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Abstract: Asthma is a chronic airway inflammatory disease with complex mechanisms, and these
patients often encounter difficulties in their treatment course due to the heterogeneity of the disease.
Currently, clinical treatments for asthma are mainly based on glucocorticoid-based combination drug
therapy; however, glucocorticoid resistance and multiple side effects, as well as the occurrence of poor
drug delivery, require the development of more promising treatments. Nanotechnology is an emerg-
ing technology that has been extensively researched in the medical field. Several studies have shown
that drug delivery systems could significantly improve the targeting, reduce toxicity and improve
the bioavailability of drugs. The use of multiple nanoparticle delivery strategies could improve the
therapeutic efficacy of drugs compared to traditional delivery methods. Herein, the authors presented
the mechanisms of asthma development and current therapeutic methods. Furthermore, the design
and synthesis of different types of nanomaterials and micromaterials for asthma therapy are reviewed,
including polymetric nanomaterials, solid lipid nanomaterials, cell membranes-based nanomaterials,
and metal nanomaterials. Finally, the challenges and future perspectives of these nanomaterials are
discussed to provide guidance for further research directions and hopefully promote the clinical
application of nanotherapeutics in asthma treatment.

Keywords: biomedical polymers; asthma; nanoparticles; drug delivery; nanomaterials

1. Introduction

Asthma is a chronic airway inflammatory disease, which is characterized by airway
hyperresponsiveness (AHR), eosinophil infiltration, mucus hypersecretion, airway remodel-
ing, reversible airflow obstruction, and goblet cell proliferation. The clinical manifestations
are recurrent cough, wheezing, and dyspnea [1]. Asthma can be triggered or aggravated by
a number of factors, including immune stimuli such as allergen-specific immunoglobulin
E (IgE), as well as non-immune stimuli caused by exercise or certain medications [2]. In
addition, genetics and obesity are also major sources of asthma. By 2025, the global asthma
population may reach 400 million [3]. Asthma is classified in several ways. In recent years,
the classification that has attracted attention is mainly based on the types of inflammation
and immune cells involved, which can be divided into T helper 2 (Th2)-high and Th2-low
subtypes [4,5]. The Th2-high subtype is characterized by marked eosinophilic infiltration
of the airway, while the Th2-low subtype is characterized by neutrophil infiltration [6,7].
Cytokines such as interleukin (IL)-4, IL-5, and IL-13 released by Th2 cells are dominant
in the progression of Th2-high subtype of asthma, and their secretion is closely related to
bronchial inflammation, smooth muscle spasm, and excessive secretion airway mucus. It
also leads to irreversible airway remodeling, excessive fibrosis, and scarring of collagen
deposition, exacerbating the disease process [8]. Th2-low subtype of asthma, also known as
severe asthma, is primarily mediated by the T helper 17 (Th17) signaling pathway [4]. Th17
cytokine levels have been shown to be significantly elevated in the tissues of patients with
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severe asthma and have been identified as a key factor in severe asthma [9]. Regardless
of the type of asthma, it is important to rapidly reduce inflammation in the airways and
prevent the false activation of allergen hypersensitivity mechanisms.

The treatment of asthma is mainly based on drug therapy. Inhaled glucocorticoids are
the mainstay of treatment. After the specific binding of glucocorticoids to glucocorticoid
receptors, it can reduce the expression of pro-inflammatory factors, inhibit the excessive
activation of signaling pathways such as nuclear factor kappa-B (NF-κB) and mitogen-
activated protein kinase (MAPK), and inhibit the increase of inflammatory cells to relieve
asthma [10–12]. However, long-term use of glucocorticoids can cause drug resistance
and many side effects, such as osteoporosis, growth suppression in children, and dia-
betes [13,14]. In recent years, considering patients’ medication compliance, glucocorticoids
have been used in combination with other drugs in small doses to better prevent side
effects [10,15]. In addition, theophylline can reduce airway inflammation as it restores
steroid sensitivity and increases histone deacetylase 2 (HDAC2) [16,17]. However, theo-
phylline has many side effects, such as causing nausea, headache, and epilepsy in the
body [18]. Moreover, long-acting beta agonists/muscarinic antagonists are also commonly
used in the treatment of asthma, and they can suppress the inflammatory response by
inhibiting thymic stromal lymphopoietin messenger RNA (mRNA) in the bronchi [19,20].
With the rapid development of science and technology, more and more therapies have
been developed for the treatment of asthma. Long-acting β2-receptor agonists are the
drugs of choice for the treatment of adolescent asthma [21]. In recent studies, leukotrienes,
as key lipid mediators of allergic diseases, have also been considered as new targets for
asthma treatment [22]. Leukotrienes trigger inflammation during allergic reactions in the
airways, and leukotriene receptor antagonists may have therapeutic effects by inhibiting
increased mucus secretion, bronchoconstriction, and airway inflammation [22,23]. Mono-
clonal antibody-derived therapies are gaining recognition. Several monoclonal antibodies
have been or are undergoing in clinical trials, including anti-IgE antibodies (omalizumab),
IL-33R antibodies (CNTO 7160), anti-IL-4Rα antibodies (dupilumab), and anti-IL-5 anti-
bodies (mepolizumab and reslizumab) [2]. Antihistamines and allergy medicines also play
an important role in asthma treatment. Specific blockers of histamine receptors improve
lung inflammation by interrupting histamine signaling [24,25]. Antiallergic drugs such as
loratadine or cetirizine are well tolerated as adjunctive therapy for asthma [26]. Notably,
some antihistamines can cause side effects such as drowsiness and new cardiac arrhythmias
and are not allowed in some countries [27]. Although the introduction of new therapies
recent years has been improved the therapeutic effect of asthma, the treatment effect varies
greatly due to individual differences in patients [8]. Therefore, there is an urgent need to
develop effective treatments for asthma.

In recent years, nanotechnology has been widely developed in modern medicine and
pharmacy applications. Nanomaterials not only have obvious advantages in improving
pharmacokinetics, prolonging blood circulation time and reducing drug toxicities, but
also in enabling targeted drug delivery, slowing the release of drugs, and enhancing drug
solubility [2]. Nanomaterials have become a research hotspot for researchers in many
fields due to their unique physicochemical properties, such as controllable size, good
biocompatibility and low cytotoxicity [28]. Many nanomaterials and micromaterials, such
as polymeric nanoparticles, solid lipid nanoparticles, extracellular vesicles nanomaterials
and metal nanoparticles have been explored in asthma treatment (Figure 1). Among
them, polymeric nanoparticles are the most widely used due to their high modifiability
and many other advantages, making them the most popular and effective drug delivery
materials. Nanoparticles not only improve the bioavailability of hormonal drugs and
reduce the number of hormonal drug administrations, but also provide an outstanding
contribution to the treatment of asthma by acting as a delivery agent for protein and nucleic
acid drugs, avoiding their rapid degradation in the body. In this review, we present the
use of nanomaterials and micromaterials in asthma, and hope that will trigger some new
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ideas and stimulate more efforts to promote the widespread use of nanotechnology in
asthma treatment.
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2. The Application of Different Kinds of Carriers in Asthma Treatment
2.1. Application of Polymetric Carriers in Asthma

Polymers, consisting of monomeric units linked by covalent bonds, are the most
diverse and broadly used class of biomaterials [29]. They have attracted great interest
as drug delivery vehicles due to their good pharmacokinetics, long circulation times and
desirable biocompatibility and biodegradability properties [30]. By modifying polymer-
based drug carriers with targeting ligands, polymers could be used in drug delivery
systems in the form of polymeric drugs for precise delivery of drugs. Herein, various
types of polymers were used as drug delivery systems for the treatment of asthma, mainly
involving chitosan (CS), Poly (D, L-lactide-co-glycolide) (PLGA), Poly (2-hydroxypropyl)
methacrylamide (PAMAM) and poly (N-(2-hydroxypropyl) methacrylamide) (PHPMA)
(Figure 2). The following was the summary of the characteristics of the above polymers
and their use in asthma (Table 1).

Table 1. Summary of the application of polymers in asthma.

Nanocarriers Functional Component Size Cell Lines/Animal Models Ref.

CS Baicalein 285 ± 25 nm BALB/c mice [31]

CS BCG-polysaccharide nucleic acid
and ovalbumin 1130 ± 22 nm BALB/c mice [32]

CS Heparin 359 ± 21 nm Rat Mast Cells [33]

CS Budesonide 551 ± 7 nm BALB/c mice; Rats [34]

CS Interleukin-17 receptor C 212.2 nm BALB/c mice [35]

CS Hyaluronic acid 164.2 ± 9.7 nm BALB/c mice [36]

CS Levosalbutamol sulphate / / [37]

CS Tris(2-carboxyethyl) phosphine
(TCEP) 128.0 ± 2.1 nm NIH 3T3 cells; A549 cells; L929

cells; BALB/c mice [38]
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Table 1. Cont.

Nanocarriers Functional Component Size Cell Lines/Animal Models Ref.

PLGA/CS CaMKII inhibitor peptide 230 nm HAECs cells; MTBEC cells;
BALB/c mice [39]

PLGA Budesonide 8.2 ± 1.5 µm BALB/c mice [40]

PLGA Andrographolide 205 nm C57 BL/6 mice [41]

PLGA pomegranate
encapsulated extract 7.22 µm BALB/c mice [42]

PEG-PLGA Low-Molecular-Weight Heparin 47.37 ± 6.02 µm BALB/c mice [43]

PLGA Montelukast 1.59–2.51 µm Calu-3 cells; BALB/c mice [44]

PEG-PLGA Bavachinin 196 nm HeLa cells; NIH-3T3 cells;
BALB/c mice [45]

PLGA Salbutamol 8.24 µm A549 cells [46]

PLGA A20-OVA 100–250 nm / [47]

PLGA Curcumin 2.5 ± 0.4 µm BALB/c mice [48]

PLGA Chrysin 99.034 ± 9.494 nm A549 Cells [49]

PEG-PLGA Budesonide 3.46 ± 0.05 µm Rats [50]

PLGA Dnmt3aos smart silencer 137 ± 4.5 nm M2 macrophages;
C57BL/6 mice [51]

PAMAM G4NH2-siRNA complexes 254 ± 52 nm A549 cells [52]

PAMAM Beclometasone dipropionate 1.68–5.82 µm / [53]

PAMAM Dexamethasone / BALB/c mice [54]

PHPMA P-selectin antagonist 30–400 nm BALB/c mice; C57BL/6 mice [55]
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2.1.1. The Application of CS in Asthma

CS is a linear polysaccharide with a large number of amino groups generated from the
deacetylation of chitin, deriving from the exoskeleton of crustaceans, which is a relatively
abundant biopolymer in nature [56]. Due to its high permeability, biodegradability and
good compatibility, there is a growing interest in various industries, especially in the mod-
ern pharmaceutical area [57–59]. CS has been explored in pharmaceutical, biotechnology,
tissue engineering, etc., and researchers found that it has a huge number of pharmacological
actions, such as antimicrobial, antioxidant, anti-inflammatory, anticancer, wound-healing,
bone tissue-engineering, regenerative medicine, and mucosal adjuvant [60–63]. As the
nanomaterial, several studies have demonstrated the safety of CS not only in the human
airway cell culture models (CALU-3 cells and A549 cells), but also in many animal experi-
ments by different routes of administration [64,65]. Due to its compatibility with airway
epithelium cells, good mucoadhesion, and antibacterial properties, CS is widely used in
novel nanotherapeutic drug development for asthma [57,66,67].

One of the most attractive features of CS for use in asthma treatment is its mucus
adhesion and penetration enhancing properties [68]. The basic amino groups of CS are
protonated positively charged [69]. Negatively charged mucins are abundant in the mu-
cus layer of the trachea [57,70]. Each mucin monomer is 0.2–0.6 µm in length and the
monomers are linked together end-to-end by disulphide bonds [71]. Therefore, the positive
charge of CS provides mucoadhesive properties, and promotes adhesion to mucus through
positive and negative electrosorption [70,72]. The inflammatory immune response caused
by asthma leads to obstruction of the airway and mucous production causes limitation of
air flow [73,74]. To enhance the mucus permeability of baicalein, chitosan-loaded baicalein
nanoparticles (L-B-NPs) were prepared. L-B-NP could control the pathophysiology of
asthma by regulating the Th1/Th2 balance which could control the asthma pathophysiology
by modulating the Th1/Th2 homeostasis (Figure 3A) [31]. In addition, the chitosan-based
swellable microparticles for loading budesonide were prepared by a spray-drying method,
which could effectively prolong the contact between the drug and the mucosa, reduce the
number of patients taking the medicine, prolong the interval between administrations, and
improve the patient’s compliance. After seven days of treatment, the number of eosinophils
in the lung tissue was further reduced, and the levels of IL-4 and IL-5 in the bronchoalveolar
lavage fluid and lung tissue were significantly reduced (Figure 3B) [34,37]. In addition, CS
nanocarriers have achieved remarkable therapeutic effects in preventing the rapid clearance
of nasal mucociliary and overcoming the limitation of low permeability across the mucosal
barrier [35]. For example, soluble IL-17RC protein, a co-receptor subunit of IL-17 and IL-17F,
inhibits downstream signaling to achieve anti-inflammatory effects; however, direct inhala-
tion of it has no significant effect [35,75]. Inhalation of CS- recombinant protein IL-17RC
(CS-RC) nanoparticles reduced airway inflammation in Th2-low endotype asthma, which
is referred to as “severe asthma”, primarily based on neutrophil infiltration and the IL-17
pathway [76–78]. When CS opens the tight junctions contact between airway epithelial
cells, protein-loaded CS has the potential to cross the ciliary layer of nasal mucosa [35].
As a natural polysaccharide with biocompatibility, in addition to the functions mentioned
above, CS-based nanoparticles can protect nucleic acid components from being destroyed
by nucleases in the body. It plays an outstanding role in allergen-specific immunotherapy
(desensitization), which promotes the transmembrane absorption of proteins and peptides,
and plays a safe and reliable role in the transmission of allergens [32].

CS can change the morphology of nanoparticles and increase the stability of nano-
system, making a remarkable contribution to the biomedical development of different
kinds of nanoparticles. Ferulic acid (FA) has potent free radical scavenging ability, but
its poor permeability and extremely short half-life (30 min) largely limit its therapeutic
applicability [36]. The limitations of FA were optimized by loading CS and decorating
hyaluronic acid (HA), which ensured the protection and transport of FA across the lung
barrier without causing significant damage to the lung, liver, kidney, pancreas and spleen
in vivo (Figure 3C, D) [36]. Additionally, other researchers developed CS-based nanocar-
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riers encapsulated with heparin to improve their stability, effectively preventing them
from being eroded by various enzymes in the respiratory tract. The encapsulated heparin
nanoparticles interacted with rat mast cells to achieve asthma therapeutic effects by reduc-
ing inflammation and airway remodeling [33]. Nanoparticles prepared based on CS not
only optimize the stability of nanoparticles, but also have the following advantages, such
as increased cellular uptake, tissue mucoadhesion and penetration, controlled drug release
and improved antimicrobial effects [56]. In addition, CS as a coating material does not
alter the rate of drug release but affects the mode of drug release, and it has been shown
that polymeric nanoparticles coated with CS can be used to release drugs in acidic pH
values [79,80]. Therefore, it can be based on the fact that CS can be used to control drug
release by interacting with biological fluids, salts and different delivery media.
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Figure 3. (A) The application of chitosan loaded baicalein nanoparticles (L-B-NPs) for asthma
treatment. Reproduced with permission from [31], © 2022 The Author(s). Published by Elsevier
B.V. on behalf of King Saud University. (B) The chitosan-based swellable microparticles for loading
budesonide reduced the levels of IL-4 and IL-5 in-vivo and improved pathophysiology. Reproduced
with permission from Statistics: aa p <0.01; *** p <0.001 vs. control group; ### p < 0.001, ## p < 0.01,
# p < 0.05 vs. model group [34], © 2022 Elsevier B.V. (C) HA decorated, FA loaded CS nanoparticles
(FACHA NPs) were administered by nebulization and exerted a therapeutic effect on OVA-sensitized
and challenged asthmatic mice. (D) FACHA NPs did not cause significant damage to the lungs, liver,
kidneys, pancreas or spleen in vivo. Reproduced with permission from [36], © 2022 Elsevier B.V.

In recent studies, the antimicrobial properties of CS played an important role in the
synthesis of nanogels for the treatment of asthma. Mucus obstruction can lead to bacterial
infection and chronic inflammation in the airways [81]. High levels of bacteria such as
Haemophilus, Neisseria, Streptococcus and Staphylococcus have been reported to be present in
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the respiratory tract of asthmatic patients [82]. Zhao et al. developed the nanogel consisting
of tris(2-carboxyethyl) phosphine (TCEP) and Arg-grafted CS (CS-Arg) for the treatment of
asthma (Figure 4A) [38]. On the one hand, TCEP could cause disulfide bond cleavage. On
the other hand, the ionic interaction of CS-Arg with mucin resulted in the disruption of
the mucus network. After interaction of CS-Arg, TCEP and nanogels with porcine gastric
mucin, a significant reduction in the size of the aggregates of porcine gastric mucin was
observed, indicating that the nanogel could disrupt porcine gastric mucin (Figure 4B). In
addition, CS-Arg had the ability to target the bacterial anion and significantly inhibited
the growth of S. aureus and E. coli (Figure 4C). Nanogels as hydrophilic polymers can
avoid the use of organic solvents, and also have the advantage of combining a small
molecule reducing agent with large molecule therapeutic agents. Therefore, nanogels with
good biocompatibility can be used as carriers to deliver various drugs for future asthma
treatment applications.
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Figure 4. (A) The treatment of CS-Arg/TCEP nanogels for asthma. (B) TEM images of mucin and
mixtures of mucin with different samples. (C) Antibacterial experiments of CS-Arg/TCEP nanogels.
Reproduced with permission from (1) 1 h and (2) 24 h pictures of the inhibition of different samples
against S. aureus aureus. (3) Quantitative of (1-2). (4) 1 h and (5) 24 h pictures of the inhibition
of different samples against E. coli aureus. (6) Quantitative of (4-5). Statistics: ** p < 0.01, and
*** p < 0.001. [38], Copyright © 2022 American Chemical Society.

2.1.2. The Application of PLGA in Asthma

PLGA is approved for medical use by the U.S. Food and Drug Administration (FDA)
and the European Medicines Agency (EMA), and widely used in drug delivery systems
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to encapsulate hydrophilic and hydrophobic drugs [83,84]. Its excellent biocompatibility,
biodegradability, and unique physical and chemical properties make it one of the most
popular and effective polymers for drug delivery [83,85,86]. The main products of PLGA
decomposition are lactic acid and glycolic acid, which are easily metabolized and cleared by
the body and thus are popular in the development of novel nanoparticles for the treatment
of asthma [87].

PLGA as carrier has many advantages in the treatment of asthma, such as improving
the bioavailability of hydrophobic drugs and achieving sustained release [40,41,49]. Inhaled
hormone drugs play an important role in the treatment of lung inflammation caused by
asthma, but most hormone drugs are hydrophobic in nature [40]. Preparation of PLGA-
based porous polymer microparticles was completed using an oil-in-water double-emulsion
method with ammonium bicarbonate as the porogen agent, which could effectively deliver
budesonide, achieving the continuous delivery and dose reduction of budesonide [40].
Another study showed that, the density and porosity of PLGA particles could be altered
by using polyethylenimine (PEI) porogen. It can increase deep lung deposition and lung
retention of montelukast encapsulated in PLGA particles [44]. In addition, the preparation
of PLGA nanoparticles improved the bioavailability of hormonal drugs, which could be
released slowly, reduce the number of doses, and reduce systemic adverse effects such as
osteonecrosis, oral fungal infections and osteoporosis [44,88,89].

PLGA was widely used not only in the delivery of hormones, but also made progress
in the delivery of herbal extracts. The herbal extracts extracted from natural medicines
have the advantages of low toxicity and fewer side effects. However, the bioavailability
and bioactivity of these extracts are limited by poor water solubility and rapid metabolism.
Moreover, most herbal extracts do not have certain cells and tissue targeting [90]. Based on
nanotechnology, the use of biomaterials as drug carriers to the lungs could help to over-
come these limitations [91]. For example, andrographolide has a certain anti-inflammatory
effect, but its short biological half-life degradation under acidic and alkaline conditions
in the gastrointestinal tract limits its anti-asthmatic potential. The researchers prepared
andrographolide-loaded nanoparticles and compared the difference between oral and pul-
monary routes of administration. The results showed that only intra-airway administration
showed significant efficacy. The as-prepared nanoparticles administrated by pulmonary
routescould inhibit IL-4, IL-5, and IL-13 levels in broncho-alveolar lavage fluid and serum
IgE content [41]. In another study, Saheli et al. developed the chrysin-loaded nanoparticles
(CHR-NPs), and chrysin exhibited a slow and long release at pH 7. In vitro experiments
showed a time-dependent accumulation of CHR-NP in A549 cells (Figure 5A). In vivo,
lung tissue histology experiments demonstrated that CHR-NP were more effective than
free chrysin treatment (Figure 5B). CHR-NP exerted anti-asthmatic effects by inhibiting the
activation of the TLR/NF-κB/NLRP3 pathway and thereby reducing the production of
pro-inflammatory cytokines in the lung [49]. Additionally, Oliveira et al. determined the
extract of pomegranate with PLGA could inhibit eosinophils recruitment to bronchoalveo-
lar fluid. The use of PLGA to deliver pomegranate extract is a promising approach to the
treatment of asthma, offering the advantage of reduced single-use doses and sustained
release of the drug over time [42].

In addition, PLGA has applications in the treatment of asthma for the delivery of nu-
cleic acids and proteins. Airway-specific defense mechanisms, such as the mucociliary layer,
macrophages, and enzymatic activity, make protein administration difficult [92]. Nasal
administration of nanosized proteins can avoid first-pass effects on the liver and overcome
the limitation of low permeability across mucosal barriers, enabling efficient delivery of
proteins into the trachea down to the deep lungs. Unmethylated CpG-oligonucleotides
(CpG-ODNs) therapy can effectively induce Th1 immunity and down-regulates established
Th2 responses, thereby altering the immune responses to alleviate allergic reactions in
asthma [93,94]. Only high doses of CpG-ODN were ingested to produce the therapeu-
tic effects [95]. In response to this shortcoming, the researchers used PLGA-based NPs
with CpG-ODN and micro house dust mite (HDM) to make a nanovaccine, and the num-
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ber of lung eosinophils was significantly reduced after use. This approach provided the
opportunity to simultaneously deliver allergen/antigen and CpG-ODN to the same antigen-
presenting cells [93,96]. Tumor necrosis factor alpha-induced protein 3 (TNFAIP3/A20)
can regulate the functions of various immune cells and is involved in the maintenance
of immune homeostasis. The nanovaccine prepared by encapsulating A20/OVA with
PLGA, can be stably delivered to specific immune targets and induce the desired immune
response in host cells, significantly suppressing the type of Th2 inflammatory response and
promoting the production of Treg cells [47].

Int. J. Mol. Sci. 2022, 23, 14427 9 of 23 
 

 

 
Figure 5. (A) Immunofluorescence images of A549 cells. (B) Exemplar photomicrograph of lung 
tissues from all the experimental groups stained by periodic acid-Schiff (PAS), Masson’s trichrome 
(MT), and hematoxylin-eosin (H&E) staining. Reproduced with permission from [49], © 2022 Else-
vier Inc. 

In addition, PLGA has applications in the treatment of asthma for the delivery of 
nucleic acids and proteins. Airway-specific defense mechanisms, such as the mucociliary 
layer, macrophages, and enzymatic activity, make protein administration difficult [92]. 
Nasal administration of nanosized proteins can avoid first-pass effects on the liver and 
overcome the limitation of low permeability across mucosal barriers, enabling efficient 
delivery of proteins into the trachea down to the deep lungs. Unmethylated CpG-oligo-
nucleotides (CpG-ODNs) therapy can effectively induce Th1 immunity and down-regu-
lates established Th2 responses, thereby altering the immune responses to alleviate aller-
gic reactions in asthma [93,94]. Only high doses of CpG-ODN were ingested to produce 
the therapeutic effects [95]. In response to this shortcoming, the researchers used PLGA-
based NPs with CpG-ODN and micro house dust mite (HDM) to make a nanovaccine, 
and the number of lung eosinophils was significantly reduced after use. This approach 
provided the opportunity to simultaneously deliver allergen/antigen and CpG-ODN to 
the same antigen-presenting cells [93,96]. Tumor necrosis factor alpha-induced protein 3 
(TNFAIP3/A20) can regulate the functions of various immune cells and is involved in the 
maintenance of immune homeostasis. The nanovaccine prepared by encapsulating 
A20/OVA with PLGA, can be stably delivered to specific immune targets and induce the 
desired immune response in host cells, significantly suppressing the type of Th2 inflam-
matory response and promoting the production of Treg cells [47]. 

PLGA can be modified to change the structure, packaging profile, and drug release 
kinetics of the prepared nanoparticles to suit the different applications of nanomaterials 
[86]. Polyethylene glycol (PEG) is the most commonly used hydrophilic modified copoly-
mer because of its good biocompatibility, water dispersibility, stability and easy grafting 
or adsorption onto the surface of PLGA [86].In addition, the hydrated layer of PEG chains 
can effectively prevent the recognition and binding of tonin proteins to plasma proteins, 
and reduce the phagocytosis of reticuloendothelial system (RES), thus increasing the sta-
bility of drug-loaded nanoparticles and enhancing the blood circulation half-life [97,98]. 
Low molecular weight heparin (LMWH) particles prepared with PEG-PLGA dimer (from 
47.37 ± 6.02 μm to 21.35 ± 3.60 μm) could effectively improve the airway wall thickness, 
mainly due to the relatively low density and good aerodynamic behavior of the large po-
rous particles, which improved the deposition efficiency in the lung [43]. In addition, 
PLGA-PEG-based microspheres are one of the promising approaches to overcome barri-
ers to mucus and alveolar macrophage uptake deep in the lungs. Li et al. prepared 
budesonide-loaded porous PLGA microparticles and found that the microspheres pre-

Figure 5. (A) Immunofluorescence images of A549 cells. (B) Exemplar photomicrograph of lung tis-
sues from all the experimental groups stained by periodic acid-Schiff (PAS), Masson’s trichrome (MT),
and hematoxylin-eosin (H&E) staining. Reproduced with permission from [49], © 2022 Elsevier Inc.

PLGA can be modified to change the structure, packaging profile, and drug release
kinetics of the prepared nanoparticles to suit the different applications of nanomaterials [86].
Polyethylene glycol (PEG) is the most commonly used hydrophilic modified copolymer
because of its good biocompatibility, water dispersibility, stability and easy grafting or
adsorption onto the surface of PLGA [86].In addition, the hydrated layer of PEG chains
can effectively prevent the recognition and binding of tonin proteins to plasma proteins,
and reduce the phagocytosis of reticuloendothelial system (RES), thus increasing the
stability of drug-loaded nanoparticles and enhancing the blood circulation half-life [97,98].
Low molecular weight heparin (LMWH) particles prepared with PEG-PLGA dimer (from
47.37 ± 6.02 µm to 21.35 ± 3.60 µm) could effectively improve the airway wall thickness,
mainly due to the relatively low density and good aerodynamic behavior of the large porous
particles, which improved the deposition efficiency in the lung [43]. In addition, PLGA-PEG-
based microspheres are one of the promising approaches to overcome barriers to mucus
and alveolar macrophage uptake deep in the lungs. Li et al. prepared budesonide-loaded
porous PLGA microparticles and found that the microspheres prepared with PEG2000
had a strong ability to cross the mucus layer (Figure 6A,B) [50]. Furthermore PLGA
microspheres prepared with appropriate or excessive PEG2000 could evade macrophage
uptake (Figure 6C). Another study showed that the PEG5000 layer could promote the
rapid penetration of bavachinin-loaded PLGA NPs through the mucosal surface of the
gastrointestinal tract, prolonging the circulation time of low water-soluble bavachinin in
the blood [45,99].

In addition, chitosan can also modify PLGA nanoparticles. After CS modification, the
biocompatibility of the nanoparticles and the adhesion to protein molecules were enhanced,
promoting their retention in the lung. For example, the Ca2+/calmodulin-dependent
protein kinase (CaMKII) can regulate the reactive oxygen species (ROS) production released
by neutrophils in the asthma airways. To improve the in vivo bioavailability of CaMKII, the
researchers prepared CaMKIIN-loaded nanoparticles using CS and PLGA for the delivery
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of CaMKII [39]. Oropharyngeal installation of CaMKIIN-loaded NPs could reduce the
mucus production and airway hyperresponsiveness in asthmatic mice. Moreover, the
uptake by lung cells were increased after CS modification.
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Phospholipids have also been used to modify the surface of PLGA nanoparticles due
to the presence of electrostatic interactions. The recently developed lipid vesicles derived
from native cell membranes endowed the surface of PLGA nanoparticles with unique cell
mimicking characteristics. Pei et al. constructed PLGA nanoparticles for loading DNA
methyltransferase 3A (Dnmt3aos); a smart silencer (EM-PLGA@Dnmt3aossmart silencer) was
constructed after exosome membrane (EM) modification (Figure. 7A) [51]. Dnmt3aos
is the long non-coding RNAs (lncRNAs), which are differentially expressed in M1/M2
polarized bone marrow-derived macrophages. EM-PLGA@Dnmt3aossmart silencer was
shown to target lung macrophages and exerted therapeutic effects by regulating the po-
larization of M2 macrophages. In vivo experiments showed excellent biocompatibility
and targeting capability (Figure 7B). The surface modification of lipid vesicles endows the
nanoparticles with biomimetic and biodegradable properties, increasing the possibility of
further surface modifications and improving the targeting of the drug, thus enhancing the
therapeutic efficacy.
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2.1.3. Application of PAMAM in Asthma

Dendrimers consist of a group of macromolecules with carefully tailored structures,
controlled by an iterative synthesis and considered as nano-size units with tree-like
branches [100,101]. Three things determine their properties: the polymeric branches that
emerge from the core, the repeating units that determine the solubilization ability, and the
end groups that determine the behavior of the dendrimer [53]. There are several types of
dendrimers, such as PEI, carbosilane, and PAMAM dendrimers [101]. However, PAMAM
dendrimers have NH2 terminal functions, thus can be easily modified according to the
designed structure, and are considered to be the most flexible dendrimers for applications,
especially in drug delivery and biological applications [100,102]. In recent years, nanocarrier
systems for pulmonary delivery of PAMAM dendrimers have been increasingly reported
regarding their safety for use with respiratory tissues and enhanced drug absorption by
lung cells, indicating the potential use of dendrimers in pulmonary delivery [103,104].

PAMAMs dendrimers for asthma therapy usually require modification of cationic
groups on their surface to neutral or anionic moieties to avoid toxicity and liver accumula-
tion [105]. Cytotoxicity could be reduced by lauroyl chains and polyethylene glycol, which
usually helped shield excess positive charge [102,106]. Lauroyl chains and polyethylene
glycol are used with PAMAM dendrimers to prepare nanoparticles for lung delivery, which
could enhance the safety of respiratory tissue and the absorption of drugs by lung cells, and
improve the safety of dendrimer delivery in the lung [107]. Modified PAMAM dendrimers
can be used as carriers for the delivery of various biomolecules such as nucleic acids and
proteins [108,109]. The surface groups of amine-terminated PAMAM dendrimers are pro-
tonated under physiological conditions [110]. The surface groups of amine-terminated
PAMAM dendrimers can bind to nucleic acids, forming nanoscale complexes, which are
able to offer the chance to improve targeting of siRNA to the airway epithelium cell cy-
tosol [52]. PAMAM dendrimers have high aqueous solubility and easily modified surface
functional groups, which are commonly used for the solubilization of hydrophobic drugs
for asthma, such as dexamethasone, rifampicin methylprednisolone, and beclomethasone
dipropionate [53,54,111]. After binding to PAMAM dendrimers, these drugs significantly
enhanced the drug accumulation in the lungs and their bioavailability.

2.1.4. Application of PHPMA in Asthma

PHPMA is a structurally stable, non-immunogenic, and highly hydrophilic polymer
that can be metabolized in the human body, and has been extensively used over the last few
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decades [112]. PHPMA drug conjugates have many advantages compared with free drugs:
longer retention time in the body, safer systemic administration, better therapeutic efficacy
and better metabolization [113,114]. Most of these PHPMA-antibody conjugates are pre-
pared by aminolysis of the terminal functional amino group of the polymer to modify the an-
tibodies at the end of the polymer chain, or by polymerization of the N-(2-Hydroxypropyl)
methacrylamide (HPMA) copolymer with an antibody-containing monomer. In these sys-
tems, the PHPMA backbone is modified with biodegradable oligopeptide side chains, and
the ends are modified with targeting antibodies and drugs, and are randomly distributed
along the backbone [115]. Such adhesins can be designed as protein delivery systems or
drug delivery systems for easier targeted drug delivery. Polymeric drug conjugates based
on water-soluble copolymers of HPMA have been extensively studied as a class of drug
delivery systems [116]. For example, Moog et al. developed a novel polymeric cell adhesion
inhibitor, a PHPMA-embedded sialyl-LewisX (SLeX)-polymer system. SLeX, a natural
ligand for selectins, cannot be an anti-inflammatory agent because it is subject to rapid
digestion by glycosidases and peptidases in the blood. However, the SLeX-polymer system
reduced methacholine-induced AHR in mice and reduced macrophage migration to the
endothelium, which had therapeutic potential for allergic airway inflammation [55].

2.2. Application of Lipid-Based Carriers in Asthma

Solid lipid nanoparticles are a new generation of nanoparticle drug delivery systems
made by adsorbing or encapsulating drugs in lipid membranes [117]. Solid lipid nanopar-
ticles are made up of biodegradable and safe lipid components such as solid natural or
synthetic lipids such as lecithin, triacylglycerols etc. The distinguishing feature of solid
lipid nanoparticles is their ability to carry a wide range of therapeutic agents, including
small drug molecules, large biomolecules, genetic material and vaccine antigens [118]. Solid
lipid nanoparticles are emerging as drug delivery systems with good physical stability,
protection against environmentally sensitive unstable drugs and targeted drug delivery,
which can be used for targeted drug delivery.

Rhynchophylline is the main alkaloid in the plant medicine Uncaria, a monomer with
anti-inflammatory effects [119]. The formulate rhynchophylline-solid lipid nanoparticles
(Rhy-SLNs) showed that water solubility of phynchophylline was significantly improved
and the encapsulated phynchophylline massively aggregated in the lung. The encapsulated
phynchophylline could reduce airway inflammation and oxidative stress by inhibiting the
p38 signaling pathway [120]. Not surprisingly, the encapsulated proanthocyanidins also
showed better therapeutic effects than free proanthocyanidins [121]. Additional studies
have shown that solid lipid nanoparticles could deliver curcumin. In an ovalbumin (OVA)-
induced mouse model of asthma, airway constriction was significantly inhibited, and
airway inflammation was reduced on the basis of accumulation in the lungs. The study
further showed that curcumin-solid lipid nanoparticles (curcumin-SLNs) reduced the
expression of IL-4 and IL-13 in the lungs of asthmatic mice by inhibiting the activation of
NF-κB and alleviated the occurrence of asthma [121,122]. Solid liposome nano-delivery
systems have the advantages of good cytocompatibility, proven in vivo efficacy, good lipid
bilayer penetration, and safety. Solid lipid NPs are also highly physically stable and can be
stored at 2–8 ◦C for up to 3 months, allowing for a wide range of applications [123].

2.3. Application of Extracellular Vesicle-Associated Carriers in Asthma

In recent years, extracellular vesicles, natural nanomaterials secreted by cells, have
been developed for asthma treatment as they mediate intercellular communication in
response to the immune system [124]. Extracellular vesicles (microvesicles and nanoscale
exosomes) can deliver some proteins and nucleic acids for asthma treatment, and some
extracellular vesicles themselves can distinguish different types of allergies in patients and
have the potential to treat asthma [125–127]. Exosomes with low immunogenicity and high
safety have the potential to penetrate the pores of the mucus layer and deliver therapeutic
agents directly to airway epithelial cells [128]. With the astonishing increase in the number
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of studies on extracellular vesicles in recent years, it is clear that there is an exciting field in
asthma treatment. Biocompatible extracellular vesicles can deliver labile genes or proteins
to inflamed lungs. These studies will make a huge contribution to asthma treatment.

Adipose-derived mesenchymal stem cells (ADSCs) with low immunogenicity can
promote cell communication by secreting exosomes [129]. MiR-301a-3p, a newly reported
miRNA in ADSC exosomes, plays an anti-inflammatory role by regulating PI3K signal-
ing and causing the polarization of macrophages from M1 pro-inflammatory cells to M2
anti-inflammatory cells [130]. The researchers found that MiR-301a-3p could inhibit the pro-
liferation and migration of airway smooth muscle cells caused by platelet-derived growth
factors by inhibiting the signal transducer and activator of the transcription 3 (STAT3)
pathway, so as to achieve the purpose of asthma treatment [131]. Studies have shown that
targeted inhibition of STAT3 activity was closely related to IL-17 and airway inflammation
and could be used as a new target for treating severe asthma [132]. Furthermore, mmu-circ-
0001359 produced by ADSCs-derived exosomes reduced airway remodeling by enhancing
FoxO1 signaling and activating M2-like anti-inflammatory macrophages [133]. In addition
to ADSCs, extracellular vesicles secreted by dendritic cells as antigen-presenting cells also
could regulate adaptive immunity [134,135]. Wu et al. showed that heme-induced dendritic
cell generation of extracellular vesicles could reduce the number of inflammatory cells in
the lung, and also inhibited the secretion of inflammatory cytokines such as IL-4 and IL-13
to achieve the purpose of asthma treatment [136].

Although extracellular vesicles have the advantages of good cytocompatibility and
non-toxicity, their small yield and high price also hinder their development. Oxygen
concentration plays an important role in the proliferation of mesenchymal stem cells and
the secretion of extracellular vesicles [137]. Hypoxic treatment of mesenchymal stem cells
can improve extracellular vesicle secretion and is promising in various disease models [138].
Dong et al. placed the mesenchymal stem cells in a state of hypoxia, and found that this
condition allowed the cells to secrete more high-quality extracellular vesicles [127]. The
hypoxic treatment strategy not only provided exosomes for asthma treatment but also
proposed a constructive solution to the low production of exosomes [127]. In addition to
improving the yield of extracellular vesicles, another study demonstrated the development
of standard homogeneous extracellular vesicles and the purification of extracellular vesicles
using an anion exchange chromatography protocol. Purified mesenchymal stem cell
extracellular vesicles suppressed innate lymphoid cells (ILC2) levels and reduced lung
inflammatory cell infiltration and mucus production [128].

In recent years, more and more studies have been conducted on extracellular vesicles
as nanoparticle carriers. Extracellular vesicles hold promise as therapeutics for diseases
and as excellent delivery platforms. Exosomes as a type of extracellular vesicles, can deliver
exogenous siRNA or miRNA to target disease sites in vivo, regulate gene expression, and
play the therapeutic roles [139,140]. Due to the distinct differences in miRNA expression
profiles between normal and asthmatic lung tissues, the delivery of miRNA inhibitors
is considered a novel therapy for asthma [141,142]. Epithelial-mesenchymal transition,
which occurs in airway remodeling, is closely related to asthma. miR-21-5p is considered a
biomarker of airway reversibility [143]. Li et al. used fluorescently labeled exosomes to
achieve airway epithelial cell-targeted delivery of miR-21-5p inhibitors [144]. The results
proved that miR-21-5p-containing exosomes could promote epithelial-mesenchymal transi-
tion by targeting the transforming growth factor beta1 (TGF-β1) pathway of recombinant
mothers against decapentaplegic homolog 7 (Smad7) to achieve the therapeutic effect [145].

2.4. Application of Metal Nanoparticles in Asthma

Metal nanoparticles have not only been used as catalysts in the field of chemistry
but also have made breakthroughs in the field of medicine. Metal nanoparticles have
been explored in the biomedical field due to their advantages, such as reducing excess
ROS in the airways of asthma [146]. In recent years, silver nanoparticles have been ex-
plored in the treatment of asthma. Silver nanoparticles inhibited the expression of the
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oversecreted mucin 5AC (Muc5ac) during asthma development and significantly inhibited
phosphatidylinositol 3-kinase (PI3K) and phosphorylated Ak strain transforming (Akt) lev-
els in the airways. Its mechanism of action might be to achieve an anti-inflammatory effect
by inhibiting the PI3K signaling pathway [147]. In addition, another study demonstrated
that the anti-inflammatory effect of silver nanoparticles might be through the NF-κB signal-
ing pathway. Silver nanoparticles could also significantly inhibit the highly expressed ROS
in the lungs of asthmatic mice and attenuate antigen-induced airway inflammation and hy-
perresponsiveness [148]. The outstanding antioxidant capacity of silver nanoparticles hold
great promise in treating asthma. In addition, silver nanoparticles made outstanding con-
tributions to the formation of airway scaffolds. The airway scaffolds constructed by silver
nanoparticles with antiproliferative activity and cisplatin improved the surface function of
traditional scaffolds [149]. Su et al. conducted a proteomic study to explore the differences
between healthy and asthmatic individuals who inhaled silver nanoparticles and found that
silver nanoparticles could regulate multiple pathways, including coagulation, chemokine-
mediated inflammation, and T lymphocytes (T-cell) activation. Bronchoalveolar lavage
(BALF) proteomic analysis of differential proteins in healthy and asthmatic individuals
could be used as an efficient method for screening silver nanoparticle adjuvants [150].

In addition, compared with silver nanoparticles, gold nanoparticles have lower toxic-
ity, and have gained attention in recent years [151–153]. Kang. observed the morphology
and microstructure of gold nanoparticles. When OVA-induced asthma mice were treated
with gold nanoparticles, the macrophages loaded with gold nanoparticles migrated to the
target lung tissue and exerted anti-inflammatory effects by inhibiting inflammatory media-
tors such as inducible NO synthase (iNOS), cyclooxygenase-2 (COX-2), and nitric oxide
(NO) [154]. Another study demonstrated that gold nanoparticles could modulate lung func-
tion in mice, improve leukocyte infiltration, and reduce mucus secretion levels and cytokine
production. The mechanism of action might be related to the down-regulation of oxidative
stress levels in the lung [155]. Although the anti-inflammatory effect of gold nanoparticles
may be beneficial for asthma treatment, it is also important to consider whether systemic
absorption may cause side effects. In order to improve the mucus penetration and intrapul-
monary targeting of gold nanoparticles, Omlor et al. prepared polyethylene glycol gold
nanoparticles, avoiding the adverse reactions caused by systemic absorption [156].

In addition to the nanoparticles mentioned above, ultra-small-sized superparamag-
netic iron oxide, (SPIO) nanoparticles have received great interest for their low intrinsic
toxicity, easy coupling to target groups, surface functionalization and ease of detection.
Wu et al. demonstrated that DiR-SPION conjugated to the anti-suppression of tumorigenic-
ity 2 (ST2) blocking antibodies (anti-ST2 NPs) significantly alleviated airway inflammation
by reducing the IL-33 and IL-13 levels and the percentage of CD4+T cells, and efficiently
suppressed the development of asthma by blocking the function of group 2 innate lymphoid
cells (ILC2s) [157]. Furthermore, hollow mesoporous silica nanoparticles (HMSNs) with
good biocompatibility and low cytotoxicity are promising inorganic nanocarriers due to
their large surface area, adjustable pore size and well-defined surface properties. Xia et al.
loaded the major house dust mite (HDM) allergen (Der f2) onto HMSNs, which act as
vaccine carriers, to achieve a high degree of allergic asthma prevention with reduced local
side effects [158,159]. Moreover, metal organic frameworks (MOFs) have a large specific
surface area, clear structure, adjustable pore structure, high porosity and regular shape, etc.
As a new type of nanomaterial, it has a late start in the biomedical field but is developing
rapidly and is a promising nanomaterial for future asthma treatment [160]. Besides, cerium
oxide nanoparticles, a type of nanoparticle capable of performing enzymatic functions,
called “nanoenzymes”, which inhibit the over-activation of signal pathways such as NF-κB,
could be an ideal anti-inflammatory carrier in future asthma treatments [161].

3. Discussion and Prospects

Currently, inhaled glucocorticoids are the mainstay treatment strategy for asthma
treatment, however, long-term use can cause drug resistance and many side effects, such as
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osteoporosis, growth suppression in children, and diabetes. In recent years, new drugs have
been developed to combat asthma, and the delivery efficiency of existing inhaled drugs has
been improved to increase the bioavailability and effectiveness of delivered drugs. As an
interdisciplinary science, nanotechnology has been widely used in the research of asthma
treatment and has produced good therapeutic effects. Although well-appreciated results
have been achieved, there are still many issues to be resolved.

At first, the preparation process of some nanoparticles is complex, high-priced, and has
poor repeatability, making some nanoparticles difficult for large-scale production for clinical
applications [162,163]. Furthermore, properties such as composition, size, shape and zeta
potential of the nanoparticles have significant impacts on pulmonary drug delivery [91].
These determined whether the nanoparticles could pass through the thickened mucus layer
of asthmatic patients. In addition, further attention needs to be paid to drug release of that
encapsulated in nanoparticles, such as the burst release and leakage from nanoparticles,
which can affect the stability of nanoparticles [164]. Last, but not least, the accumulation of
nanoparticles in the lungs is a cause for concern. In the design of nanoparticles, the use of
non-metabolizable nanoparticles in the lung should be avoided. As a participant in asthma
treatment, the interaction between nanomaterials and the endotracheal microenvironment
should also be considered to deal with asthma more effectively.

There are some solutions to the above problems. First, it is necessary to use low toxic
carriers to prepare nanoparticles and simplify the preparation process to achieve large-scale
production [127]. In addition, nanoparticles with positive charges properties are not good at
penetrating airway mucus effectively [165,166], and the cationic carriers are often required
to be modified on their surfaces to have neutral or anionic groups in order to avoid toxicity.
In order to control the release of the drugs, nanoparticles could be designed to have targeted
response capabilities, such as sensitivity and inflammation sensitivity, and drugs can be
released under specific conditions. For example, nanoparticles modified with pH-sensitive
hydrophobic segments were prepared in pH-responsive nanoparticles for targeted release
in inflamed lungs [167,168]. Finally, in order to allow the nanoparticles to penetrate the
mucus layer and to better improve the retention time in the lungs, nanoparticles can be
designed be smaller, to have targeted molecules, to be electrically neutral, to have high
encapsulation efficiency, and to have low toxicity [169]. Materials with mucoadhesive
properties, such as CS, can be used in the nanoparticles to enhance the retention of the
nanoparticles in the lungs. Importantly, the surface of the nanoparticles can be modified
with PEG. Studies have shown that PEG-modified nanoparticles can easily pass through
the mucus layer [170,171].

Most advances in asthma treatment in recent years have focused on new therapies
such as precision medicine, endotypes and phenotypes, biomarkers and biologics. Pre-
cision medicine is well suited to the heterogeneity and complex pathogenesis of asthma,
which requires a good understanding of asthma biomarkers, phenotypes, endotypes, geno-
types and regional patterns. Personalized therapeutic approaches and targeted therapy for
asthma patients promise to be the future of asthma treatment. Nanotechnology promises to
be a great addition to targeted asthma therapy by controlling the targeted release of drugs.
In future studies, researchers may be able to provide patients with personalized and pre-
cisely individualized treatment targeting drug release by understanding the immunology
of asthma. For example, nanoparticles-based drugs targeting eosinophil release may be
benefit for patients with Th2-high subtype asthma, or those targeting neutrophils release for
Th2-low subtype asthma patients, which can enhance the effectiveness of treatment asthma.

Although many preclinical studies have focused on nanotechnology as a potential
alternative for treating asthma, no clinical studies have been conducted. However, there
have been the clinical trials for lung damage caused by COVID-19 (NCT04397510) [91].
Therefore, nanotechnology is expected to be used to treat asthma from the laboratory to
the clinic. In this process, there are still many difficulties to overcome. It is essential to
develop nanomaterials suitable for pulmonary drug delivery for the treatment of asthma
and to further study the anti-asthma mechanism of nanomaterials. In conclusion, this
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paper reviewed new strategies for the treatment of asthma, with a focus on the use of
polymeric nanoparticles in asthma treatment, and discussed some of the issues and future
research directions. Although some progress has been made, more economical and simpler
experimental methods still need to explore more economical and simpler experimental
methods to alleviate the dilemma of asthma treatment and to enter clinical trials as early
as possible.
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