly
identify a close genetic relationship between these two Cannabis varieties. The average D
value for Swiss Dream Auto plants (0.0573) was comparable to the D values exhibited by
CBD1 (0.0575) and CBD2 (0.0569) plants when compared to the remaining varieties. It is
important to note here that the Swiss Dream Auto variety was the only seed derived variety
analyzed in this study, and also included the greatest number (n = 17) of individual plants
assessed for the ten Cannabis varieties included in this study. This likely drove the observed
increase in the relative value, given the inherent increase in genetic diversity of a seed
grown plant, compared to clonal plants derived from cuttings. Overall, the average genetic
distance values obtained for the remaining varieties were consistently low when compared
to other studies in wheat, which describe D values from 0.1 to 0.5 across roughly 150 wheat
accessions [14,15]. Nevertheless, this analysis highlighted the limited genetic distance
between the Cannabis varieties CBD1 and CBD2 in particular, and to a lesser degree, the
Motavation and Blue Venom varieties.

Table 1. Analysis of Nei’s genetic difference across 10 Cannabis varieties. Green indicates a greater
genetic difference to the compared variety, while red indicates a reduced difference.

AK BV Bu CJ CBD1 CBD2 MB Mot SDA THC1
AK 0 0.0388 0.0444 0.0463 0.0575 0.0575 0.0349 0.0407 0.0538 0.0423
BV 0.0388 0 0.052 0.0475 0.0697 0.0695 0.0514 0.0125 0.0556 0.0573
Bu 0.0444 0.052 0 0.0472 0.0589 0.0573 0.0425 0.0495 0.057 0.0506
CJ 0.0463 0.0475 0.0472 0 0.0664 0.0662 0.0478 0.0503 0.0572 0.0529

CBD1 0.0575 0.0697 0.0589 0.0664 0 0.0095 0.0599 0.0689 0.0665 0.06
CBD2 0.0575 0.0695 0.0573 0.0662 0.0095 0 0.0597 0.0673 0.066 0.0594

MB 0.0349 0.0514 0.0425 0.0478 0.0599 0.0597 0 0.0536 0.0552 0.0455
Mot 0.0407 0.0125 0.0495 0.0503 0.0689 0.0673 0.0536 0 0.0531 0.0538
SDA 0.0538 0.0556 0.057 0.0572 0.0665 0.066 0.0552 0.0531 0 0.0512

THC1 0.0423 0.0573 0.0506 0.0529 0.06 0.0594 0.0455 0.0538 0.0512 0

After identification of the SNP set, and the assessment of genetic distance, we next
sought to intersect the SNP set with the 21 genes which encode the enzymes that catalyze
each step of the cannabinoid synthesis pathway to determine the capability of reduced
representation sequencing to initially isolate genes of interest, and to secondly, identify
informative SNPs. A first assessment utilizing only coordinates that covered the region
from the start codon to the stop codon of each annotated Purple Kush gene failed to align
with any of the 3608 SNPs identified. Therefore, given that consequential polymorphisms
are not restricted to coding sequences, we next extended the boundaries of the assessed
genes by 500 kb up and downstream of the start and stop codon of each annotated gene to
attempt to identify SNPs that may be co-inherited with genes of interest in a linkage block,
or located in the promoter or other regulatory regions of each gene. This approach identified
102 of the 3608 SNPs which possessed some diagnostic utility in resolving different varieties.
Retention of 4 axes in the PCA separated Swiss Dream Auto, Cinderella Jack, Blue Venom,
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Motavation, CBD1 and CBD2 from the remaining varieties, which was similarly reflected
in a phylogenetic analysis (Figure 3C).
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Figure 3. PCA and DAPC of variants found in genes identified to encode catalytic enzymes of the
cannabinoid biosynthesis pathway. (A) Plot of the first 2 PC vectors; PC1 and PC2 (B) Plot of PC
vectors, PC3 and PC4 (C) Unrooted phylogenetic tree demonstrated 6 discreet clusters based on
PCA, which are also observed in the (D) DAPC plot. (E) Clusters 1 and 6 display extensive overlap,
which is similarly observed in the assignplot where red shaded rectangles indicate high probability
of correct assignment to each cluster, with the shading color spectrum passing through orange and
yellow to white, representing a gradual reduction in probability. Color code indicates dot color and
variety relationship throughout.

DAPC clustering also resolved the assessed varieties, with the exception of two in-
dividuals from Swiss Dream Auto and one individual from Motavation, as well as to
group the remaining individuals into two mixed, indeterminate clusters (Figure 3D). Taken
together, SNPs contained within the extended gene regions were not able to resolve assign-
ment for the remaining individuals. A combination of filtering stringency, the restricted
genomic region interrogated, and the nature of reduced representation sequencing, are
causes for the lack of SNP retention in this region. This outcome also indicates that the AluI
and EcoRI restriction endonucleases used in combination for reduced representation, do
not allow for deep enrichment of these regions. However, this finding does not discount the
potential effectiveness of other enzyme combinations at producing fragments of the desired
length and which are enriched for the coding sequences of the genes of the cannabinoid
biosynthesis pathway.
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The inability to completely resolve the structure of the assessed varieties based on
variants within putative gene and extended regulatory regions led us to next utilize the
entire SNP dataset. Comparable in structure to the candidate gene analysis but significantly
more defined, PCA using the full SNP dataset resolved the Swiss Dream Auto, CBD1, CBD2,
Motavation, and Blue Venom varieties on the first 2 axes (Figure 4A,B). The remaining
varieties were resolved on the final two axes of PCA (Figure 4D,E), and which were further
confirmed by a phylogenetic analysis, where 8 defined clusters are evident on an unrooted
tree (Figure 4C). Here the varieties CBD1 and CBD2 did not separate from one another,
despite being described as distinct varieties. Blue Venom and Motavation also clustered
together in these PCA and phylogeny analyses.
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Figure 4. Principal component and phylogenetic analysis of 83 individual Cannabis plants. (A) PC1
and PC2 of the entire 3608 SNP dataset generated 4 distinct clusters. The central cluster of multiple
varieties is resolved on PC3 and PC4 (B), with 8 clusters resolved on a phylogenetic tree (C). PCA of a
reduced set of 172 SNPs shows variety grouping across (D) PC1/PC2 and (E) PC3/PC4 axes, as well
as to produce the same 8 variety clusters as identified using the full 3608 SNP set in a phylogenetic
analysis (F).

DAPC resolved 8 tightly clustered groups, which were all assigned to their cluster or
variety with certainty (Figure 5). The DAPC method is an iterative process that benefits
from interactive user input and the balance lay in the potential of the method to overfit the
model or lose informative data, which is influenced by the number of retained principal
components (PCs) for DAPC. In each case, sufficient PCs were retained to account for
approximately 40–50% of cumulative variance. This was enough to unambiguously infer
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group membership based on the total set of 3608 SNPs. Interestingly, CBD1 and CBD2 could
not be partitioned into separate varieties under any iterative stringency of the available
data and did not exhibit any level of group assignment uncertainty. These two varieties are
phenotypically indistinguishable from one another as well as having been determined to
possess similar secondary metabolite profiles.
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Figure 5. DAPC of two variant sets. (A) DAPC using the full set of 3608 SNPs produced 8 tight, and
distinct clusters with each individual plant assigned to their respective cluster with high probability
in an assignplot (B). (C) DAPC on a reduced set of diagnostic variants similarly resolved the assessed
population into 8 distinct clusters, with all but 3 individual plants assigned to their cluster with high
certainty in an assignplot (D).

Similarly, while the Cannabis varieties Motavation and Blue Venom do display dis-
tinct phenotypes, they were not identified as separate varieties using the SNP-filtering
approach utilized here. Notably, Motavation and Blue Venom both originated from a
common seed supplier and produce similar cannabinoid profiles (G.M.S, personal com-
munication), and potentially highlights the limitations inherent in classification strategies
for Cannabis varieties based on phenotypic traits and should be supplemented with robust
genomic annotation.
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2.3. Cannabis Varieties Can Be Identified by a Minimal Number of SNPs Highly Associated with
the LTR Class of Retroelement

Following the discreet partitioning of individuals into varieties based on the full
number of SNPs of the entire dataset, the number of SNPs was reduced to a minimal
set of diagnostically informative SNPs capable of assigning individual plants to their
respective varieties. We further filtered the full set of SNPs to exclude SNPs which were
positioned within 1 Mb of another identified SNP to identify and retain only the SNPs
which were likely to be inherited independently. This filtering approach produced a final
set of 172 SNPs. PCA showed similar clustering patterns to those observed in the previous
analyses using the full set of SNPs, and furthermore, phylogenetic analysis also produced a
clustering model which was highly reflective of a clustering model generated using the full
dataset (Figure 4). Additionally, DAPC clustering identified 8 distinct groupings, and aside
from two individual plants, assigned membership of each assessed plant to their respective
varietal group with certainty (Figure 5). Although these two individual plants could be
assigned to their respective varietal clusters, they also presented a level of uncertainty
towards other clusters. Nevertheless, the analyses using the reduced set of SNPs displayed
a diagnostic power analogous to that of the analyses performed using the full set of 3608
SNPs and can thus be used to partition individuals into variety classification accurately.

Although the candidate gene associated SNPs were not able to fully resolve the population
structure of the assessed Cannabis varieties, an alternate and reduced set comprised of 172 SNPs
was successfully employed to do so. Further interrogation of the 172 SNPs to determine their
genomic location revealed that these variants had a high association with the long terminal
repeat (LTR) retroelement class of transposon; only 8.1% (n = 14) of SNPs of the reduced dataset
were mapped to either within a protein-coding gene sequence (n = 7), or within the 6 kb of
the chromosomal DNA sequence which immediately flanks a protein-coding gene (n = 7).
In contrast, 91.9% of the reduced set of SNPs (n = 158) mapped to within a reported LTR
retroelement (n = 121), or to a 3 kb region immediately flanking a reported LTR retroelement
(n = 37). While the relationship between LTR sequences and cannabinoid synthesis is unclear,
intergenic and ‘junk’ DNA is frequently associated with regulatory enhancer or repressor
elements, or to the maintenance of chromatin structure, both of which are known to effect
transcriptional dynamics.

3. Conclusions

Despite the historically pervasive use of Cannabis and the pharmacologically signifi-
cant applications of its metabolites, scientific research and classification rigor of this species
remains in its infancy. Indeed, within the Cannabis industry, varieties may be arbitrarily
designated as ‘novel’ with little scientific information available regarding the ancestral
genetics of each plant and the extreme level of outcrossing or inbreeding that has occurred,
often in recent decades. For example, a recent metabolomic analysis of 89,923 samples
of dried Cannabis flowers from the Canadian market revealed a disparity between prod-
uct labeling and secondary metabolite profiles, and directly stemming from this finding,
called for a classification and naming system to more accurately represent the diversity
of Cannabis varieties [16]. One recent attempt at this was an analysis of terpene synthase
genes which suggested using a set of genetic markers associated with the terpenes as
preferable to the modern Cannabis culture labeling of varieties as either ‘sativa’ or ‘indica’,
based on aroma [17].

To address the need for better genetic classification methods, here we successfully
applied a genome reduction sequencing approach to identify SNPs associated with cannabi-
noid synthesis and strain classification across multiple Cannabis varieties. Notably, a
minimal number of SNPs (n = 172) was able to achieve a high degree of diagnostic accu-
racy, effectively grouping varieties according to their cannabinoid profiles. Moreover, the
small number of regions also offers the possibility to design a small and highly targeted
resequencing assay which could be deployed cost-effectively to rapidly screen Cannabis
plants on the market at scale.
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While the plasticity of Cannabis phenotype and chemotype as a response to environ-
mental conditions must also be considered as a variable for variety classification, recent
studies suggest it is one that can be nullified by DNA level analysis. For example, a re-
cent assay based on the use of SNPs associated with secondary metabolite synthesis and
fiber production was successfully applied to distinguish ’fiber’ from ‘drug’ type Cannabis
varieties [18]. A second study that used a whole genome analysis approach reported
the successful classification of Cannabis varieties into THC/CBD content groupings using
multiallelic SNPs [19]. Both reports also call for, and can be utilized as, genomics-based
classification within the industry.

One notable finding of this study was the prominent association of the reduced set
of SNPs with the LTR class of retroelement, with nearly 92% of the most diagnostically
informative SNPs being associated with these elements. The ability for this specific set
of SNPs to provide information on population structure and variety classification was
somewhat unexpected, however transposable-element (TE)-based assays have been suc-
cessfully utilized previously for phylogenetic studies in other plant species [20,21]. How
LTRs specifically influence cannabinoid synthesis and regulation is unclear from the current
analysis, but there are some possibilities. While retrotransposons are usually rendered
‘transcriptionally silent’ via DNA methylation [22], and have the potential to be highly
deleterious if insertion occurs in the regulatory or coding regions of a protein-coding
gene, subsets of TEs will retain their activity and can be important factors in the ongoing
evolution of complex genomes [23]. As part of this process, TEs have also been shown
to add to the complexity of the regulation of the expression of nearby genes following
their proximal movement [24,25], and similar processes may explain their association
with cannabinoid production in the Cannabis varieties examined here. For example, the
polymorphisms which result from TE activity were analyzed in clonally propagated Vitis
vinifera L. (common grapevine), with TE chromosome relocation suggested to be the result
of continued vegetative propagation [26]. Similarly, TE movement has been associated with
the development of commercially significant traits in agricultural species [27,28], in which
heavy selection pressure may have played a role in TE activation. Currently, no study has
examined the LTR class of retroelement in detail in Cannabis, but given the significance
of clonal propagation and the application of selection pressure as part of the process of
cultivating Cannabis, this TE class may be more active in the Cannabis genome than in the
nuclear genome of other plant species. As a result, TEs may have potentially played a more
prominent role in driving phenotypic variation—and by extension CBD and THC pathway
modification—in Cannabis cultivation. If this is determined to be the case in Cannabis, then
polymorphism of this class of TE will form a viable target for variant analyses. Nonetheless,
the data presented in this study indicates that further investigation of the possible role that
TE movement has played in floral morphogenesis and secondary metabolite biosynthesis
in Cannabis is warranted.

In summary, to further legitimize the Cannabis industry in terms of commercial cul-
tivation and medicinal therapy, strict characterization of varieties should be established
in the form of genomic identification that supports standardized metabolomics. Here we
show a minimal cost, reduced representation sequencing method capable of discriminating
Cannabis varieties, utilizing a limited SNP subset highly associated with the LTR class of
retrotransposon. This approach, or similar methods, could be used by Cannabis growers
to determine if their varieties are distinct from other varieties available on the market.
Moving forward into an era of Cannabis based medicinal treatments, standardized clas-
sification of varieties must be ubiquitous and embedded throughout the industry from
the seed onwards. Scientific quantification of plant traits, genomic, metabolomic, or other-
wise, should be available to reliably inform growers, researchers, and other end users of
Cannabis derived products of the true nature of the product to a standard demanded of any
pharmaceutical product.
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4. Materials and Methods
4.1. In-Silico Restriction Digest of Cannabis Genome Assemblies

Four publicly available genome assemblies were used in this study, and included:
(1) THCA producing, Purple Kush, (2) hemp variety, Finola [29], (3) mixed THCA/CBDA
producing variety, Jamaican Lion DASH [30], and (4) high CBDA producing, CBDrx [31],
with all four assemblies having employed some form of long read sequencing for generation
of their data. Using Python (version 3.8.7), we developed an in-house script to assess the as-
semblies based on the restriction enzyme (RE) sequences and report the resulting fragment
sizes, cut sites, and sequences. The fragment size limitations were set to more accurately
replicate sizes suited to Illumina short read sequencing platforms. Using Seaborn [32] and
Matplotlib [33] libraries in Python, the in-silico digests were graphed to qualitatively assess
profile similarities across assemblies and digest conditions. Using the Tuxedo suite of tools,
index genomes for each of the assemblies were created using Bowtie2 (version 2.3.0) [34],
and via the use of an additional Python script, the restriction fragments were mapped to
the indexed assemblies and reported on the mapping metrics. Following this, BEDtools
(version 2.17.0) [35] was used to assess intersection of the restriction fragments with known
or putative genes involved in cannabinoid biosynthesis from available annotations.

4.2. Plant Material and DNA Extraction

Ten Cannabis varieties comprising 87 plants were used in this study and included
6 high THC producing varieties which were represented by 55 individual plants. More
specifically, the 55 high THC producing varieties assessed included, 10 Amnesi-K Lemon
plants, 10 Blue Venom plants, 10 Cinderella Jack plants, 10 Mataro Blue plants, 10 Motava-
tion plants, and a further 5 plants from an additional variety described here as THC1 to
protect the intellectual property of the variety. Additionally, gDNA was extracted from a
further 4 high CBD producing varieties which were represented by 32 individual plants.
Moreover, the high CBD population of plants included, 5 Bubblegum plants, 17 Swiss
Dream Auto plants, 5 CBD1 plants, and 5 CBD2 plants, with the CBD1 and CBD2 varieties
also named as such in this study to protect the intellectual property of each variety. For
all plant varieties, gDNA was extracted from young leaves using a DNeasy Plant Pro Kit
(Qiagen, Hilden, Germany) exactly as according to the manufacturer’s instructions. Sample
concentrations were assessed using a NanoDrop One (Thermo Scientific, Waltham, MA,
USA) spectrophotometer.

4.3. Restriction Endonuclease Digestion of Genomic DNA

Three REs were selected for assessment based upon their nuclease activity in the
same buffer and temperature conditions. Four RE combinations (3 double enzyme, 1 triple
enzyme) were tested on pooled Cannabis gDNA to ascertain the best digestion efficiency
and fragment pool generation for downstream sequencing. The combinations included (1)
AluI and EcoRI; (2) AluI and PstI; (3) EcoRI and PstI; and (4) AluI, EcoRI, and PstI, which
were run in duplicate with half of the samples digested twice to confirm that the reaction
had reached completion.

4.4. Sample Preparation and DNA Sequencing

Four hundred nanograms (400 ng) of each gDNA sample was digested with 10 units
of AluI and EcoRI for 60 min at 37 ◦C with shaking at 600 rpm, in a total reaction volume
of 25 µL. Post digestion, each sample was cleaned using AgencourtXP beads (Beckman
Coulter, Brea, CA, USA) to separate large from small sized fragments. In brief, 42 µL of
water was added to the 25 µL reaction, followed by the addition of 40 µL of XP beads (to
achieve a 0.6 bead to sample ratio (v/v)). After thorough mixing and the placement of each
sample on a magnetic rack, the supernatant was transferred to a new tube, while the larger
sized DNA fragments (i.e., >1 kb) were retained by the beads in the original reaction tube.
An additional 60 µL of XP beads was then added to the transferred supernatant (to give
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a final 1.8 bead to sample ratio (v/v)), followed by mixing, and washing twice with 70%
ethanol (v/v), and subsequent elution in low TE.

Libraries of the smaller sized DNA fragments were prepared using UltraII End Repair
and Ligation kits (New England Biolabs, Ipswich, MA, USA), with custom Y-adaptors.
Post-adaptor ligation, samples were cleaned with XP beads using a 1.5 bead to sample ratio
(v/v), and this was followed by 4 cycles of PCR using Q5 2X HotStart MasterMix (New
England Biolabs, Ipswich, MA, USA). Library profiles were assessed using a Labchip GX
(PerkinElmer, Waltham, MA, USA), followed by pooling equal masses. Sequencing was
performed on an Nextseq 500 (Illumina, San Diego, CA, USA), using a Mid 300 Kit in 150
PE configuration.

4.5. Read Mapping

To assess preliminary mapping metrics, one set of paired-end fastq files from each of
the ten plant varieties was selected and mapped against each of the four genome assemblies
using HISAT2 (version 2.1.1.) [36] with –no-spliced-alignment and –no-softclip options.
The mapping metrics were qualitatively assessed for each sample and assembly, with
consideration given to the overall alignment, unmapped, uniquely mapping, and multi
mapping reads, as well as the genome assembly size. All 87 samples were then mapped to
the Purple Kush genome assembly using HISAT2 with the BAM file output of mapping
reads then sorted using SAMtools (version 1.6) [37] sort.

4.6. Determination of In-Silico and Sequenced Fragment Overlap

Using the in-house custom in-silico restriction digest Python script, a bed file was
generated consisting of 100 to 600 bp fragment coordinates resulting from an EcoRI/AluI
enzyme digestion combination on the Purple Kush genome to ostensibly reflect those
fragments predicted to be sequenced in actuality. A complement bed file consisting of the
remaining genomic regions not resulting from the EcoRI/AluI digest was then generated
using BEDtools complement. These bed files were used in conjunction with the previously
generated bam files from each of the 87 samples in BEDtools multicov to assess the overlap
between the in-silico and sequenced fragments, as well as the remaining genomic regions
to determine on/off target enrichment.

4.7. Variant Calling

Variant analysis of HISAT2 generated and sorted BAM files was conducted using the
germline workflow of Strelka2 (version 2.9.10) [38] in combination with the Purple Kush
genome assembly as the reference sequence. Using the SuperCann Cannabis Multiomics
Database [39] resources, including the GenomeBrowser, BLAST, and assembly annotation
files for the Purple Kush assembly, a BED file was generated of predicted start and stop
site coordinates from the SuperCann gene annotation for 21 genes involved in cannabi-
noid biosynthesis, and the range extended up and downstream of these genes by 500 kb
(Table S1). Using VCFtools (version 0.1.8a) [40], the multi-variant VCF output file from
Strelka2 was filtered to exclude poorly sequenced individuals using an error count script
from dDocent [41], which removed 4 samples from the population to produce a final count
of 83. Next the file was filtered to include sites with a minimum read depth of ≥5, a minor
allele count ≥ 3, minimum quality score ≥ 30, maximum missing data per site of 0.80,
minor allele frequency 0.05, and a minimum mean depth across all individuals ≥ 25. For
the variant file of cannabinoid pathway gene loci with extended range, filtering parameters
were a minimum read depth of ≥5, minor allele count ≥ 3, minimum quality score ≥ 30,
and the minor allele frequency at 0.05. A VCF of cannabinoid gene coordinates was then
generated from this using BEDtools intersect. Additionally, a third VCF was generated
containing a reduced subset of SNPs by filtering the final, full variants VCF to a minor
allele frequency of 0.35.
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4.8. Principal Component Analysis and Discriminant Analysis of Principal Components

To identify group clustering within the sequenced population, Principal Component
Analysis (PCA) and Discriminant Analysis of Principal Components (DAPC) [42] was used
in R through the packages ‘adegenet’ [43,44] and ‘vcfR’ [45]. To store binary SNPs for
computational efficiency, VCFs were converted to genlight objects using the vcfR2genlight
function in vcfR to store large amount of binary SNP data to complete the PCA. Within
the adegenet package, the find.clusters function, using k-means clustering, was used to
identify clusters from the PCA where the number of clusters is chosen based on the lowest
Bayesian information criterion (BIC) value or where an ‘elbow’ occurs in the plot. Enough
principal components (PCs) were retained to account for approximately 80% of the variance
in the PCAs performed. Then using the dapc function, enough PCs were interactively
chosen to account for approximately 40% of the data in all three cases, after which all linear
discriminants were retained.

4.9. Calculating Pairwise Genetic Distance between Varieties Using Nei’s Genetic Distance

To calculate pairwise genetic distance between varieties, a population ID was assigned
to each individual in the previously generated genlight object of 3608 SNPs using the
gl.define.pop function in the R package, ‘dartR’ (version 1.9.4) [46]. This variety assignment
was based on the initial designation of 10 distinct varieties. A genetic distance matrix was
then produced on the genlight object using the stamppNeisD function in the R package,
‘StAMPP’ (version. 1.6.3) [47].

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/ijms232314531/s1, Figure S1: In-silico digest profiles of 4 Cannabis
assemblies with 4 restriction enzyme combinations from 1 to 10 kb fragment size.; Figure S2: Single
and double digest outcomes for restriction enzyme combinations; Table S1: Cannabinoid biosynthesis
gene coordinates including additional 500 kb up and downstream.
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